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Collapse is one of the main dangers of tunnel construction using the drill-blast method. To
assess the risk of collapse and provide a basis for risk control, a failure probability
evaluation method for tunnel collapse based on a Bayesian network (BN) and normal
cloud theory is proposed in this paper. First, typical tunnel collapse cases are analysed
statistically based on the risk breakdown structure method, a Bayesian network model is
built for drill-blast tunnel collapse and the causal relationships between the tunnel collapse
and influential factors, such as geological factors and construction management factors,
are revealed. Second, the multiple fault states of the risk factors are described using fuzzy
numbers. A multi-state fuzzy conditional probability table of uncertain logical relationships
between nodes is established using normal cloud theory to describe node failure
probabilities. Finally, this paper will consider the entire life cycle of risk-prone events,
including pre-incident, dynamic evaluation of the construction process and post-incident
control. A typical tunnel collapse incident encountered during the construction of the
Jinzuba Tunnel in Fujian was used as an example to verify the applicability of the method.
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INTRODUCTION

With the vigorous development of highway and railway construction, road traffic has extended into
mountainous areas, making tunnel construction larger-scale and more complex, especially in
developing countries, such as China. Highway tunnel construction frequently has safety
violations due to the various risk factors of the complex project environment. Collapse is one of
the most frequent and harmful geological hazards during the construction of a tunnel. Because it is
difficult to predict collapse, which is sudden and instantaneous, the constructors do not have enough
time to escape. When a tunnel collapses, it can result in significant construction delays, economic
loss, and even human casualties. As a result, it is necessary to investigate the risk mechanism of
tunnel collapse by real-time safety analysis and considering accident scenarios, with the goal of
providing decision support for ensuring the safety of tunnel construction.

To avoid major casualties and property loss due to violations of safety regulations, numerous
researches have proposed risk-based analysis methods into safety management practices. There are
two types of risk analysis: qualitative risk analysis and quantitative risk analysis (Khakzad et al.,
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2014). Qualitative methods include fault tree analysis (FTA)
(Hyun et al., 2015), comprehensive evaluation methods
(Zhang G.-H. et al., 2016), and others, which are simple and
easy to use but do not provide consistent results (Chen et al.,
2020). Quantitative methods include the analytic hierarchy
process (AHP) (Hyun et al., 2015; Nezarat et al., 2015),
support vector machines, decision trees, and others. Those
methods can get a more accurate value of risks, but they can’t
work unless detailed data is available (Chen et al., 2020). Hybrid
methods, which combine qualitative and quantitative methods,
have emerged as comprehensive and effective procedures for
dealing with complex environments, using both qualitative and
quantitative methods (D’Angelo et al., 2014; Golabchi et al.,
2016).

A Bayesian network (BN) is a hybrid method for risk analysis
that is, being increasingly applied (D’Angelo et al., 2014; Zhang
et al., 2014). A BN model can be thought of as a data structure
made up of nodes and edges. Nodes denote random variables and
edges denote correlations (Chen et al., 2020). Compared to an
AHP, a BN method is better at expressing the degree of influence
of risk factors. A BN can qualitatively and quantitatively describe
the dependence between variables and is suitable for knowledge
representation and reasoning (Holický et al., 2013). In
conventional BN analysis, the probability of occurrence of the
root node is always regarded as a crisp value (Khakzad, 2013).
Nevertheless, data in the construction engineering field are
frequently subject to a variety of uncertainties, including
incompleteness, randomness, inconsistency, fuzziness, and
imprecision (Zhang et al., 2017). Therefore, group decision-
making techniques are usually used to evaluate the occurrence
probability of the root node. At present, fuzzy sets theory (Zadeh,
1965) is the most commonly used mathematical tool to address
uncertainty, so fuzzy set theory is usually combined with a BN to
improve its performance. In order to create a fuzzy BN, fuzzy set
theory can be used to perform inference and belief propagation in
a hybrid BN (Chen et al., 2020). A fuzzy BN is considered a very
suitable tool in a probabilistic risk analysis domain (Zhang et al.,
2014; Zhang L. et al., 2016).

However, once the membership function is specified in
classical fuzzy set theory, one and only one accurate
membership may be calculated for any given element in the
universe to assess the uncertainty that the element belongs to the
associated notion (Li et al., 2009). This goes against the spirit of a
fuzzy set. Thus, Professor (Li et al., 2009) proposed a normal
cloud model, which allows a stochastic disturbance of the
membership degree encircling a determined central value. In
contrast to fuzzy set theory, the elements of a qualitative concept
are uncertain in a normal cloud model.

Combining a traditional cloud model with a BN has become
increasingly popular in recent years (Chen et al., 2017; Wang
et al., 2019). Chen et al. (2020) used a normal cloud model to
discretize continuous monitoring and measurement data suitable
for learning BNs. In the construction of mining tunnels,
monitoring and measurement data include vault displacement,
ground settlement, and horizontal convergence displacement.
However, these data do not accurately reflect the actual
construction situation and can only become one of the risk

factors in the collapse risk assessment. Therefore, this paper
innovatively applies a normal cloud model to convert the
weight of each risk factor into a multistate conditional
probability table to consider the impact of multiple factors on
tunnel construction collapse. Compared with traditional dual-
state risk factors, multistate risk factors can better reflect the
actual situation of a construction site. However, as the status of
risk factors increases, the establishment of a multistate
conditional probability table becomes more complicated. For
example, assuming each node has 4 states, the conditional
probability table of child nodes with 4 parent nodes contains
256 combinations. Therefore, generating a multistate conditional
probability table through a cloud model will greatly reduce the
workload.

At present, the risk assessment method for highway tunnel
construction in the China code is still relatively simple and cannot
meet the needs of projects. It is necessary to develop a system
decision-making method based on a multistate cloud Bayesian
network (MCBN), aiming to guide the safety management of the
entire life cycle of tunnel construction, including pre-accident,
during-construction dynamic evaluation, and post-accident
control. As a case study, a typical tunnel collapse hazard
occurred during the construction of the Fujian Jinzhupa
Tunnel in China. The results show that the proposed MCBN
approach is feasible and has application potential.

METHODOLOGY

Bayesian Network
Since there are many introductions to the theory of Bayesian
network (BN) (Li et al., 2017;Wu et al., 2022a), this article ignores
such discussions. Assuming parents(Xi) is the set of parent
nodes of Xi in the DAG; the conditional probability
distribution Xi is defined as P(Xi|parents(Xi)). P(x) can be
calculated using Eq. 1.

P(x) � P(X1,/, Xn) � ∏
Xi∈{X1 ,/,Xn}

P(Xi|parents(Xi)) (1)

Normal Cloud Model
A normal cloud model is a new cognition model of uncertainty
proposed by Li et al. (2009). A normal cloud is an important cloud
model based on the Gauss membership function. In practice, a
normal distribution with relaxed conditions is coincident with the
object world. Currently, it has been widely used in construction
areas, such as tunnel excavation (Chen et al., 2020) and water
inrush (Wang et al., 2019).

Cloud and Cloud Droplets
Given a qualitative concept B defined over a universe of discourse
U � {u}, let x ∈ U be a random instantiation of concept B, and a
certain degree μ(x) of x belonging to B is a random variable with
a steady tendency. The parameter μ(x) can be written using Eq. 2
(Li et al., 2009):

μ: U → [0, 1]∀x ∈ U → μ(x) (2)
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In the formula, the distribution of x inU is called a cloud, and x
is a cloud droplet.

A cloud can transform a qualitative concept to its quantitative
value, which is composed of many cloud droplets. The droplets
are in disorder, but when there are enough clouds, the overall
characteristics of the qualitative concept are clearer (Wang, 2014).
The grade of a certain degree of a cloud droplet reflects the
fuzziness and randomness of a concept (Wang et al., 2019).

A Normal Cloud Model
A normal cloud model can be determined using numerical
characteristics (Ex,En,He). Expectation Ex is the expectation of
the cloud droplets in the universe of discourse and the typical sample
of a qualitative concept. Entropy En is the entropy of Ex,
representing the uncertainty measurement of a qualitative
concept. On the one hand, it is a measurement of randomness,
reflecting the extent of the dispersion of the cloud drops. On the
other hand, it is a measurement of fuzziness, representing the scope
of the universe that can be accepted by the concept. Hyperentropy
He reflects the uncertainty degree of Entropy En. A normal cloud
model also has three numerical characteristics, which can be
expressed as follows.

Let X be the universe of discourse and B be a qualitative
concept connected with X. If there is a number x, 1) x ∈ X, 2) x is
a random instantiation of concept B, 3) x satisfies
x ~ N(Ex, En′2), En′ ~ N(En,He2), and the grade of a
certain degree of x belonging to concept B satisfies Eq. 3 (Li
et al., 2009):

μ(x) � e
− (x−Ex)2
2(En′)2 (3)

In the formula, the distribution of x in the universeX is called a
normal cloud.

The Normal Cloud Generator
Typically, forward and backward transformations are used in the
implementation of a standard cloud model. The goal of forwards
normal cloud transformation (FNCT) is to generate a large number
of cloud droplets. FNCT can generate the required cloud droplets.
The normal cloud generator can be expressed as an algorithm given
its numerical properties, as shown in Table 1.

FAILURE PROBABILITY EVALUATION
METHOD

Using the powerful reasoning function in a multistate cloud Bayesian
network (MCBN), deductive reasoning, abductive reasoning, and
sensitivity analysis techniques can be used for safety analysis and
management in the above three stages. This provides real-time and
effective support to decision makers throughout the tunnel
construction management process. The proposed approach
includes the following four steps, as shown in Figure 1.

Collapse Risk Analysis
According to the collecting tunnel collapse cases and related
researches (Zhou, 2008; Li, 2011; Chen et al., 2019; Wang et al.,
2020; Zhang et al., 2020), and consulting experts in the field of tunnel
engineering, the mechanisms of tunnel collapse are analysed.

Establishment of a Multistate Bayesian
Network
Establishment of the DAG
According to the research (Zhang L. et al., 2016), a qualified fault
tree (FT) regarding tunnel construction safety can be used to
provide effective prior knowledge for the establishment of the BN
model’s DAG. Because the DAG structure in the MCBN is
identical to that in a conventional BN, the DAG in the
proposed MCBN is built by transforming the FT into the BN,
as shown in Figure 2 (Khakzad et al., 2011).

Multistate Conditional Probability Table Construction
Because cloud theory is better than a Bayesian network in cognitive
ability but worse in cognitive capability, this method combines the
reasoning ability of a BN with the cognitive ability of a normal
cloud model. The normal cloud generator is used to generate the
MCPT using expert investigation. Since there are many
introductions to the theory of MCPT (Wu et al., 2022a; Wu
et al., 2022b), this article ignores such discussions. Figure 3
depicts an overview of the MCPT construction flowchart, which
is divided into three sections: 1) weight calculation; 2) cloud model
conversion; and 3) conditional probability conversion.

Reasoning Analysis Based on a Bayesian
Network
Deductive Reasoning
The goal of deductive reasoning is to predict the probability
distribution of risk events (leaf nodes) T given a set of risk factors
(root nodes). Each risk factor’s current state is treated as evidence
in an MCBN model. The probability distribution of tunnel
collapse (T), represented by P (T = Ⅳ), is calculated using Eq.
4. P (T = Ⅳ) represents the highest risk probability.

P(T � IV) � ∑
4n

1

[P(T � IV|X1 � x1, X2 � x2,/, Xn

� xn) ⊗ P(X1 � x1, X2 � x2,/, Xn � xn)] (4)

TABLE 1 | Algorithm for FNCT.

Algorithm 1 Forwards normal cloud generator
(Ex, En, He, N)

Input: Three parameters Ex, En, He and the number of cloud drops N
Output: N cloud drops and their certainty degree
Steps
1. Generate a normally distributed random number En′ with expectation En and
variance He2

2. Generate a normally distributed random number xi with expectation Ex and
variance En′
3. Calculate μ(xi) � e

−(xi −Ex)2
2(En′i )2

4. Generate a cloud drop with certainty degree μ(xi) and normally random number x;
5. Repeat steps 1–4 until N required cloud drops are generated
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where n is the number of the root nodes. Each root node Xi has
four different states, denoted by “Ⅰ/Ⅱ/Ⅲ/Ⅳ.” Therefore, n root
nodes have 4n combinations.

Sensitivity Analysis
Sensitivity analysis is a powerful method for detecting changes in
the probability distribution of top events by varying the
probability distribution of risk factors to measure the influence
of each risk factor on tunnel collapse. In this research, the
sensitivity performance measure (SPM) proposed by Zhang
G.-H. et al. (2016) and shown in Eq. 5 is employed for
sensitivity analysis.

SPM(Xi) � 1
qi

∑
qi

1

∣∣∣∣∣∣∣∣
P(T � t|Xi � xi) − P(T � t)

P(T � t)
∣∣∣∣∣∣∣∣ (5)

Abductive Reasoning
In comparison to traditional risk-based methods such as AHP and
FTA, the capabilities of abductive reasoning techniques for MCBN
inference are unique and unrivaled. When an accident or failure
occurs, abductive reasoning attempts to determine the posterior
probability distribution of each risk factor. For fault diagnosis, the
posterior probability distribution can be a reliable reference. The
posterior probability distribution of risk factor Xi, represented by P
(Xi = xi|T = Ⅳ), can be calculated using Eq. 6.

P(Xi � xi|T � IV) � [P(T
� IV|Xi � xi|) ⊗ P(Xi � xi) ÷ P(T � IV)], i � 1, 2,/, n

(6)

CASE STUDY

To test the validity and applicability of the MCBN approach, this
study examines the risk of tunnel collapse in a tunnel
construction project.

Case Background
The Jinzhupa tunnel is a double-tube highway tunnel through the
mountains connecting the Youxi and Jianning areas of Sanming
City, China. The left and right tunnels are 771 and 782 m long,
respectively. The entrance section of the tunnel is mainly composed
of residual silty clay, a granite fully weathered layer, and a broken
strong weathered layer. The main body of the cave is moderately
weathered granite, which is affected by granite penetration.
Affected by this, the rock mass is relatively broken, showing a
very large or brokenmosaic structure. The rockmass is broken and
has varying degrees of weathering. During the construction
process, tunnel collapse and water bursts easily occur.

Step 1: Risk/Hazard Identification of Tunnel
Leakage and the DAG
Tunnel collapse is considered a large potential geological
hazard to the quality of tunnel construction. When a tunnel

FIGURE 1 | Flowchart of the multistate cloud Bayesian network.

FIGURE 2 | Workflow of DAG construction in an FT-based BN.

FIGURE 3 | MCPT construction flowchart.
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collapses, it can result in significant construction schedule
delays, economic loss, and even human casualties. To
precisely identify these influential factors, data from 120
tunnel collapse cases were collected and analyzed in
accordance with the collapse risk analysis principles
outlined in Collapse Risk Analysis. Concerning existing
research results (Zhou, 2008; Li, 2011; Wang et al., 2020;
Zhang et al., 2020), there are four main factors influencing
tunnel collapse including: geological factors, design factors,
geological exploration factors, and construction management
factors. The DAG of the MCBN shown in Figure 4 is
constructed by transforming the FT into a BN, as shown in
Figure 2. The descriptions of all nodes are illustrated in
Table 2. Meanwhile, the security status of each node is
divided into 4 levels, denoted by I-IV, corresponding to
fuzzy numbers 1–4 respectively, as shown in Table 3. These
studies (Zhang et al., 2020; Wu et al., 2022a; Wu et al., 2022b)
provide a detailed analysis of the risk factors.

Step 2: Establish Multistate Conditional
Probability Tables
As described in Section 3.2.3, the weight of each parent node is
converted to a multistate conditional probability table (MCPT),
as shown in Table 4 (due to the large number, only a portion is
listed).

Step 3: Result Analysis
The created MCBN model can be updated with the root node
state by actual conditions. This provides decision makers with
effective support in real time for the whole process of safety and
security before, including pre-accident, during-construction, and
post-accident control.

Pre-Accident Control
Pre-accident control aims to optimize the tunnel construction
plan and minimize the risk of tunnel collapse when economic
conditions permit. During the proposal stage, the decision-
maker lacks a thorough understanding of the actual situation

regarding project risks. Despite being warned that there is a
serious risk of tunnel collapse, they have no way of knowing the
actual situation, let alone safety.

In the programme selection stage, decision-makers may
face a choice of excavation method and tunnel location.
Now, we have three schemes labeled as A, B, and C, as
shown in Table 5. The current state of the parameters (Ⅰ, Ⅱ,
Ⅲ, orⅣ) are entered into the MCBN as evidence, and then the
outputs of the models are compared. From the perspective of
safety and security, a scheme with a lower probability of tunnel
collapse will make decision-makers more interested. The
results shown in Table 6 demonstrate that Scheme C is the
most competitive scheme since the predicted occurrence
probability of tunnel collapse in Scheme C is lower than
that in the other two schemes.

During-Construction Dynamic Evaluation
The goal of dynamic evaluation during construction is always to
control the risk of collapse in order to ensure the safety of the
construction. During the construction phase, decision-makers
evaluate 13 factors (X1-X13) based on the actual on-site
situation. Then the current states (Ⅰ, Ⅱ, Ⅲ, or Ⅳ) are entered
into the MCBNmodel as given evidence. When the collapse risk
value exceeds level III, building should be promptly halted for
repair. Following the correction, an evaluation should be
performed once again. Decision-makers can make corrections
based on the results of sensitivity analysis. Construction will not
begin until the danger level falls below level II. As a result, the
construction may be constantly refined until the high potential
safety concerns are managed. Furthermore, decision-makers
must identify the important risk variables that have a
stronger influence on the occurrence of construction failure,
and those checkpoints should be prioritized during the
construction phase. The MCBN can find essential
construction parameters by using the sensitivity analysis
approach in Bayesian inference.

FIGURE 4 | Established network model for the tunnel collapse MCBN.

TABLE 2 | Descriptions of the nodes in the MCBN.

Node Description

T Tunnel collapse
B1 Geological factors
B2 Design factors
B3 Geological exploration factors
B4 Construction management factors
X1 Surrounding rock level
X2 Groundwater
X3 Tunnel depth
X4 Integrity degree
X5 Excavation method
X6 Excavation span
X7 Explosive design
X8 Geological prospecting
X9 Monitoring measurement
X10 Overbreak and underbreak control
X11 Untimely drainage
X12 Untimely support
X13 Construction quality
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For example, in excavation section ZK242-695~ZK242-705 of
the Jinzhupa Tunnel, the values associated with the geological
parameters are defined and then entered into MCBN as evidence

for the given. The probability of collapse is shown in Table 7. The
results indicate that the probable risk level for tunnel collapse is
Class III, indicating that the tunnel construction should be
corrected. Using Eq. 5, a sensitivity performance measure
(SPM) of risk factors (X5–X13) is calculated. The findings
demonstrate that X11 (Untimely drainage), X12 (Untimely
support), and X13 (construction quality) are at the peak of the
ranking for each indication, as shown in Figure 5. The occurrence
of tunnel collapse is very sensitive to these three risk factors.
Therefore, more focus must be placed on assuring the reasonable
state of these building characteristics.

Post-Accident Control
After an accident or failure happens, the goal of post-accident
control is to determine the most likely direct cause and then carry
out real-time diagnostic and appropriate remedies. Under the
current circumstances, policymakers consider it best practice to
invite experts from the field to participate in expert group
meetings. The field specialists then discuss the reasons of the

TABLE 3 | Classification states of the tunnel collapse Bayesian network nodes.

Layer Grade division

Ⅰ Ⅱ Ⅲ Ⅳ

Tunnel collapse (T) Deformation Small-scale collapse Medium-scale collapse Large-scale collapse
Geological factors (B1) No risk Low risk Medium risk High risk
Design factors (B2) No risk Low risk Medium risk High risk
Geological exploration factors (B3) No risk Low risk Medium risk High risk
Construction management factors (B4) No risk Low risk Medium risk High risk
Surrounding rock level (km/s) (X1) VP > 4.5 4.5 ≥ VP > 3.5 3.5 ≥ VP > 2.5 2.5 ≥ VP
Groundwater (X2) <10 10–20 20–40 >40
Tunnel depth (H0/m) (X3) >60 40–60 15–40 <15
Integrity degree (X4) kv > 0.75 0.75 ≥ kv > 0.55 0.55 ≥ kv > 0.25 0.25 ≥ kv
Excavation method (X5) CRD CD Bench Full face
Excavation span (m) (X6) <7 7–10 10–14 >15
Explosive design (m) (X7) b >> R b > R b = R b < R
Geological prospecting (X8) Accurate Almost accurate Inaccurate Extremely inaccurate
Monitoring measurement (X9) Reasonable Almost reasonable Unreasonable Extremely unreasonable
Tunnel Overbreak and underbreak control (X10) Normal Underbreak Overbreak Severe overbreak
Untimely drainage (X11) Dry Almost dry Hydrops Serious hydrops
Untimely support (X12) Reasonable Almost reasonable Unreasonable Extremely unreasonable
Construction quality (X13) Reasonable Almost reasonable Unreasonable Extremely unreasonable

VP is the longitudinal wave velocity; R is the safety allowable distance of blasting vibration; and b is the distance between two-lane tunnels.

TABLE 4 | Multistate conditional probability table.

X1 X2 X3 X4 B1

Ⅰ Ⅱ Ⅲ Ⅳ

Ⅰ Ⅰ Ⅰ Ⅰ 1.00 0.00 0.00 0.00
Ⅰ Ⅰ Ⅰ Ⅱ 0.40 0.60 0.00 0.00
Ⅰ Ⅰ Ⅰ Ⅲ 0.00 1.00 0.00 0.00
Ⅰ Ⅰ Ⅰ Ⅳ 0.00 0.42 0.58 0.00
Ⅰ Ⅰ Ⅱ Ⅰ 0.87 0.13 0.00 0.00
Ⅰ Ⅰ Ⅱ Ⅱ 0.00 1.00 0.00 0.00
Ⅰ Ⅰ Ⅱ Ⅲ 0.00 0.92 0.08 0.00
Ⅰ Ⅰ Ⅱ Ⅳ 0.00 0.01 0.99 0.00
Ⅰ Ⅰ Ⅲ Ⅰ 0.07 0.93 0.00 0.00
Ⅰ Ⅰ Ⅲ Ⅱ 0.00 1.00 0.00 0.00
Ⅰ Ⅰ Ⅲ Ⅲ 0.00 0.15 0.85 0.00
Ⅰ Ⅰ Ⅲ Ⅳ 0.00 0.00 1.00 0.00
Ⅰ Ⅰ Ⅳ Ⅰ 0.00 1.00 0.00 0.00
Ⅰ Ⅰ Ⅳ Ⅱ 0.00 0.62 0.38 0.00
Ⅰ Ⅰ Ⅳ Ⅲ 0.00 0.00 1.00 0.00
Ⅰ Ⅰ Ⅳ Ⅳ 0.00 0.00 0.73 0.27
Ⅰ Ⅱ Ⅰ Ⅰ 1.00 0.00 0.00 0.00
Ⅰ Ⅱ Ⅰ Ⅱ 0.27 0.73 0.00 0.00
Ⅰ Ⅱ Ⅰ Ⅲ 0.00 1.00 0.00 0.00
Ⅰ Ⅱ Ⅰ Ⅳ 0.00 0.12 0.88 0.00

TABLE 5 | Parameter values of Schemes A, B, and C.

Scheme X1 X2 X3 X4 X5 X6 X7

A 4 2 3 2 2 3 2
B 3 2 3 3 2 3 1
C 4 1 3 2 1 3 1

TABLE 6 | Probability distribution of tunnel collapse (T).

Scheme T

Ⅰ Ⅱ Ⅲ Ⅳ

A 0 0.2288 0.7712 0
B 0 0.4356 0.5644 0
C 0 0.63 0.37 0

TABLE 7 | Tunnel collapse probability.

T Ⅰ Ⅱ Ⅲ Ⅳ

Probability 0.00 0.08 0.82 0.1
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accident and recommend immediate control measures. This will
most likely miss the essential window for dealing with the
situation, resulting in significant losses. We can mimic the
evolution route of an accident in real time using the
background reasoning approach in Bayesian inference (Zhang
et al., 2014).

In excavation section ZK242-695~ZK242-705 of the
Jinzhupa Tunnel, the tunnel collapsed due to excessive rock
fissures and dropping water seepage on the vault, as seen in
Figures 6–9. Using Eq. 6, when a tunnel collapses, the
posterior probability distribution of the risk factors
(X5~X13) may be determined, as shown in Figure 9. The
results indicated that X12 (untimely support) and X10

(tunnel overbreak and underbreak control) are most likely
to be the direct causes. Excessive excavation and untimely

FIGURE 5 | Ranking results of risk factors (X5–X13) in the sensitivity
analysis of tunnel collapse.

FIGURE 6 | Tunnel vault seepage.

FIGURE 7 | Excessive rock fissures.

FIGURE 8 | Tunnel collapse.

FIGURE 9 | Fault diagnosis in the safety control of a tunnel collapse.
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support, coupled with loose surrounding rock, led to the
collapse accident. Therefore, the measures should be
taken to reduce the collapse risk value. After the accident,
this method can provide policymakers with a diagnostic
analysis of the collapse and theoretical guidance for
emergency rescue.

DISCUSSION

1) A traditional Bayesian network is based on three
assumptions: (a) The relationship between nodes is
completely understood and fulfills the logical “AND” or
“OR” relationship; (b) There are only two states, i.e., “YES”
and “NO;” and (c) The root node’s failure probability is
exactly determined. To characterize numerous failure
situations of the nodes, the proposed model uses fuzzy
numbers. The normal cloud model is used to build a
multistate conditional probability table. Based on
building a multi-state fuzzy conditional probability table,
the logical relationships between nodes are described,
which is able to reflect the uncertainty of the association
between nodes. The problems associated with the three
assumptions in traditional Bayesian networks are
addressed.

2) Compared with the analytic hierarchy process, an MCBN
model can not only carry out the static risk assessment but
also carry out a dynamic risk assessment and perform
sensitivity analysis on risk factors. During the construction
process, it can always provide auxiliary opinions to decision-
makers. Therefore, the safety of construction can be improved.

CONCLUSION AND FUTURE WORK

This paper proposed an MCBN approach for failure probability
evaluation. The results of the analysis express not only the
likelihood of the data explicitly, but also the degree of
uncertainty in the data, including its ambiguity and
randomness. The model solves the problem of the difficulty in
establishing a multistate conditional probability table. The
MCBN model proposed in this paper can not only conduct
dynamic risk assessment but also provide sensitivity analysis.

The applicability of the method is verified by taking a typical
tunnel collapse hazard in the construction of the Jinzhupa tunnel
in China as an example. The results demonstrate the feasibility
and application prospects of the method.

Compared to a traditional Bayesian network, an MCBN can
better define the status of the impact factor. Moreover, compared
to an ANN, an MCBN can conduct a dynamic risk assessment
and provide a timely reference for decision-makers, thereby
reducing casualties and economic losses. In addition, the
advantages of a normal cloud model over a fuzzy set approach
are also addressed.

The MCBN model proposed in this paper also has some
limitations. During the construction process, the judgement of
the state and weight of the risk factors still depends on the
subjective consciousness of people. The objective of our
subsequent research is to determine the weighting of risk
factors based on several similar tunnel projects and to
determine the status of the risk factors by monitoring the
measured data.
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