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In geophysical inversions, lower and upper model parameter bounds are a means of solution
stabilization. Further, constraints that intend to let only geologically plausible inverse solutions
pass are amenable to lower and upper bounds. Reliable prior information is paramount to
construct such bound constraints. It is common practice to narrow and widen bound intervals
for regions of, respectively, more and less certain prior information. Contrary to this practice, we
experiment with widened bound intervals in zones that are poorly resolved by a given survey
configuration but where prior information would suggest structural anomalies of interest. The
purpose of enlargedparameter bounds that correlate spatiallywith predefined targets is to let the
inversion explore a larger solution space, thus increasing the potential to resolve otherwise
hidden anomalies. Application of the method is based on a carbon-sequestration baseline (pre-
injection) crosswell electromagnetic (EM) field survey at the Containment andMonitoring Institute
Field Research Station (Alberta, Canada), where impeded measurements led to generally
reduced sensitivities for the interwell region. Synthetic-data proofs of concept use
augmented bounds designed to boost the resolution of artificial plume targets, indicating an
enhanced illumination compared to constant bounds. Comparative field data inversions with
spatially variable bounds constructed from prior resistivity and velocity information highlight non-
horizontal baseline structures.

Keywords: 3-D electrical resistivity imaging, crosswell EM, inversion constraints, lower and upper parameter
bounds, CO2 sequestration monitoring

1 INTRODUCTION

Geophysical inverse-modeling problems are usually hampered by data sparsity and data noise. At the
same time, realistic earth models require a high degree of model discretization. The coincidence of these
issues leads to a non-unique and thus ill-posed nature of solutions of pixel-based (many-parameter)
inverse problems (e.g., Haber et al., 2010). A standard technique for addressing non-uniqueness is to
regularize the solution-finding process through constraints that are imposed on the mathematical
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representation of the inverse solution (e.g., Jackson, 1979). The
constrained inverse solution is commonly described as the
minimization of a multi-component objective function, for example

θ(m) � θd(m) + λθm(m) (1)
consisting of a data component θd(m) and model-regularizing
component θm(m), where the influence of the latter is balanced by
the regularization factor λ. The data part quantifies the difference
between a discrete set of noisy observations and a corresponding
set of predicted responses, typically in a least-squares sense.

In our experiments, θd(m) involves the fitting of
electromagnetic (EM) data from a crosswell configuration (e.g.,
Alumbaugh and Morrison, 1995). In EM inversions, the
underlying model parameter vector m (of size M) to be
estimated describes the spatial distribution of electrical rock
properties. In our case, the property of interest is electrical
conductivity, to be abbreviated by σ with unit S/m (Siemens
per meter), where we use its inverse, electrical resistivity ρ � 1

σ
with unit Ωm (Ohm meter), interchangeably.

The literature on geophysical inversion usually motivates the
introduction of constraints as a means to address non-uniqueness
through allowing geological models that are perceived as plausible
(Habashy and Abubakar, 2004; Abubakar et al., 2009; Sosa et al.,
2013; Ogarko et al., 2021). Constraining the solution arising from
the minimization of Eq. 1 is realized by the model-regularizing
term θm(m), which operates on m, a common form being (e.g.,
Menke, 2018)

θm(m) � λ[W(m −mref)]TW(m −mref) (2)
Minimizing the total error term θ(m) then essentially enforces

a model solution m −mref to vary smoothly across contiguous
elements ofm, realized through an appropriate smoothing matrix
W (e.g., de Groot-Hedlin and Constable, 2004). Equation 2
realizes a class of constraints that can be applied collectively,
by enforcing smoothness, and individually, by enforcing the
proximity of all or a subset of parameters to a given reference
mref (Medeiros and Silva, 1996; Farquharson et al., 2008).

It has been argued that the inversion against a fixed reference
model mref can be too restrictive, because it hampers the
incorporation of uncertainties associated with prior geological
information (Kim et al., 1999). Further, the drawback of
smoothness constraints is the suppression of actually existing
strong property contrasts. While this can be addressed by
setting pre-selected elements of W to zero (de Groot-Hedlin
and Constable, 2004), it may require relatively detailed
structural prior information. Another issue is that balancing the
influence of θd(m) and θm(m) on the solution processmay require
a multitude of trial inversions with different regularization factors,
λ (Eq. 2) (Sosa et al., 2013). Reaching this balance still may not rule
out a locally suppressed search space. A method addressing this
issue, referred to as active constraint balancing, makes the
regularization factor λ spatially variable (Yi et al., 2003).
Principally, the approach seeks to enhance spatial model
resolution through assigning small λ-values (less constraining)
in zones of high resolution. At the same time, large λ-values

intend to avoid parameter overshoots in zones of low
resolution. The inverse problem’s parameter resolution matrix
guides the quantification of resolution.

The inversion experiments in this study pick up the concept of
constraint balancing; however, we revert to the usage of bound
constraints for their facilitation of prior-model fusion (Kim et al.,
1999; Abubakar et al., 2008; Kim and Kim, 2011; Aghamiry et al.,
2019; Ogarko et al., 2021). A priori knowledge with varying
degrees of certainty lends itself to defining individual bounds a
and b imposed on the model parameters mi, expressed as the
inequality ai <mi < bi (i � 1, . . . ,M). Sosa et al. (2013) argued
that such bound constraints allow solutions to become “more
physical” than smooth models. However, there may also occur a
limitation “of the space to be explored by inversion before
convergence” (Ogarko et al., 2021), causing deterministic
inversions to have a potentially larger tendency towards
ending prematurely in local minima. Addressing this issue,
lower and upper bound constraints in conjunction with the
alternating direction method of multipliers have enhanced full-
waveform imaging (Aghamiry et al., 2019) and gravity inversion
(Ogarko et al., 2021). The multipliers essentially widen bound
intervals, thus extending the inversion’s model search space
during early iterations, encouraging the inversion to explore
the model space outside of preset bounds. Later iterations put
more weight on honoring stricter bounds.

This contribution investigates a potential model resolution
enhancement enabled through spatially variable bound
constraints. Our approach is a simplification of the concepts
by Yi et al. (2003) and Ogarko et al. (2021) because 1) we do not
employ the parameter resolution matrix for bound construction,
and 2) augmented bound intervals, that is, bounds that are
enlarged with respect to a default, remain static throughout
the inversion. The principal idea is to allow the inversion to
venture out into an enlarged model space during all model-
updating iterations. Regions of enlarged bounds reflect
preconceived focus zones that are suggested by prior
information. Hence, we also regard this method as a simple
way of conveying prior model information about anomalous
zones of interest to the inversion process. Synthetic and field
data demonstrations are based on a crosswell EM baseline survey
conducted within a geologic carbon sequestration (GCS) context.

2 METHODOLOGY

The inverse-modeling studies of this work seek for a constrained
solution using a non-linear conjugate-gradient (NLCG) scheme
(e.g., Luenberger, 1984). Our NLCG implementation
encompasses a three-dimensional (3D) finite-difference (FD)
scheme for the forward modeling of CSEM data (Commer and
Newman, 2008). The NLCG scheme minimizes an objective
function of the form of Eq. 1 by performing a sequence of
line-searches in model space, generating a sequence of model
updatesm0,m1, . . . ,mNmax. The scheme has the goal of reaching
a desired minimum θ(mNmax) within some preset maximal
number (Nmax) of inversion iterations. Each model-updating
step involves the calculation of first-derivative information of the
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error functional’s components in the form of gradient vectors,
∇θ � ∇θd(m) + λ∇θm(m). For further mathematical details, we
also refer to earlier applications of NLCG to EM data inversion
(e.g., Mackie and Madden, 1993; Newman and Alumbaugh,
2000). Note that our inversions operate on a representation of
the complex EM fields as real and imaginary field components
while we will present data fits below as pairs of amplitude
and phase.

2.1 Spatially Variable Lower and Upper
Parameter Bounds
Lower and upper parameter bounds [a, b] constrain the evolution
of a model parameter m during an inversion process, so that m is
bounded by a<m< b. In order to impose a positivity constraint
on electrical resistivity (or conductivity), the bounds usually
occur in conjunction with logarithmic or hyperbolic types of
parameter transformation functions. Generalized functions were
formulated by Kim and Kim (2011),

x � 1
n
log(m − a

b −m
) � 2

n
tanh−1(2m − b − a

b − a
); a<m< b, (3)

where x is the transformed parameter and n is a positive integer
constant. Our studies employ a version realized by n � 1.
Transforming x back into the original model parameter space
then leads to (Commer and Newman, 2008)

m � a + b exp(x)
1 + exp(x) ; −∞<x<∞. (4)

Constant bounds may be most suitable for inversion
applications where prior information is absent, that is, the
bound interval [a, b] applies to every cell parameter mi

(i � 1, . . . ,M) of the inversion domain. In the presence of
location-dependent prior information, a and b can become
spatially variable so that each cell mi is subjected to an
individual bounding interval [ai, bi].

2.2 Constructing Parameter Bounds From a
Reference Model
We do not employ a priori model information,mref, in a manner
as given by Eq. 2. Instead,mref forms the basis for the definition
of anomaly thresholds during a pre-processing step. Properties of
reference cells mref

i that surpass these thresholds undergo a
modification of a given default bound interval,
[adef, bdef] → [adef − Δa, bdef + Δb]. Widening the bounds by
Δa and Δb for certain model zones translates to a locally widened
model search space, thus heightening spatial model fidelity. The
scheme resembles the concept of active constraint balancing (Yi
et al., 2003); however, augmented bounds remain static
throughout the whole inversion process. The bound input thus
accompanies the starting-model input so that an individual
bounding interval [ai, bi] is assigned to each cell parameter mi

of the starting model. Once assigned, the bound parameters
(ai, bi) remain constant, whether they define locally
augmented bounds, [ai, bi] � [adef − Δa, bdef + Δb], or not,

[ai, bi] � [adef, bdef]. The bound construction is thus a pre-
processing step before inversion and a means of defining focus
zones that are suggested by the reference mref.

Our inversion operates on σ so all following bound parameters
are in units of S/m. Bound construction relies on arbitrarily
chosen thresholds that qualify a given reference cell parameter
mref

i � σ i � σ as anomalous. First, we consider the case where the
objective is to enhance the model resolution due to indicators for
conductive anomalies, σ > σmin. Here, the superscript min refers
to the minimum σ in order to qualify a cell parameter as
anomalously conductive. The corresponding augmented bound
interval [a, b] is

log(a) � log(adef) −ma[log(σ) − log(σmin)],
ma � log(adef) − log(amin)

log(σmax) − log(σmin), (5)

log(b) � log(bdef) +mb[log(σ) − log(σmin)],
mb � log(bmax) − log(bdef)

log(σmax) − log(σmin). (6)

Keep in mind that σ i � σ refers to model cells of the constant
reference mref. Logarithmic parameters account for the typically
large conductivity range of earth materials. Equations 5, 6modify
the default bounds in a linear fashion for all zones fulfilling
σmin < σ < σmax. Outside of this range, for cells σ ≤ σmin one has
[a, b] � [adef, bdef] while a predefined maximum bound interval
[amin, bmax] holds for all cells σ ≥ σmax.

For the case where the objective is to enhance the resolution in
regions that exhibit resistive features in mref, bounds are
augmented for all cells σ < σmax,

log(a) � log(adef) −ma[log(σmax) − log(σ)], (7)
log(b) � log(bdef) +mb[log(σ) − log(σmin)], (8)

wherema andmb are as defined by Eqs 5, 6. Here, the superscript
max refers to the maximum σ in order to qualify a cell parameter
as anomalously resistive (having low σ). Therefore, for cells above
this threshold, σ ≥ σmax, [a, b] � [adef, bdef] while all cells
σ ≤ σmin are kept at the fixed maximum bound interval
[amin, bmax].

For the following demonstrations, it is important to keep in
mind that only the (resistive or conductive) nature of outstanding
features inmref will define our focus zone. For this zone, Eqs 5, 6
as well as Eqs 7, 8 enlarge bounds in both directions; hence, the
widened bound intervals let both resistive and conductive
parameter anomalies pass in the imaging outcome.

3 RESULTS

The following section provides a synthetic-data and field-data
proof-of-concept for the resolution-enhacing effect of spatially
variable parameter bounds. The inverse modeling of crosswell
EM data is based on surveys conducted at the Containment and
Monitoring Institute Field Research Station (CaMI.FRS), located
in Alberta, Canada. CaMI.FRS is a small-scale GCS test site for the
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investigation of monitoring techniques at shallow and
intermediate injection depths (Um et al., 2020). An injector
well and two observation wells are completed to a depth of
350 m (Figure 1A). Small volumes of CO2 will be injected
into the basal Belly River Sandstone at depths up to 300 m.
The basal Belly River sandstone ranges from 17 to 21 m thick
and consists of fine- to medium-grained well to very-well sorted
lithic arenite (sandstone with grain sizes 0.06–2 mm and over
50% rock fragments) (Iwuagwu and Lerbekmo, 1982).

3.1 Prior Information at the CaMI Field
Research Station
We first give a brief overview of the geophysical surveys conducted at
CaMI.FRS. Both EM and seismic crosswell data were taken in order to
characterize the pre-injection state.Our synthetic-data proof-of-concept
replicates the EM survey geometry. The subsequent field-data proof-of-
concept employs prior information in form of seismic images together
with resistivity and velocity logs for the design of variable parameter
bounds. Therefore, all prior information is introduced first.

3.1.1 Electromagnetic Crosswell Survey
Crosswell EM uses the principles of EM induction to interrogate
the electrical resistivity between wells. As sketched in Figure 1B, a
vertical magnetic dipole (VMD) induction coil placed in the
transmitter well broadcasts sinusoidal EM signals into the
formation. At the receiver well, the signals are detected, in our
case via a double-coil receiver with two connected sensors
separated by 5 m. Source and receiver usually traverse the
wells with recordings triggered at regularly spaced intervals
leading to a tomographic illumination of the interwell space.

Tomographic baseline crosswell EM data were collected over
the depth section 200–320 m (Figure 1C) with a transmitter
spacing of 2 m in observation borehole 2 (named OB2), thus
leading to 59 source depth levels. The two-receiver string
traversed 10 levels at intervals of 10m in observation borehole
1 (OB1). Unfortunately, cross checks between signal amplitudes
and receiver depth recordings revealed inconsistencies which
rendered only 8 receiver sets per transmitter activation usable.

While the cause remains unclear, we speculate that the bottom
receiver of the double-sensor array might have buoyantly floated
upwards, thus not keeping the constant reference separation (5 m)
between the two sensors. Moreover, while the transmitter system
operated at the two frequencies of 200 and 450 Hz, data noise
turned out excessive at 450 Hz. Both issues reduced the usable data
to a total of 454 complex magnetic-field data points which are the
input to our field-data inversions presented below.

In addition to the data sparsity, another complication is caused
by horizontal well deviations of the instrumented sections which
max out at 7 m (OB2) and 0.5 m (OB1). Ensuing instrument
rotations out of the horizontal plane are often neglected in
academic crosswell EM studies. Given the dominating
deviation of OB2, we incorporate source coil rotations in form
of tilt and azimuth angles in the field-data inversions.

3.1.2 Correction for Electromagnetic Steel-Casing
Effects
Croswell EM can be stymied by the signal-shielding nature of metal
borehole casings, because large magnetic fields result from the
transmitter coupling with hysteretic magnetic permeabilities of
steel. If open holes (no casing present) cannot be realized, fiberglass
casing avoids this coupling. At CaMI.FRS, the transmitter well
(OB2) is steel-cased from the surface to 60 m and fiberglass-cased
from 60 to 350 m, while OB1 is all steel-cased down to 350 m. The
effects at frequencies below a few hundred Hz remainmoderate for
the received signals. Nevertheless, in the presence of weak
geological effects on the data one wants to avoid any potentially
overpowering casing effect. The casing effect at the receivers can be
corrected for either in the course of data inversion, or it can be
removed prior to the inversion process. Herewe choose the latter in
order to avoid the computationally demanding forward-modeling
of casing effects during the inversion. The correction procedure
essentially utilizes the fact that in the frequency domain one can
approximate the casing effect by means of a source-signature
correction with a complex factor (Wu and Habashy, 1994).

We outline the steps that correct for EM induction effects
contained in receiver coils that are surrounded by steel casing.
The main component is an appropriate reference model from

FIGURE 1 | (A): Schematic view of CaMI.FRS site with injector and monitoring wells. (B): Schematic of a crosswell EM configuration. Primary EM fields are emitted
in the transmitter well and recorded together with induced secondary vertical magnetic fields in an adjacent receiver well. Data processing steps separate the signals so
that the rock electrical resistivity information is derived from the secondary fields. (C): Actual positions of the magnetic transmitter and receiver coils. The two wells OB1
and OB2 are deviated, with an average of 54.5 m separating the instrumented sections.
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which one can calculate non-casing reference data. The two
resistivity logs in the two observation wells (Figure 2A) were
employed to construct a 1D reference model. It involved fewer
parameters than given by our 1D inversion presented below while
being equivalent in terms of data fit. The predominantly

horizontally layered geology at CaMI.FRS helps limit the error
due to the approximate nature of the reference model.

For each common-receiver gather of the tomographic
crosswell EM data, we extract the data pertaining to all
transmitter depths that are in vertical proximity, here within
5 m of the depth of the receiver gather. These data are complex
magnetic-field values containing the casing effect. Replicating
their survey geometry with respect to the receiver depth, we
calculate a corresponding non-casing data set through forward-
modeling of the 1D reference model.

For each transmitter depth of a given receiver gather, we
divide the non-casing reference data by its measured
counterpart. This yields a set of estimated casing-correction
factors which are also complex numbers. All correction factors
of one receiver gather are averaged. The outcome is a best
estimate for the magnetic-field attenuation and phase shift
caused by the steel casing. The averaging is carried out for all
individual receiver gathers, producing a set of location-
dependent best-estimate correction factors. Making the
correction depth-dependent intends to limit the impact on
non-casing signal footprints one wants to retain as they
contain for example effects due to local 3D structures.

The final step is the actual data correction. Each data point of a
given receiver gather is multiplied by the gather’s correction
factor, producing a common-receiver gather of corrected data.
Applying the correction procedure to each receiver gather yields a
tomographic data set of casing-corrected data that are also
normalized for unit source moment. This set is the data input
for the field-data inversions presented here. Image distortions due
to this correction procedure are limited to the vicinity around the
casing (Gao et al., 2008).

3.1.3 Seismic Well Logs and Crosswell Survey
Compressional-wave velocity (vp) logs were acquired in OB1 and
OB2 (Figure 2A). Cross-plotting the well measurements of
velocity against resistivity (Figure 2B) highlights a degree of
correlation that we deem as sufficient for using vp as reference for
our EM inversions. In addition to the well logs, a high-resolution
crosswell seismic survey with piezoelectric seismic sources was
part of the baseline data collection at CaMI.FRS (Um et al., 2020).
To achieve tomographic imaging, a total of 257 total source
positions traversed the well from 216 to 344 m at depth intervals
of 0.5 m. Figure 3A sketches the set of ray paths resulting from
one source activation. Seismic signals were recorded in well OB2
using a string of broadband hydrophone receivers. The receiver
interval of 5 m resulted in a vertical coverage of 95 m. The whole
survey resulted in 51,400 ray paths. Corresponding travel times
were picked for tomographic travel-time inversion (Vasco and
Nihei, 2019). The travel time inversion was initialized by a 1D
velocity model obtained through linear interpolation of the
vp-logs from OB1 and OB2.

Both the vp-logs as well as the final 2D vp-image (Figure 3B)
are the prior information that will contribute to the design of
the parameter bounds for the field-data inversions presented
below. First, we present a synthetic-data proof-of-concept in
order to highlight the potential benefits of the method.

FIGURE 2 | (A): Prior EM and seismic information at CaMI.FRS. Seismic-
velocity (vp ) logs (blue, scaled by a factor of 250) and resistivity (ρ) logs (red)
were measured in wells OB1 and OB2. Zones of low correlation are annotated
only for depth sections that we consider as sufficiently resolved by the
crosswell system. (B): The cross plot between velocity and resistivity
measurements highlights a relatively strong degree of correlation which is
minimal in a narrow depth section between 270 m and 280 m.
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3.2 Synthetic-Data Inversion Demonstration
The following inversion experiments demonstrate the benefits of
spatially variable inversion constraints. Each case compares pairs of
inversions, one using constant bounds, one using variable bounds.

Synthetic EM data is generated using the field geometry of the
CaMI.FRS baseline EM survey. Amajor focus of this survey involved
the testing of new sensor hardware, which led to the issue that the
employed operating frequency of f = 200 Hz is not optimal in terms
of image resolution. The resolution can be estimated by the ratio
between the transmitter-receiver separation, tx − rx, over the skin-
depth estimate, δ (Alumbaugh and Morrison, 1995),

r � tx − rx

δ
, δ �

�����
2

ωμσ0

√
, ω � 2πf (9)

The baseline survey’s configuration at CaMI.FRS involves an
average transmitter-receiver separation of tx − rx � 54.5 m. Our
synthetic model to be detailed further below has an averaged
homogeneous background conductivity of σ0 � 0.07 S/m, leading
to the ratio r = 0.4 (assuming the magnetic permeability of free
space, μ � 1.2566 × 10−6 H/m). Small ratios infer that the EM
field wavelength associated with the excitation frequency is large
compared to the scale of the target structure. Therefore, a ratio
below one indicates that scattered (secondary) fields arising from
a target anomaly can be expected to be small compared to the
primary source field. The underlying survey layout will then
suffer from low resolution capacity.

Given these two survey impediments, resolution loss due to the
low source frequency and the sparse receiver array, our synthetic-
data inversions aim at investigating whether target-specific
parameter-bound modifications can help alleviate the resulting
low imaging capacity in order to produce satisfactory plume
delineations. We assume the evolution of a CO2 plume due to
an injection source near the center of the crosswell setup (Injector
well in Figure 1A). Seismic imaging indicated a predominantly
horizontally stratified background geology (Figure 3B). Therefore,
underlying assumptions for the plume geometry involve an
anisotropic hydraulic conductivity ratio that results in a greater
horizontal flow and thus an ellipsoidal plume shape with the largest
horizontal semiaxes along the x-axis (defining the well plane).

Our imaging studies are of a somewhat academic nature by
assuming either purely electrically resistive or conductive CO2-
induced anomalies. Laboratory studies indicate that much more
differentiated electrical-conductivity alterations can occur due to
potentially opposing effects due to ion content versus ion
mobility that depend on pore water salinity, gas concentration,
pressure, and temperature (Börner et al., 2015). Here, we restrict
ourselves to two distinct cases: 1) a free CO2 phase acts as an
electrical insulator and thus causes a resistive plume, and 2), at
low pressures (shallow injection depths), a high ion content due
to dissociation of carbonic acid results in a conductive plume.

Synthetic data generation follows the standard procedure of
adding normally distributive random Gaussian noise to the real
and imaginary components of the vertical magnetic fields
(measured in A/m). Noise magnitudes are based upon
0.5% of the data amplitude and an additional noise floor
of 10−11 A/m. For computational savings, we further exploit
the reciprocity principle by swapping out transmitters and
receivers so that the receiver well hosts 8 computational
transmitters. While well deviations are accounted for, no
sensor rotations are considered.

FIGURE 3 | (A): Schematic view of crosswell seismic system. (B): 2D
vp-image resulting from CaMI.FRS seismic field data inversion. Shown velocity
anomalies Δvp are with respect to the reference velocity vrefp � 2516 m/s.
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3.2.1 Bounds Within Approximate Ellipsoidal Target
Regions
Our underlying premise is to employ bound constraints as a way
of focusing the EM imaging by exploiting prior information. Our
synthetic example simulates a case where prior information exists
in form of a delineation of a focus zone, which could be the
product of concurrent reservoir modeling. The bound constraints
thus serve as a way of augmenting the geophysical model
resolution in a zone that is of hydrogeological interest.

The zone of interest in our electrical-conductivity model will
be a plume of ellipsoidal shape and with anomalous electrical
conductivity relative to the background. We consider two cases, a
resistive and a conductive plume. The ellipsoid’s semiaxes lengths

(in meters) are (a, b, c) = (18.5, 10.5, 12.5) along the axes x, y, z,
and it is centered at (x, y, z) = (22, 0, 257). White contour lines in
Figure 4A outline the true target geometry. The colored
ellipsoidal regions that occur incongruent to this actual
geometry define the volume where lower and upper inversion
parameter bounds are modified with respect to constant default
bounds.

A prerequisite for designing modified bound constraints
would be a reservoir flow model that approximates fluid
saturations and thus plume evolution. While we do not carry
out such flow-modeling, it is safe to assume that, at a minimum, a
basic reservoir model will exist for the majority of GCS sites.
However, depending on the degree of model refinement, there

FIGURE 4 | (A): Plume imaging for CaMI.FRS. Spatially variable lower and upper model parameter bounds constrain inversions for an ellipsoidal CO2 plume.
Variable bounds occur over an ellipsoid that is different in shape and center coordinates to the true plume, the latter indicated by white contours and the semiaxes lengths
(a,b,c). Crosswell instrument locations are projected. Lower parameter bounds span the electrical-conductivity range from 10−6 to 10−3 S/m. (B): Upper bounds range
from 1.5 to 100 S/m. (C): Lower and upper bounds are paired such that constraints open up when traversing the ellipsoidal target region, here shown for the x-axis
at (y,z) = (0, 258) m. (D): The logarithmic transformation function of Eq. 4 is exemplified for the bound interval [a,b] � [10−6 , 100].
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will always be some uncertainty associated with operational
reservoir flow predictions. The incongruity between true and
assumed plume boundaries is meant to simulate this uncertainty.
To quantify the deviations, we assume that predictive flow
modeling would deliver a plume estimate with the erroneous
ellipsoid dimensions of (a, b, c) = (20.5, 12.5, 10.5). In addition,
the center point is shifted to (x, y, z) = (18, 0, 260), which shall
account for actual local preferential flow paths that would exceed
the complexity of the available flow model.

Lower (Figure 4A) and upper (Figure 4B) σ-parameter
bounds are designed according to Eqs 5–8. As illustrated in

Figure 4C, preset default bounds [adef, bdef] � [10−3, 1.5]
expand within the plume region, up to the maximal interval
[amin, bmax] � [10−6, 100] at the center. Figure 4D exemplifies the
parameter transformation (Eqs 3, 4) that would result for this
widest interval. Generally, the asymptotic curve behavior
indicates the logarithmic transformation’s effect of
avoiding σ-parameter over- and undershoots during the
inversion process. Widening the bound interval
corresponds to increasing the parameter range in which
the relationship between original and transformed
parameter is close to linear.

FIGURE 5 | (A): Plume imaging for CaMI.FRS. Comparative inversions for an electrically resistive plume model. The upper, middle, and lower plot rows show,
respectively, true model, inversion result using constant bounds, and inversion result using spatially variable bounds. (B): Comparative inversions for an electrically
conductive plume model. The upper, middle, and lower plot rows show, respectively, true model, inversion result using constant bounds, and inversion result using
spatially variable bounds. The corresponding variable lower and upper parameter bounds are shown by Figure 4. Elliptical contour lines in the images outline true
(black) and assumed (green) plume boundaries. Assumed boundaries pertain to the ellipsoidal region defining the variable lower and upper parameter bounds. (C):
Inversion of data set created from the background model using the variable bounds.
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3.2.2 Inverting for Resistive and Conductive Plumes
First, we assume the simplistic case where a free CO2 phase would
act as an electrical insulator, thus causing a resistive plume.
Figure 5A compares inversions using spatially constant
bounds versus variable bounds. All inversions start with a
homogeneous model of σ � 0.07 S/m (≈ 14.3Ωm). The first
plot row shows the actual resistive anomaly to be imaged. It
would be caused by an injection source at (x, y, z) = (22, 0, 257),
creating the aforementioned ellipsoidal plume geometry
(Figure 4A, white contour lines). Mimicking highest CO2-
saturation levels near the injector, σ gradually increases from a
minimum of σ � 2.34 × 10−3 S/m (≈ 427Ωm) at the center
towards the borders where it blends with the background. The
background has a generally 1D structure with minor 3D
anomalies and was obtained through transforming an image of
seismic velocity vp (Figure 3B) into ρ through the relation

log10(ρ) � m · log10(vp) + c,

with the constants m � 3.88 and c � −11. This empirical relation
is chosen here arbitrarily as it was found to explain ρ-vp
correlations for near-surface materials (Meju et al., 2003).

The 3Dmodel outcome in Figure 5A (second plot row) results
from constant parameter bounds [adef, bdef] � [10−3, 1.5] S/m,
to be compared against the counterpart with variable bounds
(third plot row). Most noticeable is the weak target anomaly
reproduction in both images, which is in alignment with data
sensitivity limitations. It is a general issue that VMD crosswell
systems have limited capacity in resolving resistive targets that are
relatively thin with respect to instrumented well sections (e.g.,
Grayver et al., 2014). At the same time, the inversion reproduces
some of the conductive background structures, which is mostly
visible in the x-z-sections of both images.

At low porewater salinities and injection levels that are shallow
enough so that CO2 remains in the gaseous state, dissociation of
carbonic acid causes higher ion contents. The resulting
electrically conductive plume is simulated here at the injection
depth of 257 m. The corresponding model in Figure 5B (true
model in first plot row) uses the same background conductivity
and plume geometry as the resistive plume. Now, the conductivity
decreases from a maximum of 1.7 S/m at the ellipsoid center
towards the background values at the borders.

Compared to a resistive anomaly, the sensitivity of VMD
systems increases for a conductive anomaly. Similar to its
resistive counterpart, the inversion with constant bounds
produces a plume image that remains faint (Figure 5B, second
row). However, the usage of the variable bounds achieves a clearer
plume delineation (third row).

3.2.3 Verification of Data Sensitivity
We emphasize that the variable-bounds concept has the mere
goal of improving model resolution in terms of boosting the
NLCG search process. It cannot alleviate a deficient data
sensitivity. Insufficient sensitivity would cause solution
instability. Preceding sensitivity studies therefore ensure that
model parameters of target zones are well-resolved, regardless
of any type of inversion constraints. A basic sensitivity check

FIGURE 6 | Sensitivity check in form of background-versus-anomaly
forward modeling. The shown profile corresponds to one transmitter-receiver
traverse. Hz-field amplitudes resulting from the background model (black
lines) are compared against their counterparts calculated from the
models with resistive (blue lines) and conductive (red lines) bodies. Dashed
lines show percentage differences.

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 8609259

Commer et al. Parameter Bounds for Enhanced Inversion

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


comparesHz-field responses calculated for the 59 receivers due to
a selected source position located at z = 259 m (Figure 6).
Amplitude (upper plot) and phase (lower plot) data are
calculated for the background, where no ellipsoidal anomaly is

present, and plotted together with the data containing the signal
due to the resistive (blue lines) and conductive (red lines) plume.
Percentage differences (dashed lines) between background and
anomalous responses confirm that the sensitivity is higher for the
conductive target (red dashed lines). While the degree of
sensitivity is generally low, it is well above the assumed noise
level (here 0.5%), thus validating that the sensitivity is sufficient
for this kind of anomaly. Moreover, percentage differences
(dashed lines) that are above noise level appear over a slightly
larger depth section for phase than for amplitude. This sensitivity
behavior made us set the data weights pertaining to the imaginary
field component twice as high as for the real component. Since
this is an arbitrary choice, it is likely that the plume imagingmight
be further optimized by means of additional trial inversions with
proper differential data weighting.

3.2.4 Verification of Solution Consistency
Figure 7A summarizes all four inversion instances (resistor and
conductor, with constant and variable bounds) by showing the
total RMS data fit against the model-updating iterations, the latter
set to a maximum of 200. All inversions reach an RMS error
below one. When facing generally low data sensitivities and such
a similar general error convergence, the quality differences
between different solutions are usually hardly discernible from
individual data fits. Figure 7B exemplifies both initial and final
fits produced by the variable-bound inversion for the conductive
target. Here, maximal differences between the data fits at
iterations 0 and 200 amount to 27% for amplitude and 31%
for phase. Data fits for the corresponding constant-bound result
(not shown here) are visually identical. These observations give
rise to a verification of the solution consistency. Specifically, we
want to ensure through two tests that 1) the anomalies are not an
imaging artifact caused by the bound constraints, and 2) the
solution is sufficiently independent of the starting model.

The first test for solution consistency is in form of an inversion
for the background model. For this check, the inverted data is
calculated from the model without any anomalous ellipsoid
present, that is, the data contains only the footprint of the
background. At the same time, the inversion uses the variable
bounds. Figure 5C shows the result of this test, where the x-y
section exhibits a minor artifact reflecting the zone of the
augmented bounds. However, generally, the final image
indicates neither a resistive nor a conductive anomaly.

The second test verifies solution consistency over a range of
starting model values. Figure 8A summarizes a sequence of
24 variable-bound inversion realizations for the conductive
plume target. The starting σ spans the range from
(logarithmically) 0.013 S/m to 0.32 S/m. A simple RMS
measure tracks the difference between each final model and
the true model (true model shown by Figure 5B, upper row).
A first observation is that the course of the RMS error does not
appear erratic with changing starting σ, which would be the case
for a more ill-posed inverse problem. Instead, the RMS becomes
minimal within the interval [σ1, σ2]. Figure 8B shows the images
for the two starting values σ1 and σ2. Both images contain features
of the conductive target, indicating independence from the
starting σ over a range that exceeds an order of magnitude.

FIGURE 7 | (A): Total RMS misfit for four synthetic-data inversions for a
resistive and conductive plume, each comparing constant versus variable
bounds. (B): Inverted data (symbols) and fits for the initial model guess
(iteration 0) and the final model update (iteration 200) are shown as
amplitudes and phases calculated from the vertical magnetic field. The shown
profile corresponds to one transmitter-receiver traversewith its source located
at z = 259 m. The vertical blue bar (left) indicates the vertical extent of the
ellipsoidal plume.
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3.3 Field-Data Inversion for Baseline
Characterization
The following demonstration applies the concept of variable
bounds to the 3D inversion of a baseline (pre-injection) field
data set taken at CaMI.FRS. The well geometry is as shown by
Figure 1. Here, we do not apply the reciprocity principle in order
to honor the deviated transmitter well. The deviation causes
transmitter coil rotations. Rotations are quantified by dip and
azimuth angles, where maximum angles reach, respectively, 6.9°

and 27.8°. Receiver rotations are negligible. The inverted data are
vertical magnetic fields recorded at 8 receivers and sourced by 59
transmitters operating at 200 Hz.

No follow-up time-lapse data set is available at the time of
writing. Since the measurements only contain the footprint of the
background geology, we redefine the inversion objective. Instead
of mapping fluid-induced anomalies, the design of bound
constraints aims at identifying potential interwell zones of
interest within the background geology. We first identify the
nature of these anomalous zones through a 1D zonation. Using
the optimization framework provided by the PEST protocol
(Doherty, 2015), a sequence of 250 independent 1D inversion
realizations with different starting models is carried out. No
parameter smoothing constraints are imposed. Instead, each
inversion is initiated with a different σ-value of a
homogeneous starting model, ranging logarithmically from
0.006 to 0.75 S/m. This range was derived from ρ-logs.

Figure 9 compares the ρ-logs against the average 1D model,
the latter calculated as a simple mean from the 250 inversion
realizations. Averaging over all estimated models intends to
provide independence from the starting model. The model
consists of 65 resistivity layer parameters with fixed thickness
and an additional parameter representing the overburden.
Standard deviations for the estimated layer resistivities have an

average of 62% with respect to their mean, which is further
evidence for a relatively low resolution. However, only the general
trend is of interest. Comparing the estimated ρ-profile with the
existing well logs exhibits a moderate degree of agreement, which
is consistent with the sparse receiver coverage.

Given that the VMD system exhibits better sensitivity towards
conductive anomalies, we define the inversion objective to focus
on possibly existing low-ρ (conductive) zones. This choice is
further based on the observation that a zone of minimum ρ
between z = 280 m and z = 290 m depth produced by the 1D
inversion roughly coincides with the minimum in both ρ-logs
(Figure 9). Our inversion objective is thus to probe for the
potential existence of conductors that may be structurally
more complex than a horizontally layered background. The
existence of such structures is also indicated by a zone of low
correlation in the ρ-logs (Figure 2A).

3.3.1 Design of Parameters Bounds From Prior
Information
We outline a four-step procedure for the design of target-adapted
lower and upper parameter bounds for a constrained 3D
inversion. The main principle is the widening of a given
default bound interval [adef, bdef] → [adef − Δa, bdef + Δb]
based on the abovementioned inversion objective. The degree
of widening, quantified by Δa and Δb, is non-zero in zones that
are deemed anomalously conductive with respect to a given
reference and increases with the degree of discrepancy.
We reiterate that reliable prior information is important
for this procedure. In our case, this information is provided
by the vp and ρ well logs (Figure 2A) and a 2D image of
seismic velocity (Figure 3B). Figure 10 illustrates the
complete procedure of bounds construction with its steps
described in the following.

FIGURE 8 | (A): Multiple inversion realizations for the conductive ellipsoidal anomaly (true model shown by Figure 5B, first row) using a range of homogeneous
starting model values. The RMS error quantifies the difference between the true model and each inversion result. (B): Model reproductions exemplified for two starting-
model values, σ1 � 0.036 S/m and σ2 � 0.1 S/m.
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3.3.1.1 Step 1: Correlating Seismic (vp) With EM (σ)
Properties
Concurrent well logs of ρ and vp (Figure 2A) are the input for the
construction of a vp-σ lookup table by means of a Gaussian
Process Regression (GPR) model. The model establishes a
relationship vp � f(d, ρ), where d is the logarithmic depth
and f represents a multivariate Gaussian distribution. We
assume a squared-exponential covariance function for the
Gaussian distribution. GPR is a form of supervised machine
learning (Rasmussen and Williams, 2006). Using 2/3 of the log
data for training and 1/3 for testing, GPR provides confidence
intervals for the test predictions of vp (Figure 10, Step 1). The
testing yielded that 95.6% of all predictions lie within the
predicted 95% confidence interval about the true values.

3.3.1.2 Step 2: Mapping vp to σ
Rearranging vp � f(d, ρ) so that we can construct a lookup table
σ � ~f(d, vp), the vp-image of Figure 3B is the input to ~f. The
output of ~f is a σ-model interpolated to the 2D grid of inversion

parameters representing the crosswell plane at y = 0. This model
is our prior information,mref � σref, from which target zones of
potentially anomalous σref are to be identified. Zones of
coinciding low and high values in the 2D models (compare
the vp-image of Figure 3B to σref in Figure 10, Step 2)
indicate the negative vp-σ correlation, which is equivalent to a
positive vp-ρ correlation, the latter also discernible in the vertical
profiles of vp and ρ (Figure 2A).

3.3.1.3 Step 3: Augmenting Parameter Bounds According to
Identified Anomalies
The estimated 1D model of Figure 9 guides the definition of an
approximate anomaly threshold. The estimated minimum layer
resistivity amounts to min(ρ) � 3.13Ωm, which is a lower
threshold for regions of anomalously low ρ. To be less
restrictive, our chosen objective uses an actual threshold above
this limit, set to the reference ρ � 5Ωm. Since our inversion
scheme operates on σ, the threshold becomes σmin � 0.2 S/m,
where the superscript min now refers to the minimum σ in the
reference σref in order to qualify as anomalously conductive. The
underlying inversion objective is thus to focus on local 3D
anomalies that are characterized by σref > σmin. Therefore, all
zones fulfilling σref > σmin undergo a modification of a given
default bound interval [adef, bdef] � [10−3, 1.5] according to Eqs
5, 6. Effectively, the bounds widen similar to Figure 4C. Here, the
anomaly range is given by [σmin, σmax] � [0.2, 0.5]. For all
σref ∈ [σmin, σmax], Eqs 5, 6 map σref onto the corresponding
augmented bound intervals, [amin, adef] � [10−7, 10−3] and
[bdef, bmax] � [1.5, 15]. Note that the maximum bound
interval [amin, bmax] holds for all parameters σref ≥ 0.5. The
outcome is a set of variable lower and upper bounds as shown
in Figure 10 (Step 3). These bounds remain fixed during the
inversion process.

Note that augmented bounds cover the majority of the
inversion domain, that is, in contrast to the central target
given by the ellipsoid in Figure 4A, the bounds do not reflect
a narrow focus zone. Also, we reiterate that while bound
construction is based on prior assumptions about anomalously
high σ, the widening of the bounds in both directions will allow
for both conductive and resistive anomalies in the imaging.

3.3.1.4 Step 4: Expand Parameter Bounds to 3D Grid
The bounds are discretized on the 2D x-z plane at y = 0. The 2D
grid is replicated along all grid nodes of the y-axis in preparation
for the subsequent 3D inversion. We choose 3D over 2D
inversions based on earlier comparative studies on 2D versus
3D inversion of data containing actual 3D signatures. These
studies have raised the concern that in the presence of actual
3D structures, the restriction to twomodel dimensions can lead to
image artifacts (Papadopoulos et al., 2007; Nimmer et al., 2008;
Hu€bert, 2012; Feng et al., 2014). To further limit potential
artifacts, it is preferable to retain the actual 3D well deviations
that are contained in the data.

3.3.2 Comparative 3D Field-Data Inversion
Two comparative field data inversions employ the constant
bounds [amin, bmax] � [10−7, 15] and the variable bounds

FIGURE 9 | 1D resistivity well logs taken at CaMI.FRS. Also shown is the
mean model calculated from 250 field-data inversion realizations. The final
mean 1D model comprises parameters for 66 layers of fixed thickness. The
vertical transmitter (grey) and receiver (red) electrode positions are
projected onto the same line. Actual electrode distances are shown by
Figure 1C.
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created through the mapping scheme described above
(Figure 10). The initial reasoning for choosing a very wide
constant-bound interval was to let the inversion practically be
unbounded in order to avoid any bias due to potentially too tight
bounds. However, other constant-bound inversions not reported
here experimented with narrower intervals which yielded no
significant difference in the final image.

The initial model guess for both inversions is given by the final
mean 1D model of Figure 9 (referred to as 1D model in the
following). One could assume that the vp-σ lookup table that
comes out of the GPR modeling provides a better starting
σ-model (Figure 10, Step 2) as it combines the layered
geology with local inhomogeneities. However, we employ this
model merely for the identification of conductive anomalies and
the corresponding bound modifications. Its values span a range
that exceeds the σ-range of the resistivity logs and 1Dmodel by an

order of magnitude, which would result in a much greater initial
RMS misfit.

The low final RMS misfit error of 1.78 achieved by the 1D
model equals the starting RMS for the 3D inversions, confirming
the dominating layered structure of the geology suggested by Um
et al. (2020). Figure 11A summarizes the total error convergence.
The variable-bound 3D inversion converges to a slightly lower
final RMS and reaches the preset maximum iteration number
(250), while the constant-bound inversion terminates after 173
iterations. However, final data fits are visually practically identical
for both inversions, as evident in fits exemplified for one selected
source depth (Figure 11B).

It is now of interest to what degree variable bounds contribute
to a better target inversion. While synthetic-data trials make an
assessment straightforward, the absence of a ground truth in
field-data inversions makes us revert to examining model

FIGURE 10 |Workflow for creation of spatially variable 3D lower and upper conductivity parameter bounds for CaMI.FRS field data inversion. Lower bounds have a
default (maximum) value of adef � 10−3 S/m and decrease to a minimum of amin � 10−7 S/m in predefined areas of interest. Upper bounds have a default (minimum) value
of bdef � 1.5 S/m and increase to amaximumof bmax � 15 S/m in the same areas of interest. Ellipses (orange) in the image of Step 2 indicate regions with slight deviations
from a predominantly horizontally layered structure.
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FIGURE 11 | (A): Total RMS fitting error for CaMI.FRS field data
inversion. (B): Data (symbols) and fits for inversions with constant bounds
(blue lines) and variable bounds (purple lines). Real and imaginary vertical-
magnetic fields are converted into amplitude and phase. The exemplified
fits correspond to one transmitter-receiver traverse with the source located at
z = 270 m (marked by red symbol).

FIGURE 12 | (A): Inversion of CaMI.FRS field data with variable
parameter bounds. The inversion is initialized with the layered starting model
(M1D) obtained from 1D inversion (Figure 9). Shown are deviations Δσvar �
M3D

var −M1D where M3D
var is the final model update. Only deviations

|Δσ|>0.075 S/m are visualized, where blue and red regions indicate
(Continued )
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differences. Figure 12 shows relative σ-differences with respect to
a reference. First, we want to visualize the difference Δσvar �
M3D

var −M1D between the final variable-bound inversion result
(M3D

var) and the starting 1D model (M1D). Deviations from a
horizontally layered structure that are within the center plane of
the interwell region are most pronounced within a zone between
z = 240 m and z = 260 m (Figure 12A). Moreover, the image
Δσvar strongly resembles Δσcon � M3D

con −M1D, whereM3D
con is the

final constant-bound inversion result. Instead of Δσcon,
Figure 12B shows the difference Δσ � M3D

var −M3D
con. Absolute

differences are relatively small, indicating no significant bias due
to the variable-bound constraints. Further, positive differences
dominate within the well plane, which translates to
σ(M3D

var)> σ(M3D
con). These observations point to some degree

of significance for anomalies characterized by Δσ > 0 that
deviate from a horizontally layered geology within the zone
z = 240–260 m.

4 DISCUSSION

Parameter constraints in form of spatially variable lower and
upper bounds provide a straightforward way of incorporating
spatial prior model information pointing to focus zones in an
inversion workflow. Contrary to the common way of scaling the
width of model parameter bounds with the uncertainty of prior
information, we simply enlarge bounds in zones that host anticipated
anomalies. Themain purpose of prior information then reduces to the
delineation of anomaly boundaries, without the need to quantify
absolute properties exactly. While they cannot improve the lack of
data sensitivity, widened bound intervals are a means of selectively
increasing model fidelity in target zones. The approach essentially
translates to scaling and steering the NLCG inversion’s search
procedure in the model space so that local solution minima are
more likely to be circumvented. It can accelerate solution convergence.

In time-lapse imaging related to GCS, reservoir flow modeling
would provide the spatial a priori information for the design of
location-dependent parameter bounds. Given that reservoir modeling
of injection-induced hydrogeological state changes will likely
accompany future GCS site management, it represents an
inexpensive source of auxiliary information for constraining
geophysical plume imaging. One may thus call the presented
method a “poor people’s” alternative to a more sophisticated
coupling by means of hydrogeophysical joint inversion; the latter
would involve inverse modeling of a flow system interlinked with the
EM data simulation (e.g., Commer et al., 2020).

In light of foreseeable economic limitations of long-term
CCS monitoring, our synthetic-data study mimicked some
inhibiting factors that actually occurred in the field. These

are a suboptimal source frequency and resolution loss due to
an incomplete data set. Despite these imposed shortcomings,
fluid-induced conductivity alterations could still be mapped,
suggesting that the variable-bounds concept can serve as a
means to offset model resolution loss due to defective survey
coverage to some degree.

Inversions with variable bounds applied to the CaMI.FRS
baseline field data highlight that geophysical prior information,
here seismic imaging and well logs, can be utilized for the design
of target-specific parameter bounds. The presented inversions
lend weight to indicators for correlated anomalies between σ and
vp. These indicators are 1) a zone of anomalously high vp between
z = 240 m and z = 260 m in the seismic image (Figure 3B), and 2)
the occurrence of 3D positive conductivity deviations from the
1D background within the same depth section of the well plane
(Figure 12A). Note that a low correlation between the ρ-logs of
wells OB1 andOB2 in the same depth section (Figure 2A) already
indicated such non-1D structures. Concurrently, while less
significant, deviations with positive Δσ from a 1D structure
also appear in the σ-image derived from the vp-σ correlation
(Figure 10, Step 2, regions of Δσ > 0 indicated by orange circles).

A final remark is that, as common in geophysical inversion
problems of an underdetermined nature, multiple trial-and-error
inversion realizations may be necessary to reduce the uncertainties
of these results. Inversions might be further improved through
optimized function parameters that control the spatial bound
variation. In cases with a prohibitively large number of inversion
realizations, Bayesian optimization with inequality constraints as
presented by Gardner et al. (2014) might be a feasible alternative.
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FIGURE 12 | conductivity decreases and increases, respectively, with respect
to the starting model. (B): Comparative inversion of CaMI.FRS field data.
Shown is the difference Δσ � M3D

var −M3D
con, calculated from the final model

updates using variable (M3D
var ) and constant (M3D

con ) bounds. Only deviations
|Δσ|>0.005 S/m are visualized, where blue and red regions indicate negative
and positive differences, respectively.
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