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The Sichuan Basin, covering an area of 180 × 103 km2, has the following advantages in
natural gas geology: The sedimentary rocks are 6,000–12,000m thick with highmaturity of
source rocks, and nine sets of primary gas source rocks are developed in the basin with a
gas–oil ratio of 80:1, and thus it is a gas basin. The remaining recoverable reserves of
conventional and unconventional natural gas are up to 13.6404 × 1012 m3. Multiple gas-
bearing systems are developed with 25 conventional and tight oil and gas producing layers
and 135 discovered gas fields, and the total proved geological reserves and cumulative
production of natural gas by the end of 2019 were 5.7966 × 1012 m3 and 648.8 × 109 m3,
respectively. The CO2 components and the correlation with relevant parameters for 243
samples from 22 gas fields indicate that CO2 in the Sichuan Basin display the following two
characteristics: (1) Relatively low CO2 content of 0.02%–22.90% with an average of
2.96%, which guaranteed the commerciality of natural gas exploration and production; (2)
cratonic CO2, which is characterized by low CO2 contents (<5%) and low R/Ra ratios
(<0.24). According to the δ13CCO2 values and the relationship with R/Ra, δ13C1, CO2

contents, and wetness coefficient (W) for 263 gas samples, the δ13CCO2 values display
three characteristics: (1) The highest δ13CCO2 value (10.4‰) in China is found in the Fuling
shale gas field, which extends the interval values from previous −39‰–7‰ to
−39‰–10.4‰. (2) The δ13CCO2 values can be applied to identify the CO2 origin of
natural gas in the Sichuan Basin: type A, organic origin from thermal decomposition of
organic matter, with an average δ13CCO2 value of −12.8‰ and average wetness coefficient
of 7.8% for 44 samples; type B, organic origin from thermal cracking of organic matter, with
an average δ13CCO2 value of −15.7‰ and average wetness coefficient of 1.30% for 34
samples; type C, inorganic origin from thermal decomposition or organic acid dissolution of
carbonate rocks or minerals, with an average δ13CCO2 value of −1.8‰ and average
wetness coefficient of 0.85% for 175 samples. (3) δ13CCO2>δ13CCH4. This is a common
characteristic shared by all geological age (from Z2dn to J2s) gas reservoirs and various gas
types (coal-derived gas, oil-associated gas, and shale gas).
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1 INTRODUCTION

The Sichuan Basin is a large superimposed basin developed on the
basis of craton, with an area of about 180 × 103 km2. The basin has
developed sedimentary rocks with a thickness of 6,000–12,000m. It
is a basin with the most developed source rock series in China,
especially gas source rocks (nine sets) due to its high thermal
maturity (Figure 1), which makes it a basin enriched in both
conventional and unconventional gas resources. The remaining
recoverable resources of conventional and unconventional natural
gas amounted to 13.6404 × 1012 m3 (Li et al., 2019). By the end of
2019, the total proved geological reserves of the basin had reached
5.7966 × 1012 m3. The cumulative gas production is 648.8 × 109 m3,
but the cumulative oil production is very low, 7.296 × 106 t, so the
gas oil equivalent ratio is up to 80:1 (Dai et al., 2021). The basin has
many gas-bearing layers and they overlap to form multiple gas-
bearing systems, including 25 conventional and tight oil and gas

producing layers (18 marine facies) and two shale gas producing
layers (Figure 1). It is the basin with the most industrial oil and gas
layers found so far in China (Dai et al., 2018; Dai, 2019). By the end
of 2019, 135 gas fields had been discovered in the basin (Figure 2).
There are 27 large gas fields with reserves more than 30.0 × 109 m3,
among which Anyue gas field is the largest. Anyue gas field is also
the largest carbonate gas field in China, with a proved geological
reserve of 1.1709 × 1012 m3 and a gas production of 12.013 ×
109 m3 by the end of 2019 (Dai et al., 2021). In the 13th century, the
Sichuan Basin developed the world’s first gas field—Ziliujing gas
field (Meyerhoff, 1970; Dai, 1981). Fryklund and Stark (2020)
pointed out that when the cumulative gas production exceeded five
billion barrels of oil equivalent (793.166 × 109 m3 gas), sedimentary
basins with remaining recoverable resources of at least five billion
barrels of oil equivalent were regarded as super basins, which are
called tier-one super basins. If it is slightly lower than these two
indicators, it is called a tier-two super basin. Accordingly, since the

FIGURE 1 | Comprehensive histogram of source-reservoir-caprock in Sichuan Basin. T3x-Upper Triassic Xujiahe Formation; T2l-Middle Triassic Leikoupo
Formation; T1j-Lower Triassic Jialingjiang Formation; T1f-Lower Triassic Feixianguan Formation; P3ch-Upper Permian Changxing Formation; P2m -Middle Permian
Maokou Formation; P2q-Middle Permian Qixia Formation; P1l-Lower Permian Liangshan Formation; C2h-Middle Carboniferous Huanglong Formation.
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remaining recoverable resources in the Sichuan Basin are 13.6404 ×
1012 m3, exceeding the index value of 793.166 × 109 m3, while its
cumulative gas production is 656.9 × 109 m3, slightly lower than the
index cumulative gas production, it can only be regarded as a tier-
two super basin. Recently, Dai et al. (2021) claimed that according
to the percentage of oil and gas in the cumulative total production,
the oil and gas fields with an oil or gas ratio of 20–80% should be
regarded as super oil and gas basins.Most super basins in the world
fall into this class.When the proportion of oil is greater than 80%, it
is called a super oil basin; when the proportion of gas exceeds 80%,
it is called a super gas basin. The proportion of gas in the Sichuan
Basin is 98.76% (Dai et al., 2021).

Natural gas more or less contains CO2; generally, the content of
CO2 in natural gas is low. According to the analysis of 1,025 gas
samples from 48 large gas fields in nine basins in China, the average
CO2 content is 3.58% (Dai, 2016). The CO2 content in natural gas is
low and is often widely distributed in cratonic basins with stable
structures, such as the Ordos Basin and Sichuan Basin in China (Dai
et al., 2017; Wu et al., 2017; Wu et al., 2020). However, there are also
some natural gases with a high CO2 content, which are often widely
distributed in rift basins with intense tectonic activity, large fault
zones, and volcanic activity zones in geological history or modern
times (Dai et al., 2000; Dai et al., 2017). For example, the CO2 content
ofWell Shuishen nine in Sanshui Basin in China reaches 99.55%. The
CO2 in natural gas after the volcanic period in the famous young
volcanic area of Tengchong is 96.0%–96.9%. CO2 is a greenhouse gas
that pollutes the environment, so its high content will reduce the
commercial value of natural gas exploration in the area. For example,
the CO2 content in natural gas from the exploration well in Lishui sag

of the East China Sea extensional basin is high, which is 31%–98%,
reducing the commercial interests of exploration (Diao, 2019).

Gas reservoirs can be classified according to the carbon dioxide
content in the gas reservoir. Tang (1983) called a gas reservoir with
CO2 content of more than 80% to nearly 100% a CO2 gas reservoir.
Shen et al. (1991) called a gas reservoir a CO2 gas reservoir when the
content of carbon dioxide in the gas reservoir is greater than 85%. Dai
et al. (2000) called a gas reservoir with CO2 content of 90% to nearly
100% a CO2 gas reservoir. The gas reservoir with a CO2 content of
60%–90% is called a sub CO2 gas reservoir; the gas reservoir with a
CO2 content of 15%–60% is called a high CO2 gas reservoir; A gas
reservoir with a CO2 content of trace to 15% is called a CO2-
containing gas reservoir. There are many research studies on CO2

gas reservoirs (fields) carried out at home and abroad (Muffler and
White, 1968; Qi and Dai, 1981; Tang, 1983; Song, 1991; Dai et al.,
2000). The imperial gas field in the Los Angeles Basin of the
United States has been producing carbon dioxide since
1934–1954 with accumulated gas production of 18.4 ×
106 m3 (Muffler and White, 1968). China’s proved CO2

geological reserves at the end of 2019 amounted to 213 ×
109 m3, with a cumulative output of CO2 gas of 12.75 × 109 m3.
At least 30 CO2 gas fields (reservoirs) with industrial value
have been found in the continental rift basins in eastern
China, the continental shelf marginal basins in the East
China Sea, and the northern South China Sea (Zhang et al.,
2019).

The carbon isotope value of carbon dioxide (δ13CCO2) is an
important parameter to identify organic and inorganic carbon
dioxide, which has been the research object of many scholars at

FIGURE 2 | Distribution of oil and gas fields in the Sichuan Basin (Modified after Ni et al., 2021).
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home and abroad. Shangguan and Zhang (1990) pointed out that
CO2 of metamorphic origin has δ13C value similar to that of the
sedimentary carbonate rocks, that is, −3‰ ~ +1‰, while mantle-
derived CO2 has δ13C between −8.5‰ and −5‰. Shen et al. (1991)
believed that inorganic CO2 has δ13C>−7‰. For the quartz
monzodiorite, equigranular granodiorite, and porphyritic
granodiorite in granite in Fangshan District, Beijing, the δ13CCO2

values were −3.8‰, −7.4‰, and −7.8‰, respectively (Zhen et al.,
1987). Gould et al. (1981) believed that the δ13CCO2 values of
magmatic rock origin were generally −7 ± 2‰, although they
were variable, while Pankina et al. (1978) believed that the
δ13CCO2 value is between −9.1‰ and 4.9‰. Moore et al. (1977)
pointed out that the δ13CCO2 value in basalt inclusions in the Middle
Pacific ridge is −6.0‰ to −4.5‰. Dai et al. (1989); Dai et al. (1992);
Dai et al. (2000) proposed a δ13CCO2−CO2 content identification
diagram of organic origin and inorganic origin based on the
compilation of 212 gas samples from China and more than 100
samples from Australia, Thailand, New Zealand, the Philippines,
Canada, Japan, and the former Soviet Union. At the same time, it is
pointed out that organic CO2 has δ13C value lower than −10‰,
mainly in the range of−30‰ to−10‰; inorganic CO2 has δ13C value
more than −8‰, mainly in the range of −8‰ to +3‰. Among
inorganic carbon dioxide, those of carbonate rock metamorphism
origin have δ13CCO2 value close to that of the carbonate rock, about
0 ± 3‰; CO2 of volcanicmagmatic origin andmantle origin has δ13C
values mostly in the range of - 6 ± 2‰. At the same time, the 3He/
4He−δ13CCO2 diagram (see Section 3.1) can be used to identify
inorganic carbon dioxide of carbonate thermal metamorphic origin
or magmatic and mantle origin (Etiope et al., 2011).

The study of CO2 is far behind that of the alkane gas due to the
following two reasons: 1. Alkane gas has very high economic values;
thus, it attracts much research attention. 2. Alkane gases have similar
chemical structure and chemical characteristics, which can provide
more scientific information. However, CO2 is an important
greenhouse gas; its occurrence in natural gas not only impacts the
commercial value of natural gas and potential environmental
pollution but also has great significance on the gas origin and gas-
source correlation research of the accompanied natural gases. The
aim of this study is to investigate the geochemistry characteristics of
CO2 in the Sichuan Basin and further explore its formation
mechanism, thus establishing a set of chemical and isotopic
distinguishing parameters for CO2 of different origins. In this
study, we systematically analyzed the chemical and isotopic
compositions of CO2 from the Sichuan Basin, and published data
of CO2 from different strata and gas fields are also compared. Three
different formationmechanisms of CO2 are investigated, their typical
carbon isotopic compositions are identified, and their relationship
with hydrocarbon gases is discussed. The geochemical study of CO2

has great significance for the research and exploration of natural gas
in the Sichuan Basin.

2 ANALYTICAL METHODS

Stable carbon isotopic compositions were determined on a
Thermo Delta V mass spectrometer in the PetroChina
Research Institute of Petroleum Exploration and Development.

The mass spectrometer was interfaced with a Thermo Trace GC
Ultra gas chromatograph (GC). Individual hydrocarbon gas
components (C1–C4) and CO2 were separated on a gas
chromatograph using a fused silica capillary column (PLOT Q
27.5 m × 0.32 mm × 10 μm), which were then converted into CO2

in a combustion interface, and finally injected into the mass
spectrometer. The temperature of the GC oven rises from 33 to
80°C at 8°C/min, then to 250°C at 5°C/min, and the final
temperature was maintained for 10 min. Gas samples were
analyzed in triplicate, and the stable carbon isotopic values
were reported in the δ-notation in per mil (‰) relative to
Vienna Peedee Belemnite (VPDB), and the analytical precision
is ±0.3‰.

3 RESULTS AND DISCUSSION

3.1 Cratonic CO2 With Low Content in
Natural Gas
Supplementary Tables S1, S2 show the geochemical parameters
of natural gas from 22 gas fields in Sichuan Basin. By analyzing
243 CO2 components and their relationship with relevant
parameters, the compositional characteristics of CO2 can be
obtained.

The CO2 content of 243 gas fields ranges from 0.02%
(Xinchang gas field X21-h, Dachiganjing gas field G31,
Weiyuan gas field Wei202, and Fuling gas field JY6-2) to
22.90% (Yuanba gas field YB101), with an average content of
2.96%, which is lower than the average CO2 content of 3.58% (Dai
et al., 2016) of 1,025 gas samples from 48 large gas fields
developed in China (Supplementary Tables S1, S2, Figure 3).
The low CO2 content in Sichuan Basin reduces the risk of natural
gas exploration and development.

According to the CO2-R/Ra diagram (Figure 4) (Dai et al.,
2017), CO2 in cratonic basin (expressed as cratonic CO2) is
characterized by low CO2 content (generally <5%) and small
variation of R/Ra ratio (<0.24), while CO2 in rift basin (expressed
as rift CO2) is characterized by large variation of CO2 content
(0.0n%–＞95%) and large variation of R/Ra (0.0n–n). A total of
41 samples with CO2 and R/Ra values from Supplementary
Tables S1, S2 all fall into C1 (Ordos Basin) and C2 (Sichuan
Basin) cratonic areas, indicating that the CO2 from
Supplementary Tables S1, S2 belongs to cratonic CO2. The
rest 202 samples in Supplementary Tables S1, S2 have CO2

values but no R/Ra values. According to the research work by Ni
et al. (2014), the average value of R/Ra in the Sichuan Basin is only
0.016, so the rest 202 samples without R/Ra data are also
cratonic CO2.

3.2 Characteristics of Carbon Isotope of
Carbon Dioxide (δ13CCO2)
3.2.1 Heaviest Carbon Isotope of Carbon Dioxide in
China
The interval value of δ13CCO2 of natural gas in the Sichuan Basin
ranges from −25.4‰ (Yuanba gas field, Y11 well) to +10.4‰
(Fuling gas field, JY47-3 well), and the main frequency peak is
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between −6‰ and +2‰ (Supplementary Tables S1, S2,
Figure 5). 30 years ago, Dai et al. (1992) pointed out that the
δ13CCO2 value of natural gas in China ranged from −39‰ to
+7‰. In the past 30 years, the author analyzed δ13CCO2 values of
102 samples. Combined with 508 published δ13CCO2 values by
other researchers (He, 1995; Fu et al., 2004; Liao et al., 2012; Liu D
et al., 2016; Liu et al., 2018; Deng et al., 2018; Zhang et al., 2018a;
Xu et al., 2018; Zhang et al., 2018b; Zhang S. et al., 2018; Li, et al.,
2018; Diao, 2019; She et al., 2021; Wei et al., 2021), about 610
samples in total are investigated, which are distributed in
Songliao, Bohai Bay, Sanshui, Ordos, Sichuan, Tarim, East
China Sea, and Yinggehai–Qiongnan basins. Among them,
only five samples have δ13CCO2 values higher than 7‰,

ranging from 7.8‰ to 8.9‰ (Xu et al., 2018). Therefore, at
present, the δ13CCO2 value of 10.4‰ in Well JY47-3 in this study
should be the highest in China. Thus, in China, the variation
range of δ13CCO2 value should be −39‰ to +10.4‰, which is
lower than that of the world whose interval value of the δ13CCO2

ranges from −42‰ to +27‰ (Barker, 1983). Therefore, the
δ13CCO2 interval value of China, both high and low, still has
the potentiality of extension.

3.2.2 Carbon Isotopic Identification Parameters of CO2

The δ13C values have usually been used to identify the CO2

origins such as organic versus inorganic and also sub-categories of
them (Table 1). Parameters such as δ13CCO2−CO2 (Dai et al.,
1992) (Figure 6), δ13CCO2−R/Ra (Etiope et al., 2011), and
δ13CCO2−δ13C1 (Milkov and Etiope, 2018) have been widely
used. It can be seen from Table 1 and Figure 6 that the
δ13CCO2 value of inorganic CO2 is higher than that of organic
CO2. This is because the original δ13C of organic CO2 is relatively
low, and the original δ13C of inorganic CO2 is relatively high
(Table 2). Due to the carbon isotopic inheritance, the carbon
isotopic composition of organic and inorganic CO2 gases is
mainly affected by the carbon isotopic value of their precursors.

When the δ13CCO2 value < −10‰ (a few < −8‰), the carbon
dioxide belongs to organic origin, including gas samples from
Guang’an, Bajiaochang, Zhongba, Wenxingchang, Wolonghe,
Dachiganjing, Zhangjiachang, Bandong, Xiangguosi, and
Weiyuan gas fields, and Xujiahe Formation gas reservoir of
Longgang gas field, Jurassic Formation gas reservoir of
Xinchang gas field, and Triassic Formation gas reservoir of
Anyue gas field (Supplementary Table S1, Table 1, and
Figure 6). CO2 of organic origin can be divided into several
sub-categories (Supplementary Table S1, Table 1 and Figure 7).
Among the abovementioned 13 gas fields, gases in the Guang’an,
Bajiaochang, and Zhongba gas fields, Jurassic Formation gas
reservoir in Xinchang gas field, and Triassic Formation gas
reservoir in Anyue gas field are thermogenic wet gas (oil-

FIGURE 3 | Distribution frequency of CO2 content of natural gas in the Sichuan Basin.

FIGURE 4 | Comparison of CO2-R/Ra between cratonic basin and rift
basin (Modified after Dai et al., 2017).
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associated thermogenic gas, OA). The wetness (W) of 37 gas
samples varies between 3.2% and 17.7%, with an average value of
7.8%, and the δ13CCO2 values of 44 gas samples range from −
6.2‰ to −22.6‰, with an average of −12.8‰. The thermal
maturity Ro% value of gas source rocks of Xujiahe Formation
in Guang’an gas field, Zhongba gas field, and Bajiaochang gas
field is between 0.88% and 1.15% (Dai et al., 2016), which also
proves that the carbon dioxide in these gas fields is of
thermogenic origin. Among them, there are individual wells
showing a δ13CCO2 value of inorganic origin, that is, Well
Jiao49 has a δ13CCO2 value of −6.2‰, which is inorganic CO2

formed by dissolution of carbonates through organic acid, such as
Well Pu1 in Ordos Basin, whose δ13CCO2 value of −6.39‰ results
from the dissolution of carbonates by organic acid (Dai et al.,
1992).

CO2 in Wenxingchang gas field, Xujiahe Formation gas
reservoir of Longgang gas field, Wolonghe gas field,
Dachiganjing gas field, Zhangjiachang gas field, Bandong gas
field, Xiangguosi gas field, and Weiyuan gas field are of cracking

origin. The δ13CCO2 value of 34 gas samples fall between −23.4
and −10.3‰, with an average of −15.7‰. The wetness of 33 gas
samples ranges from 0.08% to 7.04%, with an average of 1.30%.
Alkane gas accompanied with CO2 of thermogenic origin is often
dry gas, which also proves that CO2 is of thermogenic origin. It
can be seen from Figure 7 that there are only thermogenic CO2

(in the area of OA) and cracking CO2 (in the area of LMT) among
the biogenic gas in the Sichuan Basin, and no microbial
degradation type CO2 (EMT).

In addition to the abovementioned thermal decomposition
and cracking CO2, in Supplementary Table S1, among Xujiahe
Formation gas reservoir and Leikoupo Formation gas reservoir of
Xinchang gas field, Western Sichuan gas field, Qiongxi gas field,
Pingluoba gas field, Leikoupo Formation gas reservoir of
Longgang gas field, Feixianguan Formation gas reservoir,
Changxing Formation gas reservoir, and Permian gas reservoir
of Yuanba gas field, Feixianguan Formation gas reservoir of
Puguang gas field, and Longwangmiao Formation gas reservoir
and Dengying Formation gas reservoir of Anyue gas field, the

FIGURE 5 | Distribution frequency of the carbon isotopes of CO2 in the Sichuan Basin.

TABLE 1 | Carbon isotopic composition of carbon dioxide of different origins.

δ13C of inorganic CO2 δ13C of organic CO2 References

Upper mantle
degassing

Volcano
magma origin

Carbonate mineral thermal
metamorphism or organic acid

dissolution

Causes of
microbial

degradation

Origin of thermal
degradation of organic

matter

Organic matter
cracking origin

−7–5‰ Hoefs (1978)
−8–4‰ Javoy et al. (1978)
−5.3–4.6‰ Cornides (1993)

−9.1–4.9‰ −3.5‰ to +3.5 ＜−20‰ Pankina et al.
(1978)

−3–1‰ Shangguan and
Zhang (1990)

−7‰ Sano et al. (2008)
−15–25‰ Hunt (1979)

−3.7 to +3.7‰ −15–9‰ Zhu and Wu
(1994)

−6 ± 2‰ 0 ± 3‰ Dai et al. (1996)
>−8‰, mainly fall between −8‰ and +3 <−10‰, mainly fall between −10 and 30‰
−8–4‰ −10–4‰ −4–4‰ −25–15‰ <−20‰ Liu et al. (2016)
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majority is dry gas. Based on the analysis of 120 gas samples, the
δ13CCO2 value ranges from 8.1 to 17.2‰, with an average of
2.4‰. According to the analysis of 118 gas samples, the gas
wetness is 0.02%–11.5%, with an average value of 1.02%.
Supplementary Table S2 shows the δ13CCO2 values of shale
gas from Weiyuan, Changning, Fuling, and Zhaotong shale gas
fields. According to the analysis of 55 gas samples, the δ13CCO2

value ranges from −9.2‰ (well N211) to 10.4‰ (well JY47-3),
with an average value of 0.42‰. According to the analysis of 54
gas samples, the gas wetness ranges from 0.28% to 0.79% with an
average of 0.47%. It can be seen from Table 1 and Figure 6 that
CO2 in the abovementioned gas fields is of inorganic origin.

According to the genetic type, inorganic CO2 can be
subdivided into upper mantle degassing, volcanic magmatic
source, and thermal metamorphism or organic acid dissolution
of carbonate rocks (minerals) (Table 1). The shale gas is
characterized by δ13C1＞δ13C2＞δ13C3, belonging to the
secondary negative carbon isotope series (Dai et al., 2016). For

the Marcellus shale gas, which has the largest annual production,
when the gas wetness (W) is less than 1.49%–1.57%, the
secondary negative carbon isotope series appear (Jenden et al.,
1993). The gas wetness of the four shale gas fields in
Supplementary Table S2 is between 0.28% (well NH3-6) and
0.79% (well JY12-2), so they all have negative carbon isotope
series. The negative carbon isotope series only occur in the
thermogenic gas in the over-mature area, and the RO% of the
gas source rocks is greater than 2%. As shown in Supplementary
Table S2, the RO% value of Wufeng–Longmaxi shale in
Changning, Zhaotong, and Fuling shale gas fields fall in the
range of 2.1%–3.85% (Dai et al., 2014; Guo and Zeng, 2015;
Dai et al., 2016; Liu S et al., 2016; Feng et al., 2020). Since the shale
of Wufeng–Longmaxi formations is rich in carbonate minerals
(Dai et al., 2014; Dai et al., 2016; Feng et al., 2020) and is at the
over-mature stage, these two factors together led to inorganic
CO2 from thermal metamorphism of carbonate minerals.
Figure 8 clearly shows that the CO2 from the four shale gas
fields is of inorganic origin related to carbonate minerals.
However, the δ13CCO2 values of the four shale gas fields in
Figure 7 mainly fall in the thermogenic area (LMT), so the
δ13CCO2 value in Figure 7 is in the range of −8‰ to 10‰, which
should be classified as inorganic CO2 from thermal
metamorphism of carbonate minerals.

Calcareous sandstone is widely distributed in the fourth
member of Xujiahe Formation (T3x

4) in Western Sichuan
depression, and carbonate rock debris accounts for more than
50% of calcium debris (Lin et al., 2007; Lin et al., 2012). Calcareous
sandstone is also developed in the third member of Xujiahe
Formation (T3x

3) in the Yuanba area. Carbonate debris which
is dissolved by organic acid is discharged during the compaction of
mudstone in the third member of Xujiahe Formation in the late
diagenetic stage of Xujiahe Formation (Ma, 2012), forming organic
acid dissolved CO2 in inorganic carbonate rocks of Xujiahe
Formation in Yuanba gas field (Dai et al., 2013). However,
according to Supplementary Table S1, Xujiahe Formation gas
reservoir of Yuanba gas field is characterized by dry gas, with gas
wetness mainly between 0.39% and 1.51%, and δ13CCO2 value
between −7.5‰ and 0.5‰, so CO2 in Xujiahe Formation gas
reservoir of Yuanba gas field should also include CO2 derived from
the thermal metamorphism of carbonate mineral. The Xujiahe
Formation gas reservoirs of Pingluoba gas field and Qiongxi gas
field are similar to Yuanba gas reservoir with dry natural gas, so the

FIGURE 6 | Identification of CO2 origin of natural gas in the Sichuan
Basin (Dai et al., 1996).

TABLE 2 | δ13C values of various carbon-bearing materials (Dai et al., 2000).

Type of carbon Carbon-bearing materials δ13C (‰)
Organic carbon Chinese oil −34.57 to −23.50

Chinese coal −30.80 to −21.54
Chinese mudstone kerogen −30.86 to −19.38
Chinese carbonate rock kerogen −35.04 to −24.34
Terrestrial plants and animals Mean to −25.5
Marine organisms (including plankton) −22 to −9.0

Inorganic carbon Diamond −9 to −2
Marine inorganic carbon −1.0 to +2.0
Dissolved carbon in fresh water −11.0 to −5.0
Dolomite −2.29 to +2.66
Marine limestone −9.0 to +6.0
Nonmarine limestone −8.0 to −3.0
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CO2 in these gas fields should also originate from thermal
metamorphism of carbonate minerals.

In Supplementary Table S1, the Leikoupo Formation gas
reservoir of Xinchang gas field, Leikoupo Formation gas reservoir
of Longgang gas field, Feixianguan Formation gas reservoir,
Changxing Formation gas reservoir, and Leikoupo Formation
gas reservoir of Yuanba gas field, Feixianguan Formation gas
reservoir and Changxing Formation gas reservoir of Puguang gas
field, and Longwangmiao and Dengying (Z2dn) formations gas
reservoirs of Anyue gas field are characterized by carbonate rock
reservoir and dry natural gas. Therefore, they should also produce
carbonate mineral thermal metamorphism type of CO2.

3.2.3 δ13CCO2＞δ13C1

Figure 9 shows the carbon isotope of coexisting carbon dioxide
and methane from the 22 gas fields, which shows a wide range of
δ13CCO2 (35.8‰) but a relatively narrow range of δ13C1 (17.2‰).
They are characterized by δ13CCO2＞δ13C1, which is found in all
geological age (from Z2dn to J2s) gas reservoirs and various gas
types (coal-derived gas, oil-associated gas, and shale gas). The

FIGURE 7 | Plot of δ13C1−δ13CCO2 of natural gases from gas fields in the Sichuan Basin (Modified after Milkov and Etiope, 2018).

FIGURE 8 | Comparison diagram of natural gas R/Ra−δ13CCO2 in the
Sichuan Basin (Modified after Etiope et al., 2011).
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difference between δ13CCO2 and δ13C1 (δ13CCO2-CH4) for
individual gas samples varies between 11.4‰ (Wolonghe
gas field) and 40.9‰ (Fuling shale gas field), with an
average of 27.0‰ (n = 261).

Carbon isotopic changes of CH4 and CO2 mainly result from the
different sources. Sources of methane mainly include bacterial,
thermogenic, and inorganic. Bacterial methane is normally
generated at low temperature and depleted in 13C (δ13C <
−50‰), thermogenic methane is formed at elevated temperatures
by decomposition or cracking of organic matter and generally
characterized by −50‰<δ13C < −30‰, and inorganic methane

derived from mantle degassing or reactions at high temperatures is
enriched in 13C (δ13C > −30‰). As discussed previously, sources of
carbon dioxide mainly include thermogenic and inorganic. CO2

formed through the decomposition or cracking of organic matter is
relatively depleted in 13C (<−10‰, mainly of −10‰ to −30‰),
while CO2 derived from mantle degassing, volcanic magmatic
source, and thermal metamorphism or organic acid dissolution of
carbonate rocks (minerals) are much more enriched in 13C (>−8‰,
mainly of −8‰~+3‰).

As shown in Figure 10, δ13CCO2 varies between −25.4‰ and
10.4‰, with an average of −5.8‰ (n = 263), while δ13C1 varies

FIGURE 9 | Comparison of carbon isotopic value of methane and CO2 in natural gas from the Sichuan Basin.
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between −43.5‰ and −26.3‰, with an average of −32.8‰ (n = 261).
The variation range of CO2 (35.8‰) is nearly twice that of CH4

(17.2‰). According to the δ13C values ofmethane, alkane gases from
these 22 gas fields all belong to thermogenic gas. In contrast, sources
of CO2 include both organic and inorganic. Organic CO2 commonly
has carbon isotopic composition lower than −10‰, and the lowest
δ13CCO2 value of −25.4‰ is found in the Yuanba gas field. Since
thermogenic methane has δ13C1<δ13CCO2, the carbon isotopic
difference between thermogenic methane and organic CO2

(δ13CCO2-CH4) is relatively small, and the smallest carbon isotopic
difference of 11.4‰ is found in the Wolonghe gas field. Since
inorganic CO2 is characterized by much heavier carbon isotopic
compositions (δ13CCO2>−8‰), the carbon isotopic difference
between thermogenic methane and inorganic CO2 (δ13CCO2-CH4)
will be bigger, and the biggest carbon isotopic difference of 40.9‰ is
found in the Fuling shale gas field. CO2 generated from the thermos-
metamorphic process of carbonates is enriched in 13C. As in the
CO2–calcite system, carbon isotope fractionation will cause the
enrichment of 13C in CO2 at high temperature; therefore, CO2

produced by decarbonation reactions will be more enriched in 13C
than that in the original carbonates (Giustini et al., 2013). δ13C of
Phanerozoic seawater is generally stable, and the Phanerozoic low
magnesium calcite shells have δ13C values of−2 to +6‰ (Veizer et al.,
1999; Dong et al., 2021). δ13C values of carbonate cement of
sandstone from the Silurian Formation in southeast Sichuan vary
from −1.90‰ to 4.78‰with an average value of 1.42‰ (n = 14) (An
et al., 2015). However, positive carbon isotopic excursion of both
shales and limestones has been found in the Late Ordovician
Hirnantian stage in North America (Orth et al., 1986; BergstrÖM

et al., 2006), Europe (Brenchley et al., 1994;Marshall et al., 1997), and
China (Wang et al., 1997; Fan et al., 2009). The positive carbon
isotopic excursion can be up to 5–7‰ in the Hirnantian limestones
(Qing and Veizer, 1994; Marshall et al., 1997). A recent study found
that diffusive migration of shale gas occurs in the southern Sichuan
Basin (Ni et al., 2021). Therefore, if assuming an infinite reservoir of C
compared with CO2 generated by decarbonation and the CO2

decarbonated does not isotopically fractionate on its way to the
surface in the absence of water, metamorphic reactions between
carbonate and silicate occur at 600 °C (Muffler andWhite, 1968), and
the produced CO2 will be enriched in

13C by about +2.6‰ compared
with that of CaCO3 (Ohmoto and Rye, 1979). Then, it will produce a
gas with δ13C around 4‰, and if considering the carbon isotopic
excursion, it will be around 10‰ (Giustini et al., 2013). While in the
presence of water, metamorphic reactions between carbonate and
silicate begin with T > 200°C (Muffler and White, 1968), and the
produced CO2 will be enriched in 13C by 1.3‰ at a temperature
around 250°C (Ohmoto and Rye, 1979). Then, it will produce a gas
with δ13C around 2.7‰, and if considering the carbon isotopic
excursion, it will be around 9‰ (Giustini et al., 2013).

4 GEOLOGICAL IMPLICATIONS

The three types of CO2 gases are characterized by different
geochemical characteristics and different reservoir types, and
distributed in different sedimentary basins. Type A organic CO2,
generated from the thermal decomposition of organic matter, was
mainly formed in the craton basin, where organic matter was

FIGURE 10 | Plot of δ13C values of CO2 and coexisting CH4. Isotherms for hypothetical isotopic equilibrium are from Richet et al. (1977).
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controlled by thermal evolution. The CO2 content and carbon
isotope composition were different at different stages of thermal
evolution, but the CO2 abundance was generally relatively low, such
as the Upper Paleozoic gas reservoir in Ordos Basin. Type B organic
CO2 was formed through the cracking of organic matter or
hydrocarbons at higher thermal maturity. For example, CO2 in
the over-mature coal-derived gas from the Kuqa depression in the
Tarim basin was mainly formed through the cracking of organic
matter. Thermal cracking of crude oil in the marine gas reservoirs
can also form cracking CO2 of organic origin such as the CO2 in the
Tazhong and Tabei deep natural gas. Type C inorganic CO2 has
complex sources and pathways, including the thermal
metamorphism or thermal decomposition of deep carbonates,
organic acid dissolution, TSR, and mantle degassing. High
temperature is required for the thermal metamorphism or
thermal decomposition of deep carbonates such as the CO2-rich
gas reservoirs in Yinggehai Basin. CO2 formed through the organic
acid dissolution ismainly distributed in the gas reservoirs where TSR
occurs such as the Ordovician marine facies Jianbian gas field in the
Ordos Basin and the marine gas reservoirs in Sichuan Basin.
Inorganic mantle-derived CO2 is mainly controlled by deep faults
such as Fangshen two and Songnan gas reservoirs in Songliao Basin
and Huangqiao gas reservoir in Subei Basin. The content of
inorganic CO2 varies widely. Generally, the content of deep
mantle-derived CO2 is more than 60%, while the content of
carbonate decomposition and organic acid dissolution depends
on gas reservoir temperature and source supply. In short,
different geological backgrounds and evolutionary histories will
form different types of CO2, and their content is also very different.

5 CONCLUSION

The Sichuan Basin is a large superimposed basin developed on the
basis of craton, with an area of about 180 × 103 km2. It has excellent
geological conditions for natural gas development: ① The thickness
of sedimentary rocks is 6,000–12,000m, the maturity of source rocks
is high, there are nine sets ofmain gas source rocks, and the equivalent
ratio of gas to oil production is 80:1, so it is a gas basin.② It is rich in
conventional and unconventional gas resources, and the remaining
recoverable resources of conventional and unconventional natural gas
amounts to 13.6404 × 1012 m3. The total proved geological reserves of
natural gas was 5.7966 × 1012 m3, and the cumulative gas production
of the basin was 648.8 × 109 m3 by the end of 2019. ③ There are
many gas-bearing formations and systems, including 25 conventional
and tight oil and gas producing formations (18marine facies) and two
shale gas–producing formations.④A total of 135 gas fields had been
discovered by the end of 2019. Anyue gas field, the largest gas field
and the largest carbonate gas field in China, had proved geological
reserves of 1.1709 × 1012 m3, with an annual output of 120 × 108m3

in 2019.
Carbon dioxide composition of CO2 in Sichuan Basin is

characterized by two features: ① The content of carbon dioxide
is low. Based on 243 CO2 components collected from 22 gas fields,
the content ranges from 0.02% to 22.90%, with an average value of
2.96%, which is lower than the average value of 3.58% of 1025 CO2

components in 48 large gas fields developed in China. ② Carbon

dioxide in cratonic basins is featured with a combination of a low
CO2 content (generally <5%) and a low R/Ra ratio (<0.24), while
carbon dioxide in rift basins is typically characterized by large
variation of the CO2 content (0.0n% – > 95%) and large
variation of the R/Ra ratio (0.0n – n).

Based on the δ13CCO2 values of 263 samples in Sichuan Basin and
their correlation with R/Ra, δ13C1, CO2 content, and gas wetness, it is
observed that δ13CCO2 has three characteristics:① δ13CCO2 (10.4‰)
in Fuling shale gas field was found to be the highest in China, making
the interval value of δ13CCO2 of China expand from −39‰–7‰ to
−39–10.4‰.② According to the δ13CCO2 value, three types of CO2

were identified: A. organicCO2 formed by the thermal decomposition
of organic matter. The δ13CCO2 values of 44 samples range from −6.2
to −22.6‰, with an average value of −12.8‰, and the gas wetness of
37 samples ranges from 3.2% to 17.7%, with an average of 7.8%; B.
organic CO2 formed by the cracking of organic matter. The δ13CCO2

values of 34 samples range from −10.3‰ to −23.4‰, with an average
value of−15.7‰, and gas wetness of 33 samples ranges from0.08% to
7.04%, with an average value of 1.30%; C. inorganic CO2 formed by
the dissolution of carbonates throughmetamorphism or organic acid.
δ13CCO2 values of 175 samples range from −17.2 to 10.4‰, with an
average value of −1.8‰, and gas wetness of 172 samples ranges from
0.02% to 11.5%, with an average value of 0.85%;③ δ13CCO2＞δ13C1,
which is a characteristic shared by all geological age (fromZ2dn to J2s)
gas reservoirs and various gas types (coal-derived gas, oil-associated
gas, and shale gas).
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