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Spatial irregular sampling and random noise are two important factors that restrict the
accuracy of seismic imaging. Seismic wavefield reconstruction and denoising based on
sparse representation are two popular antidotes to these two inevitable issues,
respectively. This article presents a non-parametric simultaneous reconstruction and
denoising via sparse and low-rank regularization that dealt with the prestack gathers
efficiently and automatically. The proposedmethodmakes no additional prior assumptions
on original data other than that the seismic signal is compressible. The key parameters
estimation adopts a data-driven framework without person-dependent intervention. The
basic idea of the approach is to combine the two related algorithms. Thus, the sparse
decomposition needs to be performed only once. We first extract the solution matrix via
Fourier dictionary and then perform the reconstruction and denoising successively in the
sparse domain. Obtaining a perfect interpolation result requires that the seismic data
satisfy the Shannon–Nyquist sampling theorem. However, data with steep-dip events or
gaps, which cannot be adequate for the procedure, are a challenge that must be faced.
This work proposes to deal with the common-offset gathers, which is characterized by flat,
even approximate horizontal events, to handle the under-sampling obstacle. Another
excellent property of the common-offset gathers is the simple and periodic repetitive
texture structure, which can be represented sparsely and accurately by the Fourier
dictionary. Thus, the computational complexity of the sparse representation is
reduced. Both synthetic and practical applications indicate that our algorithm is
efficient and effective.

Keywords: wavefield reconstruction, denoising, common offset gather, sparse representation, low-rank
regularization

1 INTRODUCTION

Seismic data are inevitably corrupted by missing traces and random noise in field procedures, which
often lead to the low signal-noise ratio (SNR), irregular sampling, and even anomalies, such as spatial
aliasing and acquisition footprints. Defect data may cause severe consequences in subsequent
processing flows, that is, velocity analysis, normal moveout (NMO) correction, migration,
amplitude-versus-offset (AVO) analysis, and seismic attributes extraction. Hence, seismic
wavefield reconstruction conjugation with denoising play fundamental roles in data analysis.
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This article proposes using tools in compressed sensing to solve
both interpolation and noise reduction.

However, due to parameter tuning and computational
complexity, wavefield reconstruction and denoising are usually
regarded as two independent seismic processing flows, even
though they share common calculation steps and algorithms,
such as sparse decomposition. The target of the seismic wavefield
reconstruction is to provide a uniformly sampled data cube. The
reconstruction problem has received sufficient study. The
previous works addressing this problem can be classified into
four categories: wave equation-based interpolation (Ronen 1987),
matrix or tensor completion (Kreimer et al., 2013; Chen et al.,
2016a; Siahsar et al., 2017; Zhang et al., 2017), deep learning- (Jia
and Ma 2017; Oliveira et al., 2018; Wang et al., 2018) and (Cao
et al., 2020) compressed sensing-based interpolation. Among
them, the compressed sensing-based method has received
widespread attention due to its low computational cost. The
recorded seismic data can be interpreted as a random
sampling of the complete seismic data. Therefore, the problem
of seismic data interpolation can be formulated as an inverse
problem. Many algorithms have been introduced such as non-
equispaced curvelet transform-based method, which processes
irregularly sampled data gather by gather (Hennenfent et al.,
2010); piecewise random subsampling scheme solved by L1-norm
constrained trust regionmethod (Wang et al., 2011); weighted L1-
norm minimization-based wavefield reconstruction (Mansour
et al., 2013), which suggests interpolating 2D partitions of the
seismic line instead of the 3D cube to save computer memory
(Chen et al., 2019a). reviewed the state-of-the-art interpolation
models and their theoretical implications. Curvelet reconstructs
the time slices by linearized Bregmanmethod (Zhang et al., 2019);
this approach can effectively handle non-uniformly sampled
seismic data. The constrained optimization algorithm is an
integral part of the reconstruction problem, and algorithms
that can solve large-scale sparse representation are desirable.
Many different algorithms have been proposed, such as
orthogonal matching pursuit (OMP), alternating direction
method of multipliers (ADMM) (Lu et al., 2018), Nesterov’s
algorithm (NESTA) (Becker et al., 2011), spectral projection
gradient method (SPGL1) (van den Berg and Friedlander
2008), and linearized Bregman method (Yin 2010). In seismic
wavefield reconstruction, the dictionaries for sparse
representation are often fast operators. Matrix-free and scale
well algorithms, that is, SPGL1 and linearized Bregman,
should be required to enable sparse representation for
extremely large-scale reconstruction problems.

Random noise suppression attempts to improve the SNR of
seismic data with the ultimate aim to improve imaging accuracy
(Anvari et al., 2017; Chen et al., 2017) classified the denoising
methods into four categories: predictive filtering-based (Chen
and Ma 2014), decomposition-based (Gómez et al., 2019), sparse
transform-based (Deng et al., 2017; Yuan et al., 2018; Chen et al.,
2019b), and rank reduction-based (Chen et al., 2017; Anvari et al.,
2019; Wang et al., 2019) seismic denoising. The principles of
random noise suppression of all categories are that the statistical
characteristics or propagation laws of signal and noise are
different in a specific domain. Among them, low rank-based

approach is an important category and consistent with the
hypothesis that the seismic signal is low-rank in specific
domains (Ma 2013; Anvari et al., 2017). Based on this
property, noise and the useful signal can be separated by low-
rank matrix or tensor decomposition in a specific domain, that is,
Hankel (Wang et al., 2019) and synchrosqueezed wavelet (Anvari
et al., 2017, 2019) transform. Another appealing low-rank–based
denoising is the singular value thresholding (SVT) (Zhou and
Zhang 2017) and its variants (Bekara and Van der Baan 2007;
Chiu and Howell 2008), which is elegant and flexible and can be
used in different steps of seismic signal processing. A vital issue in
SVT is how much shrinkage should be imposed. Improper
shrinkage may result in large bias or high variance (Candes
et al., 2013). Luckily, Candes et al. (2013) proposed an
unbiased risk estimate for SVT based on Stein’s unbiased risk
estimate (SURE).

Simultaneous reconstruction and denoising of
multichannel seismic data is not a new topic. A lot of
published literature targeting solving the two problems at
the same time have been published. The clean prestack cube is
inherently low-rank in the f-x domain and other transform
domains. When missing-traces are encountered and
corrupted by random noise, the defective seismic data’s
rank is inevitably increasing. Rank reduction and low-rank
decomposition have been developed to overcome these two
problems. Typical studies include: Oropeza and Sacchi (2011)
proposed a rank reduction algorithm based on multichannel
singular spectrum analysis (MSSA) and can be easily
implemented by singular value decomposition (SVD).
Instead of organizing spatial data into block Hankel
matrixes (Kreimer and Sacchi 2012), rank-reduction to the
fourth-order seismic tensor via higher-order singular value
decomposition (HOSVD) was applied (Ely et al., 2015), and a
5D completion and denoising based on a complexity-
penalized algorithm and tensor singular value
decomposition (tSVD) was proposed. The method needs to
tune only one regularization parameter. Sternfels et al. (2015)
show that the method of joint low-rank and sparse inversion
is suitable for random and erratic noise. To deal with the
extremely noisy cube, Chen et al. (2016b) introduced a
damped rank-reduction method to formulate the Cadzow
rank-reduction and proposed a 5-D reconstruction and
denoising method.

In this article, a practical implementation of simultaneous
reconstruction and denoising was presented, which is parameter-
free and can be solved via sparse and low-rank regularization
efficiently. The contributions of this article are four-fold. First, the
classic simultaneous denoising and interpolation algorithm map
the seismic data to a high-dimensional (4D or 5D) tensor and are
computationally intensive. The new method only involves matrix
operations instead of handling tensor and extracting the
coefficient matrix only once. Second, the parameters are
adaptively obtained and do not need to be tuned manually.
Third, the work demonstrated by experiments that compare to
common mid-point (CMP), common-shot gathers, and
common-offset gathers strategy enjoys its anti-aliasing ability
and is bright to handle the under-sampling obstacle. Fourth, the
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sparse representation of common-offset gather via the Fourier
dictionary is accurately enough and computationally inexpensive
compared to the curvelet dictionary.

2 METHODOLOGY

2.1 Problem Formulation
Seismic data have two dimensions of time and space. The seismic
traces are usually uniformly sampled in the temporal domain, and
the Nyquist–Shannon sampling theorem is satisfied. However,
due to existing obstacles and economic restrictions, there is
always missing traces in seismic data, resulting in non-
uniformly sampled, even aliased in the spatial domain.
Moreover, seismic data are inevitably polluted by random
noise. Complete and clean seismic data need to be
reconstructed from recorded noisy and incomplete seismic data.

The relationship between the recorded seismic data and the
complete data can be formalized as:

y � Lx, (1)
where y and x are the recorded (incomplete) seismic data and
complete data, respectively. Both y and x are constructed by
arranging all the traces of the recorded (Y) and complete (X)
data matrix into vectors. L represents the measurement
matrix, which is a block diagonal matrix and is defined as

L �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
I

0
I

1
I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(each 0 represents a missing trace,

and each I represents a recorded seismic trace).
It should note that both y and x are infected by random noise.

The purpose of the proposed method is to reconstruct the
expected clean and complete data xp from y. Solving Eq. 1
can only give rise to complete noisy data. However, worse still,
seismic wavefield reconstruction aims to recover a high-
dimensional signal cube from a smaller number of
measurements. formula (1) is underdetermined and has
infinitely many solutions. The proposed countermeasure to
address these two bottlenecks will be described in detail in the
following subsections.

2.2 Simultaneous Reconstruction and
Denoising in the Sparse Domain
It is possible to reconstruct sparse signals from highly
incomplete sets, which can be done by sparse
representation. The seismic data are compressible and
sparse in the curvelet and Fourier domains. The sparsity
adds effective constraints to the underdetermined inverse
problem, thereby reducing the distress of the multiplicity.
So, an effective strategy for the underdetermined problem (1)
is that we can transform x into the Fourier or curvelet domain
(as shown in Eq. 2) and then formulate the reconstruction

problem as an L1-norm regularization (as shown in Eq. 3)
(Mansour et al., 2013).

y � Am,A � LFH, (2)
where F is a sparsifying operator; that is, Fourier or curvelet
transform,m is the Fourier or curvelet coefficient, and superscript
H represents the conjugate transpose.

argmin
m

‖m‖1 s.t.
����y − Am

����22 ≤ ε, (3)

where ‖ · ‖1 and ‖ · ‖2 denote L1- and L2-norms, respectively; ε is a
fitting error. We have learned that Eq. 3 is a basis pursuit denoise
(BPDN) problem; it can be optimized by the spectral projection
gradient method. However, L1-norm is non-differentiable and the
augmented model for Eq. 2 is adopted (Yin 2010):

mp � argmin
m

‖m‖1 + 1
2α

‖m‖2 s.t.
����y − Am

����22 ≤ ε, (4)

where typically α � 1.
Solving Eq. 4 can only get complete noisy data, that is, mp is

corrupted by noise. Consequently, the next step is to denoise the
reconstruction mp. We first rearrange m* into a 2D matrix M.

Due to the repetitive texture structure, the prestack seismic
gathers are low-rank matrixes (Ma 2013). In a transformed
domain, that is, Fourier and curvelet domains, the coefficient
matrix M is also characterized by the low-rank feature (Nazari
Siahsar et al., 2016). Suppose M is sullied by Gaussian noise, we
have the noisy coefficient matrixM about a clean low-rankmatrix
Mden of interest. A natural approach to this problem is singular
value thresholding (SVT), which formalizes noise suppression as:

Mden � SVTλ(M) � argmin
Mden

λrank(Mden) + 1
2
‖M −Mden‖2F, (5)

where ‖ · ‖F is the Frobenius norm and M � UΣVH

(U � [u1, u2,/un] and V � [v1, v2,/vn] are left and right
singular vectors, respectively; Σ � diag(σ1, σ2,/, σn) is a
diagonal matrix with singular values of M on its diagonal) is
the singular value decomposition (SVD) ofM. The solution of (5)
is given by retaining only the part of the expansion with singular
values exceeding λ (Candes et al., 2013):

Mden � ∑ (σ i − λ)+uiv
H
i , (6)

where x+ � max(x, 0) and λ is the threshold value which can be
estimated by Stein’s unbiased risk estimate (SURE).

The clean and complete seismic section is reconstructed from
the denoised coefficient matrix Mden just via matrix-vector
multiplication, which can be formulated as

yden � Fmden, (7)
where mden is the vectorization of Mden.

Now we recall the simultaneous reconstruction and denoising
methods as follows:

1. Noise level estimation: estimating the parameter ε for (4)
(discussed in Subsection 2.5).
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2. Estimating a complete sparse and low-rank coefficient vector
mp by solving Eq. 4 via linearized Bregman method (discussed
in Subsection 2.3).

3. Denoising coefficient matrix M by SVT (discussed in
Subsection 2.4).

4. Reconstructing the clean and complete seismic section by (6).

2.3 Linearized Bregman Method
The original Bregman method was proposed to restore noisy and
blurry images via total variation (TV) regularization (Osher et al.,
2005), and thenbe formulized to solving the basis pursuit (BP) problem
(Yin et al., 2008), where the author had proved that Bregman iterative
method was equivalent to the augmented Lagrangian method.

The Bregman distance with respect to a convex function J
between two points u and v is defined as

Dp
J(u, v): � J(u) − J(v) − ≥ 〈p, u − v〉, (8)

where p ∈zJ(v) (zJ(v) denotes the subdifferential of J at v), and
symbol 〈·, ·〉 denotes the inner product. The original Bregman
method is an iterative regularization procedure which focuses on
the problem argmin

x
J(x)s.t.Ax � b, that solves a sequence of

convex problems, which can be formulated as

xk+1 � min
x

Dpk

J (x, xk) + 1
2
‖Ax − b‖22. (9)

As a variant of the original Bregman method, the linearized
Bregman algorithm imposes two modifications to the original
method: (1) substitute the last quadratic penalty term ‖Ax − b‖22
with its linearization 〈AT(Axk − b), x〉 (superscript T denotes the
transposition), (2) add a new quadratic penalty term 1

2α‖x − xk‖22.
Then, we get the following updates for the linearized Bregman
algorithm (Yin, 2010):

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xk+1 � min

x
Dpk

J (x, xk) + 〈AT(Axk − b), x〉 + 1
2α

����x − xk
����22

pk+1 � pk − AT(Axk − b) − 1
α
(xk+1 − xk) ,

(10)
Based on the equivalence between the linearized Bregman

algorithm and the gradient descent, Yin (2010) generalized the
linearized Bregman by integrating the gradient-based optimization
techniques to make the method more accurate and much faster.

To address Eq. 4, we take J(x) � ‖x‖1, and the problem can be
solved with the linearized Bregman algorithm by the following
iterative scheme:

{ vk+1 � vk + δk(b − αAShrink(ATxk))
xk+1 � αShrink(ATvk+1) , (11)

where δk is the step size at iteration k.

2.4 Optimal Threshold Value Estimation by
SURE
In this subsection, we focus on the vital issue of threshold
parameter selection because the unreasonable threshold

inevitably limits the denoising ability even to generate
artifacts. Specifically, excessive shrinkage results in a large bias,
while excessively low threshold value results in a high variance.
Common methods of parameter selection include discrepancy
principle, cross-validation (Li et al., 2019), L-curve (Hansen
1992), and estimation of the mean-squared error (MSE) (Batu
and Cetin 2011), and so on. Ramani et al. (2012) summarized the
advantages and disadvantages of these methods and
recommended using MSE to optimize the regularization
parameter quantitatively. A classical unbiased estimator of the
MSE is SURE (Stein 1981), which was reported to be used in
quantitative parameter optimization (Ramani et al., 2012; Candes
et al., 2013; Rasti et al., 2015).

MSE-estimation-based methods tune the regularization
parameter λ to minimize the MSE or risk:

Rλ � E‖Mden −M0‖2F, (12)
where M0 is the ground truth.

When the seismic data are corrupted by additive random
noise, it is possible to obtain an unbiased estimate of the risk via
SURE (Candes et al., 2013):

Rλ � −abτ + ∑min(a,b)

i�1
min(λ2, σ2

i ) + 2τ2div(SVTλ(M)), (13)

where τ is the standard variance of the additive random noise; a
and b are the numbers of rows and columns, respectively; symbol
“div” denotes the divergence operator. From Candes et al. (2013),
it is clear that

div(SVTλ(Mp)) � (2|a − b| + 1) ∑min(a,b)

i�1
(1 − λ

σ i
)

+ ∑min(a,b)

i�1
I(σ i > λ) + ∑min(a,b)

i ≠ j,i,j�1

σ i(σ i − λ)+
σ2i − σ2j

, (14)

where I is the indicator function.

2.5 Noise Level Estimation
Noise level is an extremely important parameter to achieve a
guaranteed performance of both sparse representation and SVT.
Specifically, in Eqs 3, 4, parameter ε prescribes the desired fit in
Am ≈ y, which can be substituted by noise variance τ2 in the
random noise scenario. Meanwhile, a reliable estimate of the
noise level is needed for SURE to get the proper threshold value.
In this work, we choose the multiple regression theory-based
approach (Roger and Arnold 1996; Chein-I and Qian 2004;
Bioucas-Dias and Nascimento 2008) for noise level estimation.
The seismic gather, especially common-offset gather, exhibits
high spatial coherence between neighboring traces in both the
time and frequency domains, which guarantees the successful
application of the multiple regression theory-based approach.

Let Y � [y1, y2,/, yM] denote a M × N matrix holding the
seismic gather, with each column yi accommodating a single trace. Let
Yzi � [y1, y2,/, yi−1, yi+1,/, yM] be the explanatory datamatrix of
yi. Let us assume that yi can be linearly represented by other seismic
traces in the gather. Therefore, we can express yi as

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 8580414

Meng et al. Non-Parametric Simultaneous Reconstruction and Denoising

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


yi � Yziβi + ξi, (15)
where βi denotes the regression vector of lengthM − 1, ξi denotes
the modeling error of length N. The noise for each trace can be
derived from the following formula:

ξ̂i � yi − Yziβi. (16)
Then, it is easy to calculate the noise variance using the

standard formula.

3 Performance Evaluation With Simulated
Data
In this section, we validate the effectiveness of the proposed
method by simulated data. We first consider a classic problem of
sparse solution recovery to emphasize the importance of ε in (3)
and 4. We then provide a layered model and perform wavefield
modeling, followed by randomly decimated data with 25%
missing traces. A set of experiments, that is, noise level
estimation and simultaneous reconstruction and denoising, are
conducted. All experiments deal with common-shot gathers and
common-offset gathers separately, and the purpose is to compare
different method combinations.

3.1 Fitting Error Versus Optimality
In (3) and 4, parameter ε prescribes the fitting error. However, the
importance of parameter ε is often ignored in literature or
software packages. ε � 1e−3 is usually recommended. The
parameter ε is essentially an estimate of the noise level of the
seismic signal and can be quantified by an upper bound on its
norm. In this subsection, we make a digression to emphasize the
importance of ε, with a compressive sensing problem based on
random Gaussian matrices. The size of the matrices is
2000 × 4000. We compare SNRs of reconstructed solutions on
two sets of values for the parameter ε: 1e−3 and L2-norm of

deterministic noise. We first fix the sparse signal with 5% non-
zero entries. The results of the model (4) with noisy observations
of different SNRs are plotted in Figure 1A. On the contrary, SNRs
of the observations are fixed and equal to 10 dB, we change the
sparsity of the sparse solutions, and plot the calculation results of
Eq. 4 in Figure 1B. Both Figure 1A,B indicate that the proper
parameter value of ε is a sufficient condition for recovering the
sparse solution to high accuracy. Taking L2-norm of deterministic
noise can be potentially much better than the default. We fix
sparsity � 2 % and SNR of the observation is 10 dB and plot the
computed coefficients (red) on top of the ground truth (blue) in
Figure 2. Model (4) finds better solutions when ε takes the L2-
norm of noise.

3.2 Simulating the Randomly Decimated
Data
We first use a five-layer model (Figure 3A) to perform wavefield
modeling. The synthetic line has 48 shot gathers, and 48 traces per
each shot gather and CMP gather. Source-station and receiver-
station spacings are both 50 m. The data are recorded for 1.000 s,
with a sample interval of 0.002 s. Figure 3B,C show the
reflectivity and seismogram gathers of the first CMP gather.
Figure 3D presents the 24th common-offset gather (offset is
50 m). CMP gather is characterized by hyperbolic events, while
the common-offset gather consists of flat events, which share
approximately equal two-way times. Compared with CMP
gather, each trace in common-offset gather shows better
similarity and simpler texture structure. This makes it easier to
deal with common-offset gather in both the time-space domain
and Fourier domain.

The field-recorded seismic data are inevitably perturbed by
random noise. Therefore, we add random noise at various levels
to the synthetic data to make the SNR of each noisy trace vary
within a range of 1–10 dB. The first noisy CMP and the 24th noisy

FIGURE 1 | Comparison of the performance of different fitting errors. Blue: ε � 1e−3. Red: ε is the L2-norm of the noise. (A) SNRs of reconstructed solutions for
different εwith a fixed sparsity (sparsity � 2%), while varying the observations’SNRs. (B)Plots of SNRs of reconstructed solutions versus sparsity with the observations’
SNRs are fixed at 10 dB.
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common-offset gathers are shown in Figure 4A,B, respectively.
To simulate the irregularly sampled seismic data, we randomly
zero out 25% of the receivers and artificially create some gaps to
increase the difficulty of the experiments. The incomplete noisy
CMP and common-offset gathers are shown in Figure 4C,D,
respectively.

To inspect the amplitudes of the seismic data at different
frequencies and wave-numbers, we perform 2-D Fourier
transform on both complete noisy CMP and common-offset
gathers to transform them into frequency-wavenumber (f-k)
domain, as indicated in Figure 5A,B, respectively. Note that
obvious spatial aliasing exists in the f-k spectra for the CMP
gather that indicates insufficient sampling of the data along the
space axis. However, COG is free from aliasing.

3.3 Curvelet Transform Operator Tests
Most relevant literature (Zhang et al., 2019; Cao et al., 2020)
characterizes the sparse representation of seismic data based on
curvelet transform. We use the approved algorithm (curvelet
domain approach) to deal with the common-offset and the CMP
gathers, separately. The experiment served two purposes: (1)
Spatial aliasing has severe effects on the performance of
curvelet domain approach in the time-offset domain
(common-shot and CMP gathers); (2) Noise estimation and

wavefield reconstruction can be done better in the time-
midpoint domain (common-offset gather).

Determining an optimal threshold value is an essential first
step for sparse representation and the implicit reconstruction and
denoising. We first apply the multiple regression theory-based
approach to evaluate the noise level both in time-midpoint and
time-offset domain, respectively. In implementing this step, we
get poor result with CMP gather, as demonstrated in Figure 6A.
The estimated L2-norm of the noise aliasing in each trace is much
lower than the actual noise level. This is basically because the
multiple regression theory-based method assumes that each trace
can be linearly represented by other seismic traces in the gather.
CMP gather is characterized by hyperbolic events that have
disparate TWT. They share a low correlation between
neighboring traces that dissatisfy the multiple regression
theory-based method. The procedure is also applied to
common-offset gather, and the obtained result is plotted in
Figure 6B that indicates that the estimated value is
approximately correct.

To fill in the gaps and denoise the incomplete noisy data using
sparse representation, we use the curvelet transform as “sparse
basis” to create matrices A in Eq. 2. The linear relation between
the y and m inspires us to consider estimating complete sparse
and low-rank coefficient vector mp by solving Eq. 4 via the

FIGURE 2 | Plots of reconstructed solutions for ε � 1e−3 and ε are the L2-norm of the noise. Reconstructed solutions (red) are plotted on top of the ground truth
(blue). (A) ε � 1e−3. (B) ε is the L2-norm of the noise.
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linearized Bregman method. We take ε as the Frobenius norm of
noise to balance the fidelity and sparsity. Figure 7A,B are based
upon the processing of the CMP gather, and they illustrate
reconstructed data (first CMP gather) using the curvelet
dictionary and corresponding residual section. It does not
seem plausible that the curvelet dictionary is to blame for false
artifacts, because the curvelet transform has only a weak ability to
anti-aliasing, even though it has proven to have an outstanding
ability that enables a nearly optimal representation of seismic
data. However, such spatial aliasing can be maximumly remitted
in the time-midpoint domain because the common-offset gather
is characterized by flat, even approximate horizontal events. The
reconstructed results of the first CMP and the 24th common-
offset gathers using the time-midpoint domain approach are
shown in Figure 7C,E, respectively. Figure 7D,F show the
corresponding residuals of the CMP and common-offset
gathers, respectively. As expected, the curvelet reconstruction
performs much better in the time-midpoint domain than in the
time-offset domain. All missing seismic traces are perfectly
reconstructed. The defect is that random noise is not well
suppressed.

3.4 Fourier Transform Operator Tests
We next examine whether Fourier transform operator does it as
good as the curvelet transform operator. The results from the
Fourier transform operator associated with both the time-offset
and the time-midpoint domains approaches are plotted in
Figure 8A,C, respectively. The corresponding residual images
are shown in Figure 8B,D, respectively. There are no apparent
differences between curvelet and Fourier transform operators.
However, to our surprise, the Fourier transform operator does
slightly better than the curvelet transform operator both in the
time-offset domain and the time-midpoint domain. The possible
reason is that the simulation data used in this experiment are
spatially under-sampled. The curvelet transform operator tended
to express the local tectonics of the seismic section, and its anti-
aliasing ability is weak. The opposite effect is observed for the
Fourier transform operator, which points to the ability of the
Fourier transform operator to address issues that arose in the field
of aliased data. There is no doubt that the computational
complexity of the Fourier transform is much lower than the
curvelet transform. Therefore, the Fourier transform operator is
the best option.

FIGURE 3 | Geologic model and seismic wavefield modeling. (A) Geologic model. (B) first reflectivity CMP gather. (C) first seismogram CMP gather, which is
characterized by hyperbolic events. (D) 24th common-offset gather (offset is 50 m), which is characterized by flat events.
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FIGURE 4 | Incomplete noisy seismic data. (A) and (B) are complete and incomplete noisy CMP gathers, respectively. (C) and (D) are complete and incomplete
noisy common-offset gathers, respectively. 25% of the traces are missing based on the under-sampling strategy.

FIGURE 5 | f-k spectra for (A) the complete noisy CMP gather and (B) the common-offset gather. Note that apparent spatial aliasing exists in the f-k spectra for the
CMP gather. However, COG is free from aliasing.
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3.5 Evaluation of the Proposed Sparse and
Low-Rank Regularization Approach
We have experimentally verified the superiority of the time-
midpoint domain approach and Fourier transform operator in
the previous subsection. Naturally, a combination of the two is also
appreciated. The assay is performed as described in Subsection 2.1.
Figure 9A shows the recovered common-offset gather in the time-
midpoint domain, and Figure 9B is the corresponding residual
image. Both two objectives of reconstruction and denoising have
been achieved. Next, we sort the data into common-shot gathers to
obtain the final result shown in Figure 9C, which is very close to
the clean synthetic seismogram (Figure 3C). Figure 9D is the
corresponding residual image. The proposed approach improves
the SNR of seismic data as compared with the previous two
experiments.

To quantitatively compare the reconstruction performance in
detail, we plot the noise-free single trace which is a missing trace
deleted in the preceding step and the reconstructions with
different methods in Figure 10. Figure 10A,E plot the clean
and noisy signal (SNR = 4.421 dB), respectively. Results of three
independent experiments are all obtained by time-midpoint
domain approach, as plotted in Figure 10B–D. Full recovery
of the missing trace is perfectly achieved in each of the three
experiments. Fourier and curvelet transform operators suppress
the random noise and improve the SNR of data to some extent, as
plotted in Figure 10B,C. The SNRs of reconstructed traces of the
two methods are 6.994 and 7.812 dB, respectively. Comparing the
two methods, we can see that the superiority of the proposed
method is clear (Figure 10D). SNR of the proposed method is
equal to 18.243 dB.

4 Application to Field Seismic Data
In this section, we apply the proposed simultaneous
reconstruction and denoising method to a prestack data set.

The original raw data consist of 1,001 shot records with
120 channels per shot record. The minimum and maximum
offsets are 262 and 3237 m, respectively. Both the source station
interval and receiver station interval are 25 m. This study extracts
48 shot gathers from the raw data to ensure that the source station
interval is 50 m, exactly twice the original source station interval.
Then, each shot gather is down-sampled to reduce the number of
channels to 60; that is, the receiver station interval is increased to
50 m. Figure 11A,B show the observed shot gather and common-
offset gather, respectively. Intuitively, the shot gather consisted of
hyperbolic reflected events and gradient direct and seabed
reflection waves. However, the common-offset gather is
characterized by much flatter events, which is very well
adapted to reconstruction and denoising. Such down-sampling
may give rise to spatial aliasing. Figure 12A shows the f-k spectra
for the shot record with strong spatial aliasing, as indicated by the
solid arrows. As mentioned previously, processing seismic data in
the time-shotpoint domain is a simple and efficient strategy.
Figure 12B demonstrates the f-k spectra for the common-offset
gather shown in Figure 11B, and spatial aliasing is not visible as
of the common-shot gather. To simulate the observed incomplete
field data, we just take out the columns with missing receivers.
25% of the receivers are deleted randomly in this study.
Figure 11C,D show the incomplete shot and common-offset
gathers, respectively.

We perform three shortened versions of the simultaneous
reconstruction and denoising experiments on the truncated
seismic data, that is, curvelet transform operator, Fourier
transform operator, and the proposed sparse and low-rank
regularization approach. The complete workflow of each
experiment consisted of three flows: (1) transforms the seismic
data to the time-shotpoint (common-offset) domain, (2) noise
level estimation, and (3) reconstructs the clean and complete
seismic section by different methods. The reconstructed
common-offset gathers of three different methods are

FIGURE 6 | Noise estimation by the multiple regression theory-based approach in both (A) the time-offset domain (CMP gather) and (B) the time-midpoint domain
(common-offset gather). In all plots, the y-axes represent the L2-norm of the noise; the x-axes represent the trace number (A) and shot number (B), respectively.
Estimated values (red) are plotted on top of the ground truth (blue).
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contrasted in Figure 13. The reconstructed result using the
curvelet transform operator and the associated difference
section are shown in Figure 13A,B, respectively. The narrow
gaps are well recovered, while the reconstructed results of the big
gaps are not as good as it would be expected (indicated by the
arrows in Figure 13A,B). Recovered common-offset gather using
Fourier transform operator and the associated difference section

are shown in Figure 13C,D, respectively. The missing traces were
well recovered, in particular at the big gaps. However,
reconstructed data seem to have significant residual noise in
the big gap at 0–0.5s. Figure 13E,F demonstrate the interpolated
result and the corresponding residuals of the proposed strategy.
As can be seen, the recovery is comparable to the Fourier
transform operator. A further advantage is that we can obtain

FIGURE 7 | Reconstruction results of subsampled data using curvelet interpolation. (A) Recovered CMP gather using linearized Bregman method across CMP
gathers in the time-offset domain, and (B) the corresponding residual section. (C) Recovered common-offset gather across offset gathers in the time-midpoint domain,
and (D) the corresponding residual image. (E) Recovered CMP gather in the time-midpoint domain, which is the same as in (B). (F) The residual section corresponding
to (E).
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much cleaner data that does not contain the artifacts before the
first arrivals.

The reconstructed and denoised common-offset gathers are
transformed into the common-shot gathers. Figure 14 compares
the recovered shot gathers of all the three methods.
Figure 14A,C,E indicate the recovered shot gathers of the
three different approaches, respectively. Figure 14B,D,F show
the corresponding residuals. Similar conclusions can also be
obtained based on the comparison of reconstructed results and
corresponding residuals of the three methods. The proposed
method is more effective in seismic wavefield reconstruction
and denoising than the curvelet and Fourier transforms
operators. To better compare the details of reconstructed
results by the above three methods, we compare the recoveries
of a single trace, as plotted in Figure 15. Figure 15A plots the real
noisy trace (Trace No. 39 from the noisy shot shown in
Figure 11A). Figure 15B–D plot the recovered traces of the
three different approaches, respectively. Figure 15E–G
correspond to the removed noise associate to each method.
These results can be explained as follows. The result of the
curvelet transform operator is not very good. The result of the
Fourier transform operator is close to the exact solution.
However, we should note that the presence of noise before the

first arrival (at 0–1.5 s, as indicated by the arrows in
Figure 15C,F) is caused by not very good localization of
Fourier transform. The proposed method compensates for the
defect exactly, and the recovered signal does not contain the
evident artifacts and noise. Therefore, the proposed sparse and
low-rank regularization approach should be the best choice owing
to its effectiveness and fidelity.

5 DISCUSSION

In this work, we present a novel technique for simultaneous
reconstruction and denoising of prestack seismic data. To fully
exploit the sparse and low-rank nature, we first interpolate the
common-offset gather in the 2D Fourier domain, that approach is
capable of attenuating random noise to some extent, but new
random noise may be introduced. The SVT is then adopted to
handle the Fourier coefficient matrix by utilizing the low-rank
property, and the residual and generated random noise is washed
out. The results shown above demonstrate that it offers a flexible
and effective way for both interpolation and denoising.

Curvelet and Fourier transforms are two tools to transform
seismic sections into a domain where it has a sparse

FIGURE 8 | Reconstruction results of subsampled data using Fourier interpolation. (A) Recovered CMP gather using linearized Bregman method across CMP
gathers in the time-offset domain, and (B) the corresponding residual section. (C) Recovered CMP gather across offset gathers in the time-midpoint domain, and (D) the
corresponding residual image.
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FIGURE 9 | Reconstruction results of subsampled data using the proposed method. (A) Recovered common-offset gather across offset gathers in the time-
midpoint domain, and (B) the corresponding residual image. We then transform the reconstruction results into CMP gathers to generate (C) and (D). (C) recovered CMP
gather. (D) The residual section corresponding to Figure 7C.

FIGURE 10 | Single trace comparisons of original data and reconstructed results using the three methods. (A) is the clean 35th trace, which is a missing trace
deleted in the preceding step. (B), (C), and (D) Denoised and reconstructed data using curvelet interpolation, Fourier interpolation, and the proposed method,
respectively. (E) Noisy synthetic trace with SNR = 4.421 dB. (F), (G), and (H) corresponding differences between (B), (C), and (D) and clean trace (A).
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FIGURE 11 | Field seismic data. (A) Observed complete common-shot gather, and (B) common-offset gather. Incomplete (C) common-shot gather and (D)
common-offset gather, with 30% random missing data.

FIGURE 12 | f-k spectral analysis for (A) the common-shot gather and (B) the common-offset gather shown in Figure 11A,B.
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representation. The computational complexity of the second
generation curvelet transform is O(n2 log n) for n by n
Cartesian arrays, while the complexity of 2D Fourier is O(n2)
(Candès et al., 2006). had compared the ratio between the

running time of the fast discrete curvelet transform (FDCT)
and that of the fast Fourier transform (FFT). The ratios of
wrapping-based FDCT varied from 6.0793 to 11.2383, and the
USFFT-based is 18.2202–28.9579. To compute the curvelet

FIGURE 13 | Reconstructed common-offset gather. The reconstructed result using (A) the curvelet transform operator and (B) the associated difference section.
Result of (C) Fourier transform operator and associated (D) difference section. Result of (E) the proposed sparse and low-rank regularization approach and (F) the
associated difference section.
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coefficients, we must take on the heavy computational burden.
The curvelet transform has only a weak ability to anti-aliasing,
even though it has proven to have an outstanding ability in
obtaining an essentially optimal representation of seismic data. In

Figures 7, 13, and 14, we find that the curvelet transform
operator reconstructs single missing-traces accurately.
Conversely, the curvelet operator cannot obtain satisfactory
results where gaps are existing. In both cases, the Fourier

FIGURE 14 | Comparison of the reconstructed results of common-offset gathers. The reconstructed result using (A) the curvelet transform operator and (B)
associated difference section. Result of (C) the Fourier transform operator and (D) the associated difference section. Result of (E) the proposed sparse and low-rank
regularization approach and (F) the associated difference section.
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transform operator performs well and reconstructs data
accurately.

The proposed method operates in the time-shotpoint domain,
characterized by flat, even approximate horizontal events that
benefit noise level estimation and seismic wavefield
reconstruction. In this work, we choose the multiple regression
theory-based approach for noise level estimation. The method
assumes that each trace can be linearly represented by other
seismic traces in the gather. The common-offset gather rather
than the shot gather and CMP gather met the key assumption of
the linear mixing scenario. Figure 6 compares the noise
estimation results by the multiple regression theory-based
approach in both the time-midpoint domain and time-offset
domain. The L2-norm of the estimated noise associated with
common-offset gather is much more accurate than that of the
CMP. The classical wavefield reconstructions are designed for the
case of no spatial aliasing. However, this is an ideal case for both
the shot and CMP gathers. Spatial aliasing is encountered
frequently in the fieldwork. We find that the steeper the dip,
the lower the frequency at which spatial aliasing occurs.
Compared to the two gathers, the proposed common-offset

gather strategy enjoys its anti-aliasing ability and is bright to
handle the under-sampling obstacle. Figures 7–10, 13–15
validate the advantage of the common-offset gather and
support our method’s validity.

There are two parameters (regularization parameter α and
fitting error ε) in the augmented model (4) that need to be
appropriately chosen to ensure that the algorithm converges to
the global minimum. L1-norm regularization is non-
differentiable, which is particularly troublesome in numerical
optimization. One strategy is to introduce an extra L2-norm
regularization to ensure the objective function is strictly
convex. A unique solution could be guaranteed, however, of
introducing additional regularization parameter. Fortunately,
the relative error is insensitive to α, which only affects the
computational efficiency (Yin 2010; Kang et al., 2013). Taking
α � 1 is a logical choice. The fitting error ε denotes the constraint
ensures fidelity to the models (1) and (2). However, the
importance of parameter ε is often ignored in literature or
software packages. ε � 1e−3 is usually recommended. The
parameter ε is essentially an estimate of the noise level of the
seismic signal and can be quantified by an upper bound on its

FIGURE 15 | Single trace comparisons of original trace and reconstructed traces. (A) Noisy real trace (Trace No. 39 from the noisy shot shown in Figure 11A).
Reconstructed results using (B) the curvelet transform operator, (C) the Fourier transform operator, and (D) the proposed sparse and low-rank regularization approach.
(E)–(G) Removed noise corresponding to (B)–(D).
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norm. To clarify the impacts of the fitting error ε on the
augmented model (4), we compare the performance of
different fitting errors, that is, ε � 1e−3 and ε is equal to the
L2-norm of the noise. Output SNRs of reconstructed solutions in
terms of SNR and sparsity of noisy observations are plotted in
Figure 1A,B, respectively. In Figure 2, reconstructed solutions
(red) are plotted on top of the ground truth (blue). It is
straightforward to see that output SNR is sensitive to ε, and
an appropriate ε consistently increases the precision and accuracy
of the solution.

SVT can be achieved in two ways. The first type can be
achieved by retaining only the part of the singular values and
refers to hard-thresholding. Comparatively, the soft-thresholding
is more usually used, which shrinks all the singular values towards
zero by a threshold value λ. The difficulty is how to select the
proper threshold. A simple and intuitive strategy is an intuitive
comparison of the calculated results of various parameters λ. In
this article, unbiased risk estimation for the trade-off is obtained
with the help of SURE, which is already being applied in MRI and
hyperspectral images. The non-parametric simultaneous
reconstruction and denoising method is achieved with the
automatic estimation of the parameters.

The reconstruction problem (as shown in Eq. 2) involves
finding the solution m with the smallest number of non-zero
entries that can represent the useful data sparsely and accurately.
The accurate identification of the Fourier or curvelet coefficient is
crucial for the sparse recovery problem. The discrimination
method may help to increase the accuracy of the solutions
further. The idea is appealing, as stated in Lindenbaum et al.
(2020) and Dong et al. (2020).

6 CONCLUSION

This article considered the problem of simultaneous interpolation
of missing-traces and random noise attenuation. In the approach,
we transform the common-offset gather into the 2D Fourier
domain and recover the gaps via the linearized Bregman method.
SVT attenuates the residual and generated random noise and
artifacts. The tandem approach essentially imposes two effective
constraints: sparsity and low-rank. In the proposed methodology,
we do not assume a single set of hyperparameters but estimate the

noise level and the optimal threshold value of SVT by the multiple
regression theory and SURE, respectively. These tools allow us to
obtain a non-parametric method without person-dependent
intervention in the seismic data conditioning. The proposed
method handles the common-offset gathers rather than the
shot gathers or CMP gathers. Therefore, our approach can
provide accurate estimates of the noise level and offers more
flexible control on the model, which enjoys its anti-aliasing ability
and is bright to handle the highly insufficient seismic gathers. To
better handle the spatially aliased data, we use Fourier transform
to solve the corresponding sparse representation problem in the
time-shotpoint (or time-midpoint) domain. Both synthetic and
real seismic data examples confirm the effectiveness of the
proposed method for simultaneous wavefield reconstruction
and random noise suppression.
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