
A Gray Wolf Optimization-Based
Improved Probabilistic Neural
Network Algorithm for Surrounding
Rock Squeezing Classification in
Tunnel Engineering
Xing Huang1, Xin Yin2*, Bin Liu1, Ziwei Ding3, Chaofan Zhang3, Boyu Jing3 and
Xiaosheng Guo4

1State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy
of Sciences, Wuhan, China, 2The Key Laboratory of Geotechnical and Structural Engineering Safety of Hubei Province, School of
Civil Engineering, Wuhan University, Wuhan, China, 3College of Energy Engineering, Xi’an University of Science and Technology,
Xi’an, China, 4Shaanxi Zhengtong Coal Industry Co., Ltd., Xianyang, China

Surrounding rock squeezing deformation is a common and prominent hazard in tunnel
engineering projects, which often induces the shield jamming disaster during the TBM
tunneling process. Based on the 139 groups of historical squeezing deformation cases,
this study developed a hybrid PCA-IWGO-PNN model for squeezing classification.
According to the influencing factors and characteristics of squeezing deformation, the
strength-stress ratio, tunnel burial depth, tunnel equivalent diameter, rock mass quality
index, and support stiffness were selected to establish the prediction index system of
squeezing level. Because the probabilistic neural network (PNN) requires that the input
variables are independent, principal component analysis (PCA) was used to preprocess
the original data to eliminate the correlation between prediction indexes and achieve
dimensionality reduction. The spread coefficient was the critical hyper-parameter in the
PNN, and the improved gray wolf optimization (IGWO) algorithm was used to realize its
efficient automatic optimization. Then, the PNNmodel was applied to engineering practice.
Only 1 of 20 test samples was misjudged, achieving the 95% prediction accuracy. Finally,
the comparison analysis with the artificial neural network (ANN) model, support vector
machine (SVM) model, and random forest (RF) model was conducted. Among them, the
PNN model achieved the highest prediction accuracy, followed by the artificial neural
network (85%), RF (85%), and SVM (80%). In addition, the PNN model had the fastest
running speed, which only consumed 5.6350 s, while the running time of ANN, SVM, and
RF was 8.8340, 6.2290, and 6.9260 s, respectively. The hybrid PCA-IWGO-PNN model
developed in this research provides an effective method for surrounding rock squeezing
classification, and it has superiorities in both prediction accuracy and running speed.
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1 INTRODUCTION

In recent years, limited by the shallow resources, underground space
development and tunnel engineering construction have ushered in a
peak period (Zhu et al., 2019). TBM (tunnel boring machine) is
widely used in deep-buried and ultra-long tunnels because of high
excavation efficiency, low construction cost, and minor
environmental disturbance (Liu et al., 2016). However, most of
these tunnels are located in areas with high seismic intensity,
complex surface topography, and harsh geological conditions.
These tunnels’ safe and efficient construction faces enormous
challenges, especially when TBM traverses the deep-buried, high-
stress, weak, and broken stratum. Due to the narrow overcut gap
between the TBM shield and surrounding rock, shield jamming
disaster will be caused when the squeezing deformation of
surrounding rock exceeds the overcut gap (Hasanpour et al.,
2014). The handling of TBM jamming accidents not only
seriously delays the construction schedule and threatens the
safety of equipment and workers, but also causes huge economic
losses and social impacts. Therefore, carrying out the study on the
advancing prediction of surrounding rock squeezing levels is
essential for TBM jamming disaster prevention and control.

Early studies primarily focused on empirical criteria, such as
Singh B (Singh et al., 1992), Jimenez R (Jimenez and Recio, 2011)
and Farhadian H (Farhadian and Nikvar-Hassani, 2020) proposed
empirical criteria based on tunnel burial depth and rock quality
index, and Jethwa J L (Jethwa, 1981), Aydan (Aydan et al., 1996), and
Barla G (Barla, 1995) put forward empirical criteria based on tunnel
burial depth, rock specific gravity, and uniaxial compressive strength.
However, squeezing level prediction is a complex nonlinear problem,
and it is difficult for empirical criteria to consider this nonlinear
relationship between influencing factors and squeezing. With the
deepening of researches, some soft science methods based on
artificial intelligence have been introduced to solve nonlinear
problems (Liu et al., 2020; Yin et al., 2021a; Zhang et al., 2020a;
Zhang et al., 2021b; Yin et al., 2021b; Ge et al., 2021; Zhang et al.,
2021a; Yin et al., 2022; Ge et al., 2022; Zhang and Phoon, 2022).
Zhang J et al. (Zhang et al., 2020b) proposed a BP neural network
method for predicting the squeezing level. Feng X and Jimenez R
(Feng and Jimenez, 2015) adopted the strength-stress ratio, tunnel
burial depth, tunnel diameter, rock quality index, and support
stiffness as predictive indicators and established a Bayesian
network (BN) model to predict the squeezing level. Sousa et al.
(Sousa and Einstein, 2011) proposed a Bayesian network (BN)-based
perception model of harsh geological conditions in front of the
tunnel face with TBM tunneling data. R. Hasanpour et al.
(Hasanpour et al., 2020a) applied the artificial neural network
(ANN) and Bayesian network (BN) to TBM tunneling risk
assessment under adverse geological conditions, such as the large
squeezing deformation. Sun Y et al. (Sun et al., 2018) proposed a
multi-class support vector machine (SVM) method based on tunnel
burial depth, tunnel diameter, rock quality index, and support
stiffness to evaluate the squeezing level. Chen Y et al. (Chen
et al., 2020) developed a novel probabilistic multi-classification
prediction framework for the squeezing level. The above
prediction methods reveal the laws of squeezing occurrence from
different aspects, which enriches the theory of squeezing

deformation prediction. However, due to many factors
influencing squeezing deformation, its inoculation mechanism is
still unclear. It is necessary to make full use of the evaluation index
information, explore the intrinsic relationship between the
evaluation index characteristics and squeezing level, and combine
multiple prediction techniques to conduct the squeezing level
prediction, achieving a higher accuracy. Therefore, this study
developed a novel multi-algorithm fusion prediction model based
on PCA-IGWO-PNN for the squeezing level.

Probabilistic neural network (PNN) has the advantages of simple
structure, easy training, fast convergence speed, and robust fault
tolerance, etc. It can use a linear learning algorithm to realize the
function of a nonlinear learning algorithm, and it has been widely
applied to pattern classification problems such as fault diagnosis
(Zhang et al., 2021c). When the activation function of the PNN
adopts the Gaussian function, the evaluation index need to be
uncorrelated and identically distributed. In fact, there is a certain
correlation between most of the evaluation indexes of squeezing
levels and it is necessary to eliminate the correlation between them
before applying PNN.

Common methods to eliminate the correlation between
variables include limiting the number of variables, separating
overlapping elements, modifying indicator weights, principal
component analysis, and factor analysis, etc. Considering that
there are multiple evaluation indexes selected in this research, the
principal component analysis method (PCA) is used to
preprocess the evaluation indexes of squeezing levels. In
addition to eliminating the correlation between the indexes, it
can also achieve dimensionality reduction and improve the
training and prediction speed of the PNN. Finally, this study
established a hybrid squeezing level prediction model based on
the PCA and PNN, and the hyper-parameter of PNN was
automatically tuned by the improved gray wolf optimization
(IGWO) algorithm.

2 METHODOLOGY

2.1 Probabilistic Neural Network
Probabilistic neural network (PNN) is based on the radial basis
neural network, using activation functions derived from statistical

FIGURE 1 | The topology of probabilistic neural network.
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methods to replace sigmoid activation functions. The decision
boundary realized by PNN approaches the Bayesian optimal
decision surface, which is an organic fusion of radial basis
network, Bayesian decision theory, and non-parametric
probabilistic density function estimation (Sanal Kumar and
Bhavani, 2019). The PNN network is composed of input,
pattern, accumulation, and output layers (Dukov et al., 2019),
and the network topology is shown in Figure 1.

The input layer receives training samples and the number of
neurons is equal to the length of the input vector.

The pattern layer is used to calculate the matching relationship
between the input vector and each pattern and returns a scalar
value. The number of neurons in this layer is the same as the
number of input training samples. The vector x is input to the
pattern layer, then the output relationship of the j-th neuron of
the i-th type pattern in the pattern layer is:

ϕij � 1/[(2π)0.5σd]exp[−(x−xij)(x−xij)T/σ2] (1)
where: d is the dimension of the metric space, σ is the spread
coefficient, xij is the j-th center of the i-th sample, and ϕij is the
output value of the j-th neuron of the i-th pattern in the
pattern layer.

The main function of the accumulation layer is a linear
summation and then weighted average. The number of
neurons in this layer is the same as the total number of patterns.

The output layer is composed of competing neurons. The
number of neurons is the same as the total number of patterns
and each neuron corresponds to a pattern. The output of the
neuron with the maximum posterior probability density is 1 and
the others are 0.

2.2 Improved Gray Wolf Optimization
Gray wolf optimization algorithm is an intelligent algorithm
based on the social behavior of wolves. Its basic idea is to
search and locate prey for wolves with three leadership levels:
α, β, and γ according to hierarchical social characteristics, and

guide ω wolf to track and capture prey. The implementation steps
of the gray wolf optimization algorithm are described in (Mirjalili
et al., 2014a). The gray wolf optimization algorithm has fast
optimization speed and high accuracy, but it still has the
shortcoming of being easy to fall into the local optimum.
Therefore, this paper proposes two strategies to improve the
algorithm.

2.2.1 Non-Linear Decreasing Strategy of Convergence
Factor
The performance of traditional gray wolf optimization algorithm
is affected by the convergence factor a. The linear decreasing
strategy of a cannot meet the balance of global and local search.
Therefore, this paper proposes a cosine-based non-linear
decreasing strategy (Eq. 2). This strategy is shown in Figure 2.
As a gradually decreases, the ergodicity increases in the early stage
and the local search can be emphasized later to balance the
algorithm’s global and local search capabilities.

a � cos(πt
n
) + 1 (2)

Where: t is the current iteration number; n is the maximum
iteration number.

2.2.2 DynamicWeighting Strategy Based on Euclidean
Distance
In the traditional gray wolf optimization algorithm, the guidance
of α wolf, β wolf, and γ wolf to ω wolf is the same, which violates
the unique social hierarchical characteristics of the algorithm. So,
a dynamic weighting strategy based on Euclidean distance is
proposed to handle this problem (Mirjalili et al., 2014b).

This strategy mainly calculates the learning ability of ω wolf
against α wolf, βwolf, and γwolf in the iterative process, and then
finds the updated position of ω wolf under the guidance of α wolf,
β wolf, and γ wolf, which can be expressed as:

ω1 � |X1|
|X1| + |X2| + |X3| (3)

ω2 � |X2|
|X1| + |X2| + |X3| (4)

ω3 � |X3|
|X1| + |X2| + |X3| (5)

X(t + 1) � ω1X1 + ω2X2 + ω3X3

3
(6)

2.3 Principal Component Analysis
When a correlation exists between input variables, it will increase
the information redundancy, and then increase the running time
of the model (Yin et al., 2021c). To eliminate the correlation,
dimensionality reduction provides a practical way, such as
principal component analysis (PCA) (Schimit and Pereira, 2018).

The detailed procedure of PCA is introduced as follows:

1) Establish the raw data matrix X � (xij)m×n , in whichm is the
number of samples and n is the number of input variables;

2) Standardize the raw data matrix using;

FIGURE 2 | Convergence factor decreasing strategy.
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xp
ij �

xij −meanj
stdj

(7)

where: meanj and stdj are separately the mean and the standard
deviation of the j-th input variable.

3) Calculate the correlation coefficient matrix R � (ryz)n×n based
on the standardized raw data matrix, in which ryz represents
the Pearson correlation coefficient between the y-th and z-th
input variables;

ryz � ∑(yi − �y)∑(zi − �z)∑(yi − �y)2√ ∑(zi − �z)2
√ (8)

where: ryz is Pearson correlation coefficient between input
variables Y and Z; �y and �z are separately the mean of Y and Z.

4) Calculate the eigenvalues {β1, β2, . . . , βn} and eigenvectors
{]1, ]2, . . . , ]n} of the correlation coefficient matrix;

5) Obtain the data matrix after dimensionality reduction using

~X � XppV (9)
where: V � (]1, ]2, . . . , ]k) is the transform matrix, composed of
the first k eigenvectors; Xp is the standardized raw data matrix.

The ratio (η) of the information contained in the
dimensionality-reduced data to that contained in the raw data
is calculated by Eq. 10. The criterion for determining k is that η is
greater than 90%.

η � β1 + β2 + . . . + βk
β1 + β2 + . . . + βn

(10)

3 PCA-IGWO-PNN PREDICTION MODEL
FOR SQUEEZING LEVELS

The model’s framework is: (1) Collect squeezing cases
according to the selected indicators; (2) In order to
eliminate the dimension and magnitude order differences
between indicators, standardize the original data; (3) Use
principal component analysis (PCA) to preprocess the data
for eliminating the correlation between indicators and
reducing data dimensionality; (4) Set the IGWO
parameters such as the number of wolves, the maximum
number of iterations, etc.; (5) Initialize the location of the
wolf pack, utilize α wolf, β wolf and γ wolf to guide ω wolf,
and select Eq. 11 as the fitness function; (6) Input the training
and validation sets into the PNN and introduce the IGWO
algorithm for iterative search to obtain the optimal spread
coefficient σ of the PNN; (7) Bring the test set into the trained
PNN and output the prediction results of the squeezing level;
(8) Compare the prediction results of the PCA-IGWO-PNN
with the actual situations and the prediction results of other
models.

fitness � 1
Accuracy

(11)

where: Accuracy is the model’s prediction accuracy on the
validation set.

4 DATABASE DESCRIPTION

A total of 139 squeezing cases were collected from (Jiao et al.,
2021), including China, Nepal, India, and so on (Supplementary
Appendix SA). In the 139 cases, no squeezing (Ⅰ) accounted for
20% (28 cases), slight squeezing (Ⅱ) accounted for 27% (37 cases),
medium squeezing (Ⅲ) accounted for 23% (33 cases), severe
squeezing (Ⅳ) accounted for 19% (26 cases), and extremely
severe squeezing (Ⅴ) accounted for 11% (15 cases) (Figure 3).
The determination of squeezing levels was based on the relative
strain (ε), namely no squeezing with ε < 1%, slight squeezing with
1%≤ ε ≤ 2.5%, medium squeezing with 2.5%< ε ≤ 5%, severe
squeezing with 5%< ε ≤ 10%, and extremely severe squeezing with
ε > 10% (Jiao et al., 2021). The relative strain (ε) is defined as .

ε � μ/D (12)
where: μ is tunnel convergence deformation;D is tunnel diameter.

The occurrence of squeezing is closely related to geological
structure, ground stress, rock mass conditions, and excavation
disturbances (Hasanpour et al., 2020b; Xu et al., 2021). The
selection of squeezing prediction indicators should meet: (1)
they are easy to obtain; (2) they have strong
representativeness; (3) they can reflect the characteristics of
the squeezing from different aspects. In the early empirical
methods, the tunnel depth (H), rock mass quality index (BQ),
and strength-stress ratio (SSR) are the most widely used
indicators. In addition, support stiffness (K) plays a vital role
in controlling the surrounding rock deformation (Dwivedi et al.,
2013) and the scale effect of tunnels, namely tunnel equivalent
diameter (D0), should be taken into account (Goel et al., 1995).
Therefore, five indicators [i.e.,H, (BQ), SSR, K, andD0] are finally
selected as the prediction variables of squeezing levels. Table 1
gives the acquisition methods of five prediction variables and
Table 2 shows the basic statistical description of five prediction
variables.

FIGURE 3 | Proportion of different squeezing levels in the database.
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5 DATABASE PREPROCESSING WITH PCA

Table 3 shows the correlation coefficients among five
prediction variables. It can be seen that the correlation
coefficient between SSR and (BQ) is over 0.5, indicating
that there is a relatively obvious correlation. These
redundant information will reduce the operating efficiency
of the model, so it is necessary to use principal component
analysis to eliminate the correlation between the variables. To
avoid the influence of variable dimensions on the
dimensionality reduction process, we first use the Z-score
method to standardize the original data (Eq. 7).
Supplementary Appendix SB demonstrates the
standardized data.

Table 4 shows the variance contribution rate of each
principal component and their cumulative contribution rate.
Referring to Table 4, the cumulative contribution rate of
the first four principal components reaches 95.24%,
indicating that the first four principal components contain
95.24% of the original information, which meets the
requirement of principal component selection. Therefore,
this paper selects these four principal components as the
new prediction variables to replace the five original ones. By
analyzing the correlation, it can be found that the new
prediction variables (y1, y2, y3, and y4) are totally

independent of each other and the correlation coefficients
are all 0 (Table 5). Table 6 gives the principal component
coefficient matrix, from which the relationship between the
new prediction variables and the original ones can be expressed
as Eq. 13. Supplementary Appendix SB shows the data after
dimensionality reduction.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y1 � −0.5742xp

1 − 0.1573xp
2 − 0.6604xp

3 − 0.2949xp
4 + 0.3498xp

5

y2 � 0.4443xp
1 − 0.7573xp

2 + 0.0957xp
3 − 0.1473xp

4 + 0.4452xp
5

y3 � −0.1441xp
1 + 0.0496xp

2 + 0.0039xp
3 + 0.8478xp

4 + 0.5080xp
5

y4 � −0.0736xp
1 − 0.5455xp

2 − 0.3318xp
3 + 0.4091xp

4 − 0.6477xp
5

(13)
where: xp

1 , x
p
2 , x

p
3 , x

p
4 , and x

p
5 separately refer to the standardized

data of SSR, H, [BQ], D0, and K.

TABLE 1 | The acquisition methods of five prediction variables.

Prediction variable Full name Acquisition method

SSR Strength-stress ratio SSR � σcm/γH
H Tunnel burial depth Determined by geological survey
[BQ] Rock mass quality index [BQ] � 63.029 ln(Q) + 327.5
D0 Tunnel equivalent diameter D0 � 

4A/π
√

K Support stiffness K � Kc + Ksb + Kb

A, tunnel cross-section area; Kc, shotcrete lining stiffness; Ksb, steel arch stiffness; K, anchor stiffness; σcm, uniaxial compressive strength of rock mass; γ, rock specific gravity; Q, rock
quality index.

TABLE 2 | The basic statistical description of five prediction variables.

Statistical index SSR H/m [BQ] D0/m K/MPa

Minimum 0.01 45.10 70.00 4.00 2.98
Maximum 1.55 1,110.00 441.00 14.00 1979.56
Mean 0.3204 361.3856 216.0791 9.7495 1,110.3576
SD 0.27551 214.77502 72.58499 2.92968 482.01800
Skewness 1.704 0.882 0.675 −0.371 −0.522
Kurtosis 3.720 0.445 1.165 −0.946 −0.045

TABLE 3 | Correlation coefficients among the original prediction variables.

Prediction variables SSR H [BQ] D0 K

SSR 1 −0.1974 0.6709 0.1043 −0.1541
H −0.1974 1 0.163 0.1377 −0.2891
(BQ) 0.6709 0.163 1.0000 0.2518 −0.2461
D0 0.1043 0.1377 0.2518 1 −0.0206
K −0.1541 −0.2891 −0.2461 −0.0206 1

TABLE 4 | Calculation results of PCA.

Principal
component

Eigenvalue Contribution
rate (%)

Cumulative
contribution rate

(%)

1 1.8650 37.30 37.30
2 1.2920 25.84 63.14
3 0.9791 19.58 82.72
4 0.6259 12.52 95.24
5 0.2380 4.76 100

TABLE 5 | Correlation coefficients among the new prediction variables.

Prediction variables y1 y2 y3 y4

y1 1.0000 0.0000 0.0000 0.0000
y2 0.0000 1.0000 0.0000 0.0000
y3 0.0000 0.0000 1.0000 0.0000
y4 0.0000 0.0000 0.0000 1.0000
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6 MODEL CONSTRUCTION AND
APPLICATION

The database after dimensionality reduction is split into three
parts by the stratified sampling: the training set (99 samples), the
validation set (20 samples), and the test set (20 samples)
(Table 7). The training set is used to train the model, the
validation set is used to calculate the fitness function and
optimize the model hyper-parameter, and the test set is used
to evaluate the model performance in engineering practice.

6.1 Hyper-Parameter Optimization With
IGWO
The spread coefficient plays a vital role in the prediction
performance of PNN. If the value of the spread coefficient is
too small, it is easy to cause the network to overfit; if the value of
the spread coefficient is too large, the details cannot be wholly
distinguished and the network is close to a linear classifier. This
study adopts an improved gray wolf optimization algorithm to
optimize the spread coefficient automatically.

The prediction variables (y1, y2, y3, and y4) after
dimensionality reduction constitute the input vector of PNN.
Moreover, there are 99 sets of training samples and five squeezing
levels. Therefore, the number of neurons in the input layer,
pattern layer, accumulation layer, and output layer of the
PNN are 4, 99, 5, and 5, respectively. In order to select the
optimal spread coefficient, 99 sets of training samples are firstly
input to train PNN, and then 20 sets of validation samples are
input to calculate the fitness function under different spread
coefficients.

The optimization range of the spread coefficient is set to (0,
10). The wolf pack size in the improved gray wolf optimization
algorithm is set to 30, and the maximum number of iterations is
400. Figure 4 shows the evolution curve of the fitness function
with the number of iterations. In the first 20 iterations, the fitness
function dropped sharply. Between 20 and 140 iterations, the

fitness function was stable, but then there was a decline. The
fitness function did not truly converge until 150 iterations. The
optimization result of the 400th iteration is used as the optimal
spread coefficient. At this time, the spread coefficient is taken as
1.58 and the corresponding fitness function is 1.11.

6.2 Prediction Performance Evaluation
The optimized PNN model is applied to the test set, and the
prediction results of 20 sets of test samples are shown in Figure 5.
Only one of the 20 test samples was misjudged by the PNN,
reaching a prediction accuracy of 95%. For this misjudged test
sample, its actual squeezing level is medium squeezing, but it is
predicted to be a severe squeezing. From the perspective of
engineering safety, this phenomenon is acceptable, because it
is more advantageous for the predicted level to be higher than the
actual level in comparison with the predicted level to be lower
than the actual level. In particular, in two types of catastrophic
accidents, namely severe squeezing and extremely severe
squeezing, the PNN showed 100% prediction accuracy.

TABLE 6 | The coefficient matrix of principal components.

Prediction variables Principal component

y1 y2 y3 y4

SSR −0.5742 0.4443 −0.1441 −0.0736
H −0.1573 −0.7573 0.0496 −0.5455
[BQ] −0.6604 0.0957 0.0039 −0.3318
D0 −0.2949 −0.1473 0.8478 0.4091
K 0.3498 0.4452 0.5080 −0.6477

TABLE 7 | The number of samples with varying squeezing levels in the training,
validation, test sets.

Object The number of samples

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ

Training set 20 27 23 18 11
Validation set 4 5 5 4 2
Test set 4 5 5 4 2

FIGURE 4 | The evolution curve of fitness function with the number of
IGWO iterations.

FIGURE 5 | PNN prediction results on the test set.
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To further illustrate the superiority of the PNN model, its
prediction results are compared with that of the artificial neural
network (ANN), support vector machine (SVM), and random forest
(RF) (Table 8). Among the above four models, the PNN has the
highest prediction accuracy with 95%, followed by the ANN (85%),
RF (85%), and SVM (80%). In addition, the running times of the
four models are separately 5.6350s (PNN), 8.8340s (ANN), 6.2290s
(SVM), and 6.9260s (RF). It can be seen that the PNN consumes the
shortest running time, achieving the fastest running speed. In terms
of both prediction accuracy and running speed, the PNN built in this
paper has certain advantages (Table 9).

7 CONCLUSION

Surrounding rock squeezing deformation is a common risk
source, which can induce shield jamming disasters in TBM-
excavated tunnels. To accurately predict the squeezing levels,
this study proposed a hybrid model of PCA-IGWO-PNN. The
main conclusions are as follows.

1) The strength-stress ratio, tunnel burial depth, tunnel
equivalent diameter, rock mass quality index and support
stiffness constitute the evaluation index system for the

squeezing level prediction. Considering the index
independence requirement of PNN, the PCA is used to
preprocess the original data to eliminate the correlations
and achieve dimensionality reduction. After that, four
independent principal components, which are linearly
combined by the original evaluation indexes, are used as
the comprehensive evaluation indexes of squeezing levels.

2) The spread coefficient has a significant influence on the
PNN performance, and the IGWO optimization results
indicate that when the spread coefficient is taken as 1.58,
the fitness function converges to the global minimum
(1.11). Among the 20 test samples, the built PNN model
with the optimal spread coefficient only misjudges 1,
achieving the prediction accuracy of 95% in engineering
application.

3) Comparison results with the ANN model, SVM model, and
RF model show that the PNN model has the
highest prediction accuracy, followed by ANN (85%), RF
(85%), and SVM (80%). In addition, the PNN model runs
fastest in the above four models, only consuming 5.6350s,
while the ANN, SVM, and RF separately consume 8.8340,
6.2290, and 6.9260 s. From the aspects of the prediction
accuracy and running speed, the PNN model proposed in
this paper is the most superior and feasible, which provides
an effective method for surrounding rock squeezing
classification.
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TABLE 8 | Comparison analysis of different prediction models.

Number Posterior probability density of PNN PNN results ANN results SVM RF results Actual level

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ

1 0.0163 0.2563 0.5830 0.1324 0.0119 3 3 3 3 3
2 0.0171 0.2761 0.5370 0.1563 0.0134 3 3 4 3 3
3 0.0168 0.2643 0.5611 0.1451 0.0127 3 3 4 3 3
4 0.0022 0.0037 0.4536 0.5404 0.0001 4 3 3 2 3
5 0.0038 0.3601 0.6301 0.0058 0.0003 3 3 3 2 3
6 0.0146 0.5088 0.4749 0.0015 0.0001 2 3 2 2 2
7 0.0000 0.9999 0.0001 0.0000 0.0000 2 2 2 2 2
8 0.0000 0.9999 0.0001 0.0000 0.0000 2 2 2 2 2
9 0.0000 1.0000 0.0000 0.0000 0.0000 2 2 2 2 2
10 0.0000 1.0000 0.0000 0.0000 0.0000 2 2 2 2 2
11 0.1020 0.1267 0.1688 0.4720 0.1305 4 4 4 4 4
12 0.0044 0.0086 0.3457 0.3644 0.2770 4 4 5 4 4
13 0.0005 0.0489 0.2393 0.7098 0.0015 4 4 4 4 4
14 0.0799 0.1722 0.3271 0.3425 0.0783 4 3 3 4 4
15 0.8423 0.0512 0.0384 0.0346 0.0336 1 1 1 1 1
16 0.9021 0.0762 0.0137 0.0045 0.0035 1 1 1 1 1
17 0.9439 0.0384 0.0079 0.0051 0.0048 1 1 1 1 1
18 0.8688 0.1255 0.0035 0.0012 0.0010 1 1 1 1 1
19 0.0061 0.0064 0.0243 0.0445 0.9187 5 4 5 4 5
20 0.0243 0.0245 0.0318 0.0409 0.8786 5 5 5 5 5

The maximum posterior probability density of PNN, for each test sample is bold; the misjudged test sample is highlighted in red.

TABLE 9 | Performance evaluation of different prediction models.

Model Prediction accuracy (%) Running time (s)

PNN 95 5.6350
ANN 85 8.8340
SVM 80 6.2290
RF 85 6.9260
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