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To reveal the heat source and its formation mechanism of the northern Yadong-Gulu rift
(YGR), we analyzed the helium isotope, carbon isotope (δ13CCO2), and CO2/

3He and CH4/
3He ratios of hot spring gases for tracing the source of volatiles and discussing their
geological significance. The results show the following: helium is mainly derived from the
crust, and the radioactive decay of the thicker crust and granites provided more 4He to the
low helium isotopes; thermal decomposition of carbonate rocks is the main source of CO2;
CH4 may be of organic origin. To sum up, the gas geochemical characteristics of hot
springs in the northern YGR indicate that the volatiles are mainly derived from the crust. The
crust/mantle heat flow ratios (qc/qm) calculated by helium isotopes cover a range of
0.84–1.48, suggesting that the heat is mainly contributed by the crust. The crustal origin
gas and heat flow demonstrates that the heat source beneath the northern YGR is formed
by the process of interior crust. Combined with geophysical data, we suggest that the
stress heat caused by the collision of the Indo-Eurasian plate and the radiant heating of the
crust lead to the heat source (partial melting) and provide heat for thermal activities.
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1 INTRODUCTION

The collision orogeny between India and Eurasia is one of the most important geological events since
the Cenozoic, which led to the uplift of the Tibetan Plateau (TP). The dynamics of plateau uplifting
has attracted wide attention, especially the crust–mantle structure in the collision zone (Himalayan
terrane and Lhasa terrane) (Bourjot and Romanowicz, 1992; Nelson et al., 1996; Wu et al., 2005; Xu
et al., 2015). The development of nearly north–south extensional rift systems in the central and
southern TP is related to the dynamics of plateau uplift, and they are considered to be formed by the
collapse of the orogenic plateau or regional stress changes (England and Houseman, 1989; Molnar
et al., 1993; Yin and Harrison, 2000). The Yadong-Gulu rift (YGR) is the largest north–south
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trending rift in the central TP, which runs through the Himalayan
terrane and Lhasa terrane, so it is an ideal place to study the deep
structure of the collision area of the TP.

The YGR developed a large number of hot springs, and the
tectonic activity is strong, which provides favorable conditions for
themigration of gas fromdepth. Gases volatile fromhot spring in the
fault zone are closely related to the deep geological structure (de
Moor et al., 2013; Italiano et al., 2013; Kulongoski et al., 2013). They
are a mixture of gases from different sources, and their composition
will significantly change due to the different physical and chemical
properties of various gas components, different geological
backgrounds, and different ways to enter hot springs from their
sources (Wang et al., 1992). Helium is an ideal tracer in hot spring
gases because it is chemically inert and its abundance is changed only
by radioactive decay and physical processes duringmigration (Farley
and Neroda, 1998). Helium has two isotopic nuclides, 3He and 4He.
3He mainly derives from the mantle, while 4He is mainly produced
by the decay of uranium and thorium in the crust. The helium
isotope is expressed as 3He/4He, and it varies greatly with different
sources (Poreda and Craig, 1989). Generally, helium includes the
atmospheric source, the mantle source, and the crustal source, and
their helium isotopes are 1 Ra, 8 Ra, and 0.02 Ra, respectively (Ra is
atmospheric 3He/4He, Ra = 1.4 × 10−6) (Sano and Wakita, 1985).
Hot spring helium isotopes have been successfully used for studying
the deep geological structure in fault zones and volcanic areas (Mutlu
et al., 2008; Klemperer et al., 2013). In addition, CO2 is usually the
main component of hot spring volatiles. However, the concentration
and isotopes of CO2 are easily affected by geophysical and chemical
reactions in the process of migration. Therefore, δ13CCO2 and CO2/
3He are usually combined to explore the source of CO2 (Zhou et al.,
2020). Moreover, CH4/

3He is also used as an index to trace the
source of gas (Tao et al., 2005).

Hot spring gases have also been widely applied for exploring the
deep geological structure in the TP, such as in the Tengchong
volcanic area in Yunnan Province (Wang et al., 1993; Xu et al., 2004;
Zhao et al., 2012; Cheng et al., 2014), the Jinshajiang-Red River fault
zone (Zhou et al., 2020), the Litang fault zone (Zhou et al., 2017), and
the Xianshuihe-Anninghe fault zone (Xu et al., 2021). It is found that
the change of hot spring gases is related to the deep heat source or the
activity of fault zone. In recent years, some scholars have tried to
explore the material sources (gas, fluid) and deep structures under
the YGR by using hot spring gases (Zhao et al., 1998; Yokoyama
et al., 1999; Zhao et al., 2002; Zhang et al., 2017), but the heat source
and its formationmechanism are still under debate (Yokoyama et al.,
1999; Liu et al., 2014; Zhang et al., 2017; Xie et al., 2021).

In this study, 17 hot spring gas samples were collected from the
northern YGR. We analyzed the helium and carbon isotopes,
CO2/

3He ratios, and CH4/
3He ratios for tracing the source of hot

spring gases and discussing their geological significance to reveal
the heat source and its formation mechanism of the
northern YGR.

2 GEOLOGICAL SETTINGS

The Tibetan Plateau is a complex tectonic assemblage system (Yin
and Harrison, 2000). It contains five relatively stable blocks,

which are the Himalayan block, Lhasa block, Qiangtang block,
Songpan-Ganzi block, and Kunlun-Qilian block from south to
north (Pan et al., 2012). In the southern TP, there are six junior
nearly north–south trending rifts (Armijo et al., 1986; Yin, 2010),
and their extensional age is from the Middle Miocene to the late
Miocene (Zhang et al., 2020). The YGR is the largest rift in the TP,
with a total length of nearly 600 km, which spans the Himalayan
terrane and the Lhasa terrane (Figure 1A). The YGR can be
divided into the southern, middle, and northern segments during
research (Zhang et al., 2021). Our study area is mainly in the
northern YGR, and it is a graben composed of two NE trending
normal faults. The faults extend from Yangbajing to Sangxiong,
and the northern end of the faults is cut off by a NW trending
strike-slip fault (Jiali fault) (Figure 1B).

Due to the difference of basement and sedimentary
caprocks in the Lhasa terrane, it can be divided into three
subterranes with the boundaries of Shiquanhe-Nancuo
melange belt (SNMB) and Luobadui-Milashan fault (LMF)
(Zhu et al., 2011; Zhang et al., 2019). The northern YGR
crosses the northern and central parts of the Lhasa block.
The northern Lhasa has a young crust, the sedimentary
caprock is a Lower Cretaceous volcanic sedimentary
sequence, and the east is covered by Triassic–Jurassic strata
(Zhu et al., 2013). The Middle–Upper Triassic strata are
mainly composed of slate, sandstone, and radiolarian chert
(Pan et al., 2006). The Precambrian basement (Zhang et al.,
2012b; Dong et al., 2011), overlying Carboniferous–Permian
metamorphic sedimentary rocks, and Lower Cretaceous
volcanic sedimentary sequences are developed in the central
Lhasa terrane, accompanied by a small amount of Ordovician,
Silurian, and Triassic sedimentary rocks (Zhu et al., 2013).
After collision, the Lhasa block developed multi-stage
magmatism and widely developed Meso-Cenozoic igneous
rocks, mainly Paleocene Gangdise granite and Linzizong
volcanic rock distributed in the southern Lhasa (Wu et al.,
2008).

At about 65 Ma, the Indo-Eurasian plate collided and the
Indian landmass subducted beneath the Eurasian plate, resulting
in the increase of crustal thickness of the southern TP (England
and Houseman, 1989; Yin and Harrison, 2000; Wu et al., 2008;
Pan et al., 2012), and the thickest area appeared in the Lhasa
terrane, at about 80 km (Zhao et al., 1993; Zhao et al., 2001; Kind
et al., 2002; Zhang et al., 2011; Li et al., 2014). The heat flow values
of Yangbajing, Yangyingxiang, Laduogang, and Naqu in Lhasa
are 108 m/Wm2, 264 m/Wm2, 338 m/Wm2, and 319 m/Wm2,
respectively (Teng et al., 2019), which are higher than the
average of Chinese mainland (63 m/Wm2) (Hu et al., 2000;
Jiang et al., 2016; Jiang et al., 2019). Previous geophysical
studies have found that many shallow low velocity and/or high
conductivity zones are distributed in the crust of the Lhasa
terrane, such as Yangbajing and Dangxiong, which are
considered to be granitic partial melting bodies with a depth
of 15–25 km and a thickness of 20 km (Brown et al., 1996; Kind
et al., 1996; Nelson et al., 1996; Zhao et al., 2001).

The TP is rich in geothermal resources, and the hot springs in
the Lhasa block are concentrated in the north–south trending
rifts. In the northern YGR, hot springs are developed in
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Yangbajing, Ningzhong, Gulu, Naqu, and other places, with
spring temperatures ranging from 23 to 87°C. The Yangbajing
geothermal field is one of the non-volcanic high temperature
geothermal fields in Tibet, with downhole temperatures as high as
330°C (Guo, 2012; He et al., 2012; Yuan et al., 2014; Zhang et al.,
2015; Wang et al., 2022). The pH of hot spring water in the study
area (such as Yangbajing, Ningzhong, and Gulu) is mostly
between 7 and 9, showing a slightly alkaline property (He
et al., 2012; Yuan et al., 2014; Wang et al., 2018; Guo et al.,
2019). Besides, the main hydrochemical types of hot springs are
mostly transitional HCO3-Na and Cl·HCO3-Na, while
Yangbajing geothermal water is of Cl-Na type (Liu et al., 2014;
Wang et al., 2017b).

3 SAMPLING AND ANALYSIS

Seventeen hot spring gas samples were collected from eight sites
along the northern YGR (Figure 1B). Hot spring gas collection used
the drainage gas extraction method: we used a sodium glass bottle
with low helium permeability as a collection container, filled the
bottle with the corresponding hot spring water, and put the bottle
mouth into the hot spring water, and then the gas replaced the water.
To avoid air pollution, we stopped collectingwhen the gas filled 2/3 of
the bottle volume, and then we sealed the bottle mouth with a rubber
stopper and kept the bottle mouth down during transportation and
storage. In order to prevent the leakage of rare gases, gas samples were
analyzed within 14 days after collection.

FIGURE 1 | (A) Simplified tectonic map of the Tibetan Plateau (modified from Yin and Harrison (2000)); (B) geological map of the northern Yadong-Gulu rift
(modified from Zhang et al. (2017)) and hot spring gas sampling sites (the black dots in (B)).
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All the gas samples were tested for gas composition and
isotopes in the Oil and Gas Resources Research Center of
Northwest Institute of Ecological Environment and Resources,
CAS. Conventional gas components were analyzed by an
MAT271 Gas Mass Spectrometer with a relative standard
deviation less than 0.01% and a precision of ±0.1%. The test
conditions are as follows: EI ion source, ionization energy 86 eV,
emission current 40 μA, ion source temperature 95°C, SIM
scanning mode, and injection volume 1 ml. The abundance
and isotopes of noble gases were analyzed by a VG5400 Static
Vacuum Noble Gas Mass Spectrometer, and the test condition is
a high voltage ion source of 9 kV and a trap current of 800 μA.
Before and after analyzing the gas sample, the internal standard
gas collected from the top of Gaolan Shan in Lanzhou is first
tested for its noble gas components and isotopes. δ13CCO2 was
analyzed with a stable isotope ratio mass spectrometer (Thermo
Fisher Scientific Delta Plus XP), and the reference value is the Pee
Dee Belemnite (PDB) standard.

4 RESULTS

4.1 Chemical Compositions of Hot Spring
Volatile Gases
Gas chemical compositions are listed inTable 1. In these hot springs,
the temperature of spring water ranges from 10 to 88°C. Hot spring
gases are mainly composed of N2 and CO2, which account for
14.53%–90.40% and 4.30%–89.74% of the total gas content,
respectively. The contents of Ar and O2 are relatively low,
ranging from 0.19% to 1.03% and 0.44% to 17.52%, respectively.
We found that the Ar content of Sangxiong is higher than the
atmospheric value (~0.93%), indicating that there may be Ar from
deep sources. The N2/Ar ratio is a reliable index to judge whether the
gas derives from the atmosphere. The atmospheric N2/Ar is about
84, and the water-soluble gas N2/Ar of saturated air is about 38. The
N2/Ar ratio of hot spring gas in the northern YGR is close to that of

saturated air dissolved in water and atmosphere, which is the result
of infiltration of surface water into the ground and participates in the
geothermal water cycle, while the N2/Ar ratio of Ningzhong 2 is
relatively higher, suggesting that theremay beN2 addition from deep
structures (Kita et al., 1993). The contents of H2, He, and CH4 are
very low, which are four orders of magnitude lower than those of the
main gas components (N2, CO2).

4.2 Isotopic Compositions of Volatile Gases
4.2.1 Helium Isotopes
Helium isotopes are expressed as R/Ra (R is the 3He/4He value of
the sample and Ra is the atmospheric 3He/4He, Ra = 1.4 × 10−6).
The measured helium isotopes cover a range of 0.11–0.93 Ra
(Table 2). In order to deduct the contamination from air, we use
the 4He/20Ne ratio to correct R/Ra and express it as Rc/Ra, which
ranges from 0.10 to 0.87 Ra. Figure 2 shows the correlation
between 4He/20Ne ratios. We found that the helium isotopes
in Ningzhong appear near the air source, indicating that they may
be affected by air contamination, while other gas samples show
the characteristics of crustal origin.

4.2.2 Carbon Isotopes (δ13CCO2)
Generally, CO2 in hot spring gas in the geothermal area mainly
includes three sources: the mantle source, the source of
carbonate decomposition, and the source of decomposed
organic matter in sediments. Their carbon isotopes are from
−8‰ to 4‰, ~0‰, and less than −10‰, respectively (Dai et al.,
1996; Xu et al., 2012). δ13CCO2 of hot spring gas in the northern
YGR ranges from −11.2 ‰ to 0.1‰ (versus PDB) (Table 2),
indicating that CO2 is mainly derived from mantle degassing
and the decomposition of carbonate rock, while Gulu 1 and
Sangxiong CO2 may be organic sources.

4.3 CO2/
3He and CH4/

3He Ratios
Generally, mantle fluid has a CO2/

3He ratio of about 1.5 × 109

(Marty and Jambon, 1987), while the CO2/
3He value between 1012

TABLE 1 | Chemical composition of hot spring gases in the northern Yadong-Gulu rift.

No. Sampling
site

T
(°C)

H2

(ppm)
He

(ppm)
CH4

(ppm)
O2

(%)
CO2

(%)
Ar
(%)

N2

(%)
N2/Ar

1 Yangbajing 1 85 16.26 28.48 60 15.01 23.90 0.69 60.40 87.2
2 Yangbajing 2 88 20.88 93.08 270 5.56 57.46 0.58 36.10 62.1
3 Yangbajing 3 26 13.72 27.95 80 11.46 34.35 0.59 53.31 89.7
4 Yangbajing 4 85 53.49 67.21 150 11.25 37.05 0.59 50.78 86.4
5 Zangbu River 1 Nm 10.49 25.02 200 13.03 60.47 0.61 55.57 91.2
6 Zangbu River 2 Nm 15.71 45.44 150 1.03 89.74 0.19 9.02 49.6
7 Ningzhong 1 86 24.36 3.01 10 15.10 21.19 0.76 62.95 82.5
8 Ningzhong 2 77 45.90 4.86 10 13.28 34.85 0.32 51.55 163.0
9 Jiuzila 83 11.42 2.85 160 17.52 13.56 0.72 68.18 94.2
10 Gulu 1 86 402.00 49.30 490 6.07 79.03 0.27 14.53 53.2
11 Gulu 2 50 9.96 15.41 90 14.42 26.97 0.63 57.96 92.1
12 Sangxiong Nm 6.73 292.00 140 4.23 4.30 1.03 90.40 88.1
13 Luoma 1 Nm 70.73 514.00 400 0.44 29.92 0.61 68.93 113.0
14 Luoma 2 45 11.95 48.28 240 2.20 83.04 0.28 14.45 51.6
15 Naqu 1 79 7.26 2.53 110 15.22 22.54 0.67 61.56 92.3
16 Naqu 2 10 9.06 7.17 910 9.93 43.51 0.51 45.95 89.4
17 Naqu 3 56 5.67 13.20 920 13.40 28.38 0.59 57.54 98.2

Note: Nm is the abbreviation of “not measured.”
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and 1014 is of crustal origin (limestone and sedimentary organic
matter) (Sano and Marty, 1995). In our study, CO2/

3He ratios cover
a range of 6.3 × 108 and 1.8 × 1011 (Table 2).We noted that the CO2/
3He value of Sangxiong is lower than that of the mantle, which may
be affected by secondary processes (fractionation or calcite
precipitation). The CO2/

3He values of Luoma 1 are close to that

of the mantle (1.5 × 109), while the higher CO2/
3He values of other

hot spring gases indicate that they are derived from the crust. The
CH4/

3He value can show the potential source ofmethane (Botz et al.,
1999). The CH4/

3He ratio ranges from 0.2 × 108 to 3.8 × 109

(Table 2), which is larger than the value of themantle, indicating that
the gas is mainly derived from the crust (Botz et al., 1999).

TABLE 2 | Isotopic compositions of He and CO2 of hot spring gases in the northern Yadong-Gulu rift.

No. Sampling
site

4He/20Ne R/Ra Rc/Ra qc/qm δ13CCO2 (‰) CO2/
3He (108) CH4/

3He (108)

1 Yangbajing 1 670.0 0.11 0.11 1.48 −5.0 530.0 1.3
2 Yangbajing 2 584.0 0.12 0.12 1.45 −6.3 380.0 1.8
3 Yangbajing 3 813.0 0.12 0.12 1.45 −5.9 730.0 1.8
4 Yangbajing 4 53.7 0.13 0.12 1.43 −4.2 330.0 1.4
5 Zangbu River 1 48.1 0.11 0.10 1.48 −5.5 800.0 5.3
6 Zangbu River 2 154.0 0.12 0.12 1.45 −6.2 1200.0 2.0
7 Ningzhong 1 0.7 0.93 0.87 0.84 −6.7 570.0 0.2
8 Ningzhong 2 0.6 0.86 0.68 0.86 −3.9 760.0 0.2
9 Jiuzila 131.0 0.44 0.44 1.06 −3.3 780.0 9.2
10 Gulu 1 114.0 0.25 0.25 1.23 −11.2 450.0 2.8
11 Gulu 2 104.0 0.25 0.25 1.23 +0.1 500.0 1.7
12 Sangxiong 32.2 0.17 0.11 1.35 −10.3 6.3 0.2
13 Luoma 1 166.0 0.23 0.23 1.26 −6.7 18.0 0.2
14 Luoma 2 80.0 0.21 0.21 1.28 −2.6 600.0 1.7
15 Naqu 1 2.4 0.57 0.50 0.98 −0.9 1250.0 5.8
16 Naqu 2 30.7 0.25 0.24 1.23 −0.7 1800.0 38.0
17 Naqu 3 200.8 0.27 0.26 1.21 −0.4 580.0 19.0

Note: qc/qm = 0.815–0.300ln(3He/4He) (Wang, 2000).

FIGURE 2 | Diagram of Rc/Ra versus 4He/20Ne. The Rc/Ra and 4He/20Ne ratios’ end-members are as follows: air helium: Rc/Ra = 1, 4He/20Ne = 0.318; crustal
helium: Rc/Ra = 0.02, 4He/20Ne = 1000; mantle helium: Rc/Ra = 8, 4He/20Ne = 1000 (Sano and Wakita, 1985; Sano and Marty, 1995). Data of the Tengchong volcanic
area and Jinshajiang-Red River fault zones are cited from Wang et al. (1993) and Zhou et al. (2020), respectively.
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5 DISCUSSION

5.1 Origin of Volatiles in the Northern YGR
5.1.1 He
Helium in the northern YGR shows obvious crustal source (Rc/Ra
< 1; Figure 2), which may be related to the extremely thick crust
and the extensive development of granites in the Lhasa terrane. At
about 55 Ma, the Indian plate collided with the Lhasa terrane, and
the TP began to uplift (Zhu et al., 2015). With the continuous
convergence of plates, the Indian plate subducted below the lower
crust of Lhasa terrane, and the crustal thickness of Lhasa terrane
was twice the thickness of normal crust (Zhang et al., 2014). In the
crust, abundant 235, 238U and 232Th will generate 4He by α-
radioactive decay, and the in situ 4He concentration will
gradually accumulate with the increase of time (Zhou and
Ballentine, 2006). 4He will be released from rocks and
minerals under the tectonic activities of fault zone. As shown
in Figure 2, the helium isotopes of hot spring gas in the YGR
decrease with the increase of 4He/20Ne ratios, indicating the
continuous addition of crustal helium in the process of helium
transport from underground to the surface. Therefore, the thicker
crustal thickness will produce more radiogenic helium, resulting
in low helium isotopes, such that the helium isotopes of the
Jinshajiang-Red River fault zone, which cover a range of 0.04 Ra
to 0.62 Ra, show a crustal helium (Figure 2; Zhou et al., 2020), just
like the helium characteristic in this study. A similar inference has
been reported in the Karakoram fault zone on the TP (Klemperer
et al., 2013). In addition, the Lhasa terrane had multi-stage
magmatic intrusion (Ji et al., 2009; Zhang et al., 2014) in the
process of amalgamation, convergence, and compression with the
Qiangtang terrane and the Indian subcontinent. Magmatic rocks
from theMesozoic to theMiocene are developed in the YGR (Zhu
et al., 2009; Zhu et al., 2011; Sun et al., 2015), mainly granites.
Moreover, feldspathic granites in the late early Cretaceous are
also developed outside the rift zone, such as Naqu (Sun et al.,
2015). Granites contain more U and Th elements, so the
radioactive decay of these two elements is one of the main
sources of crustal helium in the YGR.

5.1.2 CO2 and CH4

In a geothermal system, the source of CO2 may not be accurately
determined just by δ13CCO2 because the phase separation of CO2

between vapor and liquid will lead to the fractionation of isotopes,
and it makes the gas CO2 rich in light isotopes and has a more
negative carbon isotope value (Barry et al., 2013). The CO2/

3He
ratio is another reliable index to judge the source of CO2.
However, this index is also affected by phase separation in
hydrothermal systems in the following two cases: on the one
hand, the temperature is larger than 100 °C, and on the other
hand, some kind of gas is supersaturated. The fractionation is
mainly manifested in the difference of solubility between CO2 and
He in water, and He is more inclined to release from the liquid
than CO2. Therefore, the gas CO2/

3He ratio can only represent
the minimum estimated value of the original value (Barry et al.,
2013). Except for the hot spring gas of Sangxiong and Luoma 1,
the lowest CO2/

3He ratio of the northern YGR is higher than that
of the mantle, indicating that CO2 is mainly derived from the

crust. Combining the CO2/
3He ratio with δ13CCO2, the results

show that CO2 mainly comes from the decomposition of
limestone, which is related to the lithostratigraphy of Lhasa
terrane. From the middle and late early Cretaceous to the
early late Cretaceous, extensive transgression occurred in
Tibet. The marine strata covered most of the Lhasa terrane,
and the lithofacies were composed of siliceous detritus and
carbonate interbeds (Zhang et al., 2004; Zhang et al., 2012a).
Therefore, CO2 is mainly formed by thermal decarbonization of
carbonate. In addition, the CO2/

3He ratio of Sangxiong hot spring
is lower than that of the mantle, and the content of CO2 is very
low, which may be due to the loss of CO2 in the process of gas
migration. Barry et al. (2013) suggested that the precipitation of
calcite will lead to the decrease of fluid CO2/

3He ratio. de Leeuw
et al. (2010) also reported that the precipitation of calcite results
in the decrease of fluid CO2/

3He ratio and δ13CCO2 at the same
time. It is speculated that the CO2/

3He ratio in the gas will be
lower. Therefore, we think that the loss of CO2 in Sangxiong hot
spring may be related to the precipitation of calcite.

CH4/
3He values show that CH4 is derived from the crust. CH4 in

nature includes biogenic CH4 and abiogenic CH4, mainly biogenic
CH4. Biogenic methane includes two sources: microbial methane
production and decomposition of sedimentary organic matter
(Schoell, 1988). In addition to the abiogenic CH4 derived from
the mantle, in the strongly alkaline (pH > 10) and middle–high
temperature (>150°C) hydrothermal system dominated by
serpentine, abiogenic CH4 can be synthesized by FTT reaction
(Horita and Berndt, 1999; Fu et al., 2007) on the one hand,
which needs to be mediated by H2; on the other hand, it can be
formed by hydration of water and olivine (Oze, 2005; Miura et al.,
2011; Suda et al., 2014). However, there is no sufficient condition for
the synthesis of abiotic methane because hot springs in the northern
YGR have granites, sandstones, and sand conglomerates as thermal
reservoirs (Liu et al., 2014), and the pH value of the hot springs is less
than 10 (He et al., 2012; Yuan et al., 2014; Guo et al., 2019).
Therefore, we suggested that CH4 in the northern YGR may be
of biogenic origin.

5.2 Helium in the Northern YGR and Its
Geological Significance
Hot spring volatiles show great difference in geochemical
characteristics in different geological background due to the
difference of deep heat source. The TP is rich in geothermal
resources, and its heat flows are higher than the continental mean
heat flow (Jiang et al., 2016; Jiang et al., 2019), indicating a high
thermal anomaly. The northern YGR and Tengchong volcanic
area are all located in the Lhasa block of the TP. The heat flow
value of the former is up to 319 m/Wm2 (in Naqu), while that of
the latter is 80–150 m/Wm2 (Hu et al., 2000). With the increase of
distance from the volcanic area, the heat flow value decreases
gradually (Sun et al., 2016). The Tengchong volcanic area has
experienced many volcanic eruptions since the late Miocene
(Wang et al., 2007), and its high heat flow is considered
related to lithosphere thinning caused by asthenosphere
upwelling (Sun et al., 2016). The helium isotope of Tengchong
hot spring is close to 8 Ra (Figure 2), which indicates that hot
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spring gas mainly derives from mantle magmatic degassing, and
this is also proved by subsequent studies on hot spring gas (Ren
et al., 2005; Xu et al., 2012). However, the helium isotope of the
northern YGR hot spring is less than 1 Ra, which is mainly of
crustal origin. Different from the Tengchong geothermal area, the
YGR is a typical non-volcanic high temperature geothermal area,
and Quaternary volcanic activity has not been found (Dor, 2003).
To understand the heat structure of the YGR, we calculated the
crust/mantle heat flow ratio by using helium isotopes and
expressed it as qc/qm. qc/qm values range from 0.84 to 1.48,
indicating that the crustal heat flow is the main contributor of
the heat flow (Wang, 2000; Tang et al., 2017), which is consistent
with the previously reported geothermal structure of the hot crust
and cold mantle in southern Tibet (Shi and Zhu, 1993).
Therefore, we suggested that the heat of the northern YGR
geothermal system may be contributed by the interior of the
crust although other scholars suggested that there is partial
melting in the boundary between the mantle and the lower
crust or the upwelling of molten magma from mantle wedges
beneath the northern YGR (Yokoyama et al., 1999; Zhang et al.,
2017).

The heat flow values of the geotectonic unit of the TP decrease
gradually from south to north, and this regional anomaly relates to
deep structure (Jin et al., 2019). The INDEPTH project found seismic
bright spots at the subcrustal 15–18 km in southern Tibet (from the
Tsangpo suture to theDangxiong graben), which are considered to be
partial melting in the crust (Brown et al., 1996; Kind et al., 1996;
Nelson et al., 1996). Therefore, the heat source of the northern YGR
may be the partially melted crust (Yuan et al., 2014). However, the
genetic mechanism of partial melting in the crust is still controversial.
On the TP, the overlapping shear friction heat generation of the
lithosphere during the collision orogeny may induce local melting in
the crust, resulting in the formation of abnormal heat flux in the crust
(Wang et al., 2013; Jin et al., 2019). Early geophysical and geothermal
spring geochemistry studies suggested that the partial melting is
silicate magma (Brown et al., 1996; Kind et al., 1996; Li and Hou,
2005). Later, Bea (2012) pointed out that radiogenic heating of the
crust is usually essential for the generation of large amounts of
granitic magma. 3D thermomechanical modeling simulation
suggested that radioactive heat and shear heating provide the heat
source for partial melting in the middle crust in Tibet (Chen et al.,
2019). The latest magnetotelluric study suggested that the partial
melting of the middle crust of southern Tibet was formed by crustal
radiant heat and strain heating in theMiocene (Xie et al., 2021). Other
geophysical studies suggested that the genesis of the YGR is related to
the asthenosphere upwelling and/or the tearing of the Indian plate
lithosphere (Chen et al., 2015; Wang et al., 2017a), that is, the partial
melting of the crust is formed by the upwelling of mantle material.
The results of helium isotope, carbon isotope, and the ratio of gas
composition to 3He in this study show that hot spring gas mainly
derives from the crust, given the tensile age of the YGR is basically
consistent with that of the melting of the middle crust, so we tend to
suggest the partial melting of the YGR crust formed by the stress heat
and radiation heat accumulated in the crust. Besides, the high heat
flow of the Lhasa block is mainly concentrated in the north–south
direction of Yangbajing–Lhasa–Naqu–Gudui area (Jiang et al., 2016),
and geothermal activities are also developed in the north–south

trending rift. Nábělek and Nábělek (2014) predicted the thickness
(~10–20 km) of the upper crust of brittle Tibet, which is consistent
with the focal depth of the earthquake and the distribution of the
crustal melting layer, indicating that the rift plays a role in connecting
with the deep heat source. In addition, we have observed that high
temperature hot springs are more developed in the rift than outside
the rift, indicating that granite also plays an indispensable role in the
supply of heat sources. Magmatic rocks are widely exposed in the rift,
and the lithology is mainly granite. The radiative heat provided by
granites may affect the shallow temperature of hot springs.

In a word, the helium isotopes of hot springs in the northern
YGR indicate that the partial melting in the crust provides heat
for the geothermal area, which was the stress heat during collision
between India and Eurasia on the one hand and the radioactive
heat of the crust on the other hand; the rift zone is the channel
between the surface hot spring and the heat source; the local
thermal difference of hot springs may be related to the
distribution of granites.

6 CONCLUSION

We have analyzed the gas geochemical characteristics of hot
springs in the north of Yadong-Gulu rift and found that the
volatiles of hot springs are mainly derived from the crust. To
further understand the geothermal structure of the Yadong-Gulu
rift, we calculated the heat flow ratio of the crust to the mantle
through helium isotopes and found that the heat flow is mainly
contributed by the crust. Helium isotopes of hot springs indicate
that the heat sources of hot springs are formed by crustal
processes. Combined with the analysis of geophysical data, the
results show that the tectonic heat and reflection heat of the
middle crust of the Lhasa block are partially melted due to the
collision of the Indo-Eurasian plate, and it provides heat for
geothermal activity in the rift.
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