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The maximum time step size for the explicit finite-difference scheme complies with the
Courant–Friedrichs–Lewy (CFL) stability condition, which essentially restricts the
optimization and tuning of the communication-intensive massive seismic wave
simulation in a parallel manner. This study brings forward the model-order reduction
(MOR) method to simulate acoustic wave propagation. It briefly takes advantage of the
update matrix’s eigenvalues and the expansion coefficients of the variables for the time in
the semi-discrete scheme of the wave equation, reducing the computational complexity
and enhancing its computing efficiency. Moreover, we introduced the eigenvalue
abandonment and eigenvalue perturbation methods to stabilize the unstable
oscillations when the time step size breaks the CFL stability upper bound. We then
introduced the time-dispersion transform method to eliminate the time-dispersion error
caused by the large time step and secure the high accuracy. Numerical experiments exhibit
that the MOR method, in conjunction with eigenvalue abandonment (and the eigenvalue
perturbation) and the time-dispersion transform method, can capture highly accurate
waveforms even when the time step size exceeds the CFL stability condition. The
eigenvalue perturbation method is suitable for strongly heterogenous media and can
maintain the numerical accuracy and stability even when the time step size is toward the
upper bound of the Nyquist sampling.

Keywords: explicit finite-difference scheme, CFL stability upper bound, model-order reduction, time-dispersion
error, eigenvalue operation

INTRODUCTION

Numerical simulation of seismic wavefields is an important technical means to understand the law of
seismic wave propagation and imaging underground complex structures. It is an essential theoretical
basis for seismological research and plays an important role in seismology. Simulating the
propagation of seismic waves by solving wave equations is the most widely used numerical
simulation method. The explicit finite-difference (FD) scheme, the method of explicitly iterating
the wavefield in the time domain, is widely used in seismic wavefield numerical simulation due to its
simplicity (Etgen and O’Brien, 2007). The size of the time step can directly affect the calculation
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efficiency of the explicit FD scheme. For a given length of
wavefield propagation time, a larger time step means fewer
iterations than a smaller time step, which can improve the
calculation efficiency. For the explicit FD scheme, two
difficulties are observed when a large time step is adopted.
First, the numerical simulation using a large time step leads to
a numerical dispersion error, which can cause inaccurate
amplitude and inaccurate phase information of the simulated
seismic waveforms (i.e., time-dispersion error). Second, the time
step size must be strictly limited by the Courant–Friedrichs–Lewy
(CFL) stability condition (Courant et al., 1928), and a small time
step must be accepted in practice to guarantee a stable numerical
scheme for the numerical simulation of small-scale structures or
high-velocity targets. Especially in the fine structure simulation,
the small spatial grid makes the time step even smaller and
increases computing complexity. Therefore, finding efficient large
time-step numerical algorithms while ensuring the accuracy and
stability has become a research hotspot in the field of seismic
wavefield numerical simulation in recent years (Stork, 2013;
Wang and Xu, 2015; Gao et al., 2016; Koene et al., 2018; Liu,
2020).

As mentioned before, to use a large time step for numerical
simulation, the first problem to be handled is to eliminate the
time-dispersion error caused by a large time step. In this aspect,
researchers have conducted numerous studies in order to
suppress the time-dispersion error; for a detailed review refer
to Wang and Xu (2015) and Gao et al. (2016). A couple of
previous methods for eliminating the time-dispersion error are
achieved using higher precision temporal discretization schemes
(Dablain, 1986; Kosloff et al., 1989; Chen, 2007; Song and Fomel,
2011). Stork (2013) demonstrated that the time-dispersion error
only depends on the frequency, time step size, and total
propagation time. The time-dispersion error is independent of
both the velocity model and the space dispersion. Therefore, the
time dispersion can be handled separately from the space
dispersion without considering velocity variations. Based on
these theories, Stork (2013) proposed a novel idea to eliminate
the time-dispersion error: it is predictable and can be removed by
a time-varying filter and interpolation after FD modeling (Dai
et al., 2014; Liu et al., 2014; Li et al., 2016).

As a further development of Stork’s work, Wang and Xu
(2015) constructed analytical time-varying filters with a
conventional explicit FD scheme, entitled the time-dispersion
transform method. This method includes a time-dispersion
prediction algorithm (forward time-dispersion transform,
FTDT) and a time-dispersion elimination algorithm (inverse
time-dispersion transform, ITDT) to add and remove the
time-dispersion error flexibly. Koene et al. (2018) modified the
FTDT algorithm and constructed a complete process to remove
time-dispersion error for seismic wave numerical simulation by
applying FTDT to the source time function before the simulation
and applying ITDT to the output waveforms after the simulation.
FTDT is preprocessing and ITDT is post-processing, neither of
which participates in the iteration of the wavefield and does not
affect the main body of the wavefield numerical simulation. The
time-dispersion transform method can effectively eliminate the
time-dispersion error and can provide a guaranteed accuracy for

numerical simulation using a large time step. The total calculation
amount of the simulation is less than that of the conventional
wavefield simulation with the same accuracy.

The time-dispersion transform method allows us to use a time
step size close to the stability condition for numerical simulation
without worrying about the inaccuracy caused by the time-
dispersion error (Gao et al., 2016; Koene et al., 2018). Then
the CFL stability condition becomes the main limitation if a large
time step for the explicit FD scheme is used. In recent years,
researchers turn to figure out appropriate numerical strategies for
releasing the time step size beyond the CFL stability upper bound,
which certainly draws attention in the seismic simulation
community.

Ecer et al. (2000) proposed that when a time step was beyond
the CFL stability upper bound, the unstable component would
appear in the high-wavenumber region. Therefore, the instability
of the high-wavenumber region can be measured by a spatial
filtering algorithm and using a low-pass filter to filter out the
unstable components generated in the high-wavenumber area.
Later on, Sarris (2011) adopted the spatial filtering algorithm to
solve the instability problem for solvingMaxwell’s equation in the
field of electromagnetic wave numerical simulation. Also, the
time step of the explicit FD scheme can be successfully released
beyond the CFL stability upper bound (Chang and Sarris, 2011;
Chang and Sarris, 2012, 2013).

In the field of electromagnetic wave numerical simulation, He
et al. (2012) proposed an unconditionally stable method by
eigenvalue operation of the updated matrix based on the
explicit FD scheme. Gaffar and Jiao (2014, 2015) analyzed the
instability when using a time step that exceeds the CFL stability
condition of the explicit FD scheme. The unstable eigenvalues are
then abandoned from the initial numerical system before the
explicit time iteration (Yan and Jiao, 2017), called the eigenvalue
abandonment algorithm. Li et al. (2014) implemented the
unconditionally stable method by perturbing the modulus of
the unstable eigenvalues to be stable, instead of abandoning them,
which is called the eigenvalue perturbation algorithm (Li, 2014).
Since both methods of removing and perturbing the unstable
eigenvalues are preprocessing algorithms, they have little effect on
the calculation amount of the wavefield iteration process.

Inspired by the abovementioned explicit unconditionally
stable numerical simulation methods, Gao et al. (2018, 2019)
introduced the eigenvalue perturbation method and the spatial
filtering method to seismic wave numerical simulation,
respectively. Meanwhile, the time-dispersion error caused by a
large time step was successfully eliminated by the time-dispersion
transform method. The combination of eigenvalue perturbation
and the time-dispersion transform method is suitable for strong
heterogenous media. It can extend the available time step size
toward the upper bound of the Nyquist sampling, saving many
iterations while ensuring the calculation accuracy (Gao et al.,
2018; Lyu et al., 2021).

Although the unconditionally stable algorithms for the explicit
FD scheme have been applied in seismic wave numerical
simulation, the related algorithms still need to be further
modified and improved. The spatial filtering method bears the
risk of unreluctantly filtering out the effective wavenumber when
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the wave propagates at a low velocity but in a strong heterogenous
media. The abovementioned eigenvalue operation algorithms are
all implemented based on discretizing the wave equation using a
global matrix-form operator, which requires a huge amount of
memory and computation during the temporal iteration progress
of the wavefield for the numerical simulation. Meanwhile, to our
knowledge, no literature that compares the effects of the
eigenvalue abandonment algorithm and the eigenvalue
perturbation algorithm is available to date, neither the
selection criteria on how to choose these two methods.

In order to avoid the calculation of the global update-matrix
operators during the wavefield iteration progress for the
abovementioned eigenvalue operation algorithms, people
adopted the model-order reduction (MOR) method (Remis
and Van den Berg, 1998; Freund, 2004). The MOR method is
implemented by the Krylov subspace projection of the space
discretized dynamical system, which can project the original
higher-state subspace into a significantly reduced-state
subspace. This method captures the most influential
eigenvalues of the dynamical system and can guarantee the
dynamics of interest with sufficient accuracy. The MOR
method has been widely used in the field of numerical
simulation for electromagnetic waves and can be well coupled
with eigenvalue operation algorithms to release the time step
upper bound of CFL stability condition (He et al., 2012; Li, 2014;
Gaffar and Jiao, 2014, 2015; Chen et al., 2016; Zhang et al., 2017).
The MOR method has also been applied in the field of seismic
wavefield numerical simulation in recent years (Pereyra and
Kaelin, 2008; Pereyra, 2013; Wu et al., 2013; Basir et al., 2015;
Pereyra, 2016; Basir et al., 2018), while no related literature in the
field of seismic wavefield numerical simulation discussed
extending the limit of CFL stability condition based on the
MOR method.

This study introduces the MOR method to solve the scalar wave
equation. First, we applied the eigenvalue decomposition to the
update matrix for the discrete wave equation based on a given time
step. Then we used only the update matrix’s eigenvalues and the
expansion coefficients of the variables in the wave equation during
the time step iteration. It can reduce the excessive dependence on the
calculation memory for the wavefield iteration. To release the CFL
stability upper bound, we brought forward the eigenvalue
abandonment algorithm (He et al., 2012; Gaffar and Jiao, 2015)
and the eigenvalue perturbation algorithm (Li, 2014; Gao et al., 2018;
Lyu et al., 2021) to operate on the unstable eigenvalues of the update
matrix, respectively. The workflows and characteristics of these two
methods are introduced and compared in detail. The time-
dispersion transform method is presented to eliminate the time-
dispersion error caused by the large time step and ensure the
accuracy of the numerical simulation (Wang and Xu, 2015;
Koene et al., 2018). The FTDT is applied to the source time-
discrete scheme during preprocessing, and the ITDT is applied to
the seismic waveform during post-processing. Numerical
experiments verify that the integration of the MOR method, the
eigenvalue abandonment (and the eigenvalue perturbation), and the
time-dispersion transform method can simulate highly accurate
waveforms when a time step beyond the CFL stability upper
bound is accepted. Our proposed numerical method is suitable

for strong heterogenous media and can successfully surpass the time
step size to the upper bound of the Nyquist sampling.

METHODOLOGY

Scalar Wave Equation and Its Discretization
Consider the following 2D scalar wave equation:

1
c2

z2u

zt2
� z2u

zx2
+ z2u

zz2
+ s, (1)

where u and c are the wavefield and the propagation velocity,
respectively, and s is the source term. With the second-order
finite-difference (FD) method for the temporal discretization, the
matrix form of Eq. 1 can be written as (Gao et al., 2018) follows:

Un+1 − 2Un + Un−1 � MUn + �S n, (2)
where Un+1 and Un represent the column vectors that collect the
value of the wavefields at all grid nodes at the time (n + 1)Δt and
nΔt, respectively; the column vector �Sn � c2Δt2Sn and Sn contains
entries corresponding to the source location and source time
function, respectively; and the size of the update matrix M is
(Nx × Nz)2, where Nx and Nz are the grid numbers of discrete
points along the x- and z-directions, respectively. After applying
the Fourier transform in the time domain, the left-hand side of
Eq. 2 in the frequency domain can be expressed as (Gao et al.,
2018) follows:

(eiωΔt − 2 + e−iωΔt) ~U � −4 sin2(ωΔt
2

) ~U, (3)

where ~U represents the forward Fourier transform of the
wavefield u. Obviously, the range of the left-hand side of Eq.
2 is from −4 to 0. The matrixM is a semi-negative definite matrix,
and its eigenvalues are non-positive real numbers (Gaffar and
Jiao, 2014; Li, 2014; Gao et al., 2018; Lyu et al., 2021). Therefore,
the CFL stability upper bound for Eq. 2 is obtained by requiring
|εi|≤ 4, where εi is the eigenvalue of the update matrixM, and the
subscript i ranges from 1 to (Nx × Nz)2.

Model-Order Reduction
The MOR method can be realized by singular value
decomposition (Pereyra and Kaelin, 2008; Li, 2014) or
eigenvalue decomposition (Gaffar and Jiao, 2014, 2015; Basir
et al., 2015, 2018). The former method can handle a non-square
matrix, while the latter method can only handle a square matrix.
The update matrix M is a square matrix, and it is completely
applicable to eigenvalue decomposition, whose calculation is
smaller and more concise than that of the singular value
decomposition. Therefore, we adopted the eigenvalue
decomposition method to implement the MOR method.

To introduce the MORmethod, we first performed eigenvalue
decomposition on the update matrix M as follows:

M � VEV−1, (4)
where the matrix V contains the eigenvectors Vi of matrix M,
while E is a diagonal matrix whose entries are the eigenvalues εi of
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matrix M. We used the eigenvalues εi in matrix E to form a
column vector E. Using the MOR method, Eq. 2 can be
abbreviated as follows:

An+1 − 2An + An−1 � E. pAn + Bn, (5)
where An and Bn are the column vector of expansion coefficients
for Un and �S

n, respectively; Un � VAn � ∑
i
αni Vi and

�S
n � VBn � ∑

i
βni Vi, where the expansion coefficients αni and βni

are the ith element of the column vector An and Bn, respectively.
Vi is the ith column vector of the eigenvector matrix V; the
calculation symbol “.p” represents multiplying the corresponding
elements for the column vectors on both sides.

Column vectors An, An−1, E, and Bn in Eq. 5 are the input for
the wavefield solving iteration, and An+1 is the output for the
iteration. After each iteration, we can obtain the updated
wavefield by the following equation:

Un+1 � VAn+1. (6)
The calculation of Eq. 6 can output the global wavefield values,

including all the spatial grid points. If we only need to output the
wavefield values of a certain trace at a fixed point, we do not need
to calculate Eq. 6. For example, to output the wave value at a fixed
point (xout, zout) (xout and zout are the corner marks along the x-
and z-direction in the discrete coordinate, respectively), we can
use the [(zout − 1) × Nx + xout] th row vector in matrix V and
multiply by An+1, whose calculation amount is very small.

The input expansion coefficients Bn for the source are
obtained by Bn � V−1�Sn. Generally, the source is located at a
fixed location, that is, the column vector �S

n contains only one
element sn that corresponds to the source; other elements are all
zero. The position of the element sn determines the location of the
source, and the value of the element sn represents the value of the
source time function at time nΔt. Source column vectors �Sn+1 and
�S
n at adjacent moments only have one different element with a

scalar factor ratio α (e.g., �Sn+1 � α�S
n), which is determined by the

amplitudes of the source time function at different times.
Therefore, there is no need to perform thematrix calculation Bn �
V−1�Sn for each iteration. We only need to know the ratio α of the
source time function at adjacent moments, and the expansion
coefficients Bn+1 can be obtained by Bn+1 � αBn.

We can see that only the eigenvalues E of the updated matrix
and the expansion coefficients An, An−1, and Bn (wavefield and
source) in Eq. 5 are used to do the iteration of wave propagation,
which is just an iteration of the column vectors and greatly
simplifies numerical simulation compared with Eq. 2.

Releasing the Time StepUpper Bound of the
CFL Stability Condition
We used the fourth-order FD method for the spatial
discretization of M in Eq. 2. Using the velocity c = 4,000 m/s
and the spatial grid interval Δx = Δz = h = 10 m, we can obtain the
maximum time step Δtmax = 1.530 ms, according to the CFL
stability condition for high-order FD schemes (Liu and Sen,
2009). For a time step Δt over Δtmax, the discrete update

matrix M will contain unstable eigenvalues (Li et al., 2014;
Gao et al., 2018; Lyu et al., 2021). As shown in Figure 1, the
eigenvalues of the discrete update matrix for Δt � 1 ms are all
distributed in the range of 0 to −4, which means that all the
eigenvalues are stable (Gao et al., 2018); in contrast, some
eigenvalues of matrix M for the time step larger than Δtmax

(e.g., Δt = 2, 3, 4, 5, 6, 7, 8, and 9 ms) are distributed outside of the
range of 0 to −4 (the red zones showed in Figure 1). These
eigenvalues, whose absolute values violate the basic requirement
of |εi|≤ 4, cause unstable phenomena when Δt>Δtmax. Table 1
shows the number of stable eigenvalues for different time steps.
We can see that after the time step exceeds Δtmax, the number of
stable eigenvalues decreases sharply as the time step increases
(e.g., when Δt = 9 ms, only 965 stable eigenvalues exist, which is
2.39% of the total numbers 40401). To release the CFL stability
upper bound on the time step, we introduced two kinds of
operations for those unstable eigenvalues of matrix M: the
eigenvalue abandonment algorithm and the eigenvalue
perturbation algorithm.

Eigenvalue Abandonment
We used the eigenvalues εi in the diagonal matrix E to form a
column vector E, which can be divided into two parts (He et al.,
2012; Gaffar and Jiao, 2015) as follows:

E � [ Es

Eu
], (7)

where Es is the column vector that consists of the stable
eigenvalues, and Eu is the column vector that consists of the
unstable eigenvalues. We classified the eigenvectors in matrix V
according to Eq. 7, and matrix V can be expressed as follows:

V � [Vs Vu ], (8)
where matrix Vs and matrix Vu are composed of the eigenvectors
Vi that correspond to the eigenvalues εi in Es and Eu, respectively.

The eigenvalue abandonment algorithm (He et al., 2012;
Gaffar and Jiao, 2015; Chen et al., 2016) is implemented by
abandoning the unstable eigenvalues Eu and the corresponding
eigenvectors Vu; while only the column vector is composed of
stable eigenvalues Es, the corresponding eigenvector Vs

participates in the iteration of wavefield calculation. After the
eigenvalue abandonment operation, Eq. 5 can be expressed as
follows:

An+1
s − 2An

s + An−1
s � Es. pA

n
s + Bn

s , (9)
where the number of elements in the column vectors An+1

s , An
s ,

An−1
s , and Bn

s is equal to the number of elements in the column
vector Es. We can obtain the updated wavefield byUn+1 � VsAn+1

s
after each iteration. The input expansion coefficients Bn

s for the
source term are obtained by Bn

s � V−1
s
�S
n
s . The whole workflow for

the wavefield iteration using Eq. 9 is shown in Figure 2A.

Eigenvalue Perturbation
For the detailed description for the eigenvalue perturbation
process refer to Li et al. (2014) and Gao et al. (2018). Here,
we introduced the eigenvalue perturbation algorithm combined
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with the MOR method. The unstable eigenvalues of M (εi in
column vector Eu) that violate |εi|≤ 4 can be perturbed by the
following :

ε̂i � 4εi
|εi|. (10)

In this way, the magnitude of the unstable eigenvalues is
normalized to −4, which can guarantee the stability when
using a time step beyond the CFL stability upper bound. The
perturbed eigenvalues are collected to form a new column vector
Êu, which can form the new matrix column vector Ê with the
originally stable eigenvalues column vector Es, as follows:

Ê � [ Es

Êu
]. (11)

After the eigenvalue perturbation operation, Eq. 5 can be
expressed as follows:

An+1 − 2An + An−1 � Ê. pAn + Bn. (12)
The calculation process of Eq. 12 is as same as that of Eq. 5,

except for using Ê to replace E. The whole workflow for the
wavefield iteration using Eq. 12 is shown in Figure 2B.

Eliminating the Time-Dispersion Error
We used the time-dispersion transform method, which includes
the forward time-dispersion transform (FTDT) algorithm and the
inverse time-dispersion (ITDT) algorithm (Wang and Xu, 2015;
Koene et al., 2018). For a detailed description of the time-
dispersion transform method process refer to Koene et al.

(2018). The whole workflow of the time-dispersion error
elimination using the time-dispersion transform method is
shown in Figure 3.

NUMERICAL EXPERIMENTS

Homogenous Model
We performed numerical experiments on a homogenous square
model by the finite-difference time-domain method. The wave
velocity is c = 4,000 m/s. The spatial grid interval is Δx = Δz =
10 m, and the grid point number is 201 × 201. The source is a
Ricker wavelet with a dominant frequency of 20 Hz, which is
located at x = 1.0 km and z = 1.0 km. According to the CFL
stability condition, the maximum time step for the second-order
FD method in temporal discretization and fourth-order FD
method in spatial discretization is Δtmax = 1.530 ms. We tested
several large time steps (Δt = 2, 3, 4, 5, 6, 7, 8, and 9 ms) by Eqs.
9–12, where all time steps are beyond the CFL stability upper
bound. We used the workflow in Figure 3 to apply the time-
dispersion transformmethod. To examine the results obtained by
the different time steps, we performed numerical simulations
using a short time step Δt = 1 ms, which is also applied by the
time-dispersion transform method. The simulated waveforms
can be regarded as theoretical references to examine the
accuracy using larger time steps.

Figure 4 shows the waveforms recorded at x = 700 m and z =
700 m. Although the time steps exceed the CFL stability
condition, no instability arises after applying the eigenvalue
abandonment (shown in Figure 4A) and the eigenvalue

FIGURE 1 | Eigenvalues of the discrete update matrix M for different time steps. (A) The eigenvalues for time steps of Δt = 1, 2, 3, 4, 5, 6, 7, 8, and 9 ms. (B)
Logarithmic display for the eigenvalues in (A).

TABLE 1 |Number of stable eigenvalues for the discrete update matrixM for different time steps. The table is generated using the second-order temporal FD scheme and the
fourth-order spatial FD scheme, with the velocity c � 4000 m/s and the spatial grid interval h � 10 m.

Total number of stable eigenvalues Δt = 1 ms Δt = 2 ms Δt = 3 ms Δt = 4 ms Δt = 5 ms Δt = 6 ms Δt = 7 ms Δt = 8 ms Δt = 9 ms

40,401 (Δt ≤ 1.530 ms) 40,401 21,920 14,683 8,763 5,412 3,460 2,480 1,226 965
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perturbation (shown in Figure 4B). It proves that the
combination of the MOR, eigenvalue abandonment (and
eigenvalue perturbation) algorithm, and time-dispersion
transform methods can extend the CFL stability upper bound
successfully.

The time-dispersion error using Δt = 2, 3, 4, 5, and 6 ms is
invisible, as shown in Figures 4A,B. It indicates that integration
of the MOR, eigenvalue abandonment (or eigenvalue
perturbation) algorithm, and the time-dispersion transform
method can provide highly accurate simulation results even
when a much larger time step size beyond the CFL stability
upper bound is used.

According to the Nyquist sampling theorem Δt< 1/(2fmax)
(Gaffar and Jiao, 2014; Gao et al., 2018), the time step size cannot
be larger than 6.7 ms for the Ricker wavelet with a dominant
frequency of 20 Hz, whose maximum frequency is about 75 Hz.
Therefore, using Δt = 7 ms has exceeded the Nyquist sampling.

Interestingly, starting from Δt = 7 ms, the results of the two
processing methods are different. Although 7 ms has exceeded
the Nyquist sample for the eigenvalue abandonment
operation, the results still seem acceptable except for some
slight error. We need to associate the eigenvalue abandonment
with the spatial filtering method (Gao et al., 2019). Different
eigenvalues of the updated matrix correspond to different
wavenumbers: the unstable eigenvalues correspond to the
wavefield that distributes in the high-wavenumber region,
and stable eigenvalues correspond to the low-wavenumber
region (Li, 2014). Abandoning the unstable eigenvalues is
equivalent to filtering out the unstable wavefield
components with a low-pass filter. The aliasing effect
caused by insufficient sampling points (i.e., using a time
step that exceeds the Nyquist sampling upper bound) is a
high-frequency oscillation, which would be filtered out by a
low-pass filtering operation.

FIGURE 2 | Workflows for releasing the CFL stability limit on the time step for numerical simulation based on the MOR method using eigenvalue operations. (A)
Workflow for the numerical simulation using eigenvalue abandonment. (B) Workflow for the numerical simulation using eigenvalue perturbation.
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FIGURE 3 | Workflow for the time-dispersion error elimination using the time-dispersion transform method.

FIGURE 4 |Waveforms that are recorded at a fixed point (x = 700 m, z = 700 m) of the homogenous model using different time steps. The dashed curve obtained
using Δt = 1 ms (with the time-dispersion transformmethod applied) is taken as the theoretical reference. Eight and six time steps are tested for eigenvalue abandonment
and eigenvalue perturbation, respectively. The waveforms in (A) are obtained using the eigenvalue abandonment algorithm, and the waveforms in (B) are obtained using
the eigenvalue perturbation algorithm. All the waveforms are the final results after the time-dispersion transform method has been applied according to the
workflows showed in Figure 3.
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In contrast, the eigenvalue perturbation operation is
implemented by perturbing the unstable eigenvalues into
stable eigenvalues, which is a normalized operation, rather
than a low-pass filter. The high-frequency oscillation caused
by insufficient sampling points will be retained. It can explain
why the high-frequency oscillation exists resulting from the
eigenvalue perturbation algorithm using Δt = 7 ms in Figure 4B.

Next, using the idea of spatial filtering, it is easy to explain the
inaccuracy for the result obtained using Δt = 9 ms in Figure 3A.
As the time step increases, the number of stable eigenvalues
decreases dramatically (as shown in Table 1). It is equivalent to a
sharp decrease in the threshold of the low-pass filter for spatial
filtering. The effective seismic wavefield mainly distributes in a certain
bandwidth of low wavenumber. The corresponding low-pass filter
would filter out the effective wavefield distributes in the low-
wavenumber regions for an excessively large time step. As a result,
the wavefield information is incomplete. Even if the time-dispersion
transform method is used, the result would still have errors.

We further analyzed the amplitude errors between the
waveforms obtained by different time steps and the theoretical
waveform (as shown in Figure 5). The time ranges from 3 to 3.1 s,
which is an intermediate time period of the waveforms in Figures

4, 5C,D, are logarithmic displays for the absolute values of the
amplitude errors in Figures 5A,B, respectively. The amplitude
errors increase with the increasing time step, but the errors are

FIGURE 5 | Amplitude errors between the waveforms and the theoretical waveform showed in Figure 4 (from 3 s to 3.1 s). The amplitude errors in (A) and (B) are
obtained using the eigenvalue abandonment algorithm and the eigenvalue perturbation algorithm, respectively. (C) and (D) are logarithmic display for the absolute values
of the amplitude errors in (A) and (B), respectively.

FIGURE 6 | Modified Marmousi model.
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acceptable when Δt ≤ 6 ms. For example, using Δt = 2 ms, the
values of amplitude errors are around 0.001 (red lines in Figures
5C,D), while the amplitude values of the theoretical waveform
range from −3.340 to 4.011, and the error of 0.001 is negligible
relative to the overall amplitude values; using Δt = 6 ms, the
maximum error is about 0.1 (grey lines in Figures 5C,D), which is
only 2.5% of the maximum amplitude value 4.011.

Based on the analysis mentioned before, for a homogenous
model, in association with the MOR method and the time-
dispersion transform method, both the eigenvalue perturbation
algorithm and the eigenvalue abandonment algorithm can release
the time step toward the upper bound of the Nyquist sampling
and still ensure the accuracy of the numerical simulation. For the
eigenvalue abandonment operation, although no high-frequency
oscillations appear after the time step size exceeds the Nyquist
sampling, there is a risk of filtering out effective wavefield that
distributes in the low-wavenumber region if the time step size is
too large.

Heterogenous Model
We verified the feasibility of the proposed methods by a
heterogenous medium, part of the Marmousi model, as shown

in Figure 6. In this model, the velocity contrast is strong, the
multiple waves are significant, and the velocity range is from
1,467 to 5,928 m/s. The spatial grid interval is Δx = Δz = 10 m,
and the grid point number is 121 × 201. The source is a Ricker
wavelet with a dominant frequency of 15 Hz, located at x = 1.0 km
and z = 0.6 km. The maximum time step size for the second-order
FD method in temporal discretization and the fourth-order FD
method in spatial discretization schemes are Δtmax = 1.032 ms.
We tested several large time steps (Δt = 2, 3, 4, 5, 6, 7, 8, and 9 ms),
and all these time steps are beyond the CFL stability upper bound.
We used the workflow in Figure 3 to apply the time-dispersion
transform method. Similar to what has been done in the
heterogenous model, we performed numerical simulations
using a small time step Δt = 1 ms, whose results can be
regarded as theoretical references to examine the accuracy
using larger time steps.

Figure 7 shows the waveforms around 3 s. The residual errors
are invisible even for the eigenvalue perturbation algorithm, even
for Δt = 7 ms (shown in Figure 7B). Starting from Δt = 8 ms, the
simulation results become inaccurate due to the time step size has
exceeded the upper bound of the Nyquist sampling. It
demonstrates that the combination of the MOR, the

FIGURE 7 |Waveforms that recorded at a fixed point (x = 700 m, z = 700 m) of the modifiedMarmousi model using different time steps. The dashed curve obtained
using Δt = 1 ms (with the time-dispersion transform method applied) is taken as the theoretical reference. (A) Waveforms obtained using the eigenvalue abandonment
algorithm. (B) Waveforms obtained using the eigenvalue perturbation algorithm. Eight time steps are tested: Δt = 2, 3, 4, 5, 6, 7, 8, and 9 ms, respectively.
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eigenvalue perturbation, and the time-dispersion transform
method can still release the time step to the upper bound of
the Nyquist sampling even for the heterogenous media with
strong velocity contrast.

For the eigenvalue abandonment algorithm, when Δt = 6 ms, a
relatively obvious error appears. Simultaneously, the time step
size has not reached the upper bound of the Nyquist sampling yet
(shown in Figure 7A). This problem still needs to be explained
from the perspective of the spatial filtering method. In
heterogenous media, instability phenomenon would appear in
the high-velocity region according to the CFL stability condition
with the time step size increasing. Therefore, the threshold of the
low-pass filter is determined by the high-velocity region.
However, for the wavefield with a given bandwidth, the
wavenumber range in the low-velocity region is wider than
that in the high-velocity region (Gao et al., 2019). With the
increasing time step size, the low-pass filter of the spatial filtering
with decreasing threshold will filter out the effective wavefield in
the low-velocity region, which would result in incomplete
wavefield components. For the eigenvalue abandonment

algorithm, when the time step size is too large (e.g., Δt ≥ 6 ms
in this numerical experiment), the unstable eigenvalues are
caused by the velocity in the high-velocity region, and this
part of eigenvalues corresponds to the wavefield in the high-
wavenumber region. Abandoning these unstable eigenvalues is
equivalent to filtering out the wavefield of the corresponding
wavenumber range, which would filter out the effective wavefield
of the low-velocity region.

We further analyzed the amplitude errors between the
waveforms obtained by different time steps and the theoretical
waveform (as shown in Figure 8). The time ranges from 3 to 3.1 s,
which is an intermediate time period of the waveforms in
Figure 7. The amplitude values of the theoretical waveform
range from −3.345 to 3.081. Using Δt = 6 ms, the maximum
error of the eigenvalue abandonment algorithm is 0.204 (grey
lines in Figures 8A,C), which is 6.1% of the maximum absolute
amplitude value 3.345; while the maximum error of the
eigenvalue abandonment algorithm is 0.059 (grey lines in
Figures 8B,D), which is only 1.8% of the maximum amplitude
value 3.345. Therefore, it is better to perturb this part of the

FIGURE 8 | Amplitude errors between the waveforms and the theoretical waveform showed in Figure 7 (from 3 s to 3.1 s). The amplitude errors in (A) and (B) are
obtained using the eigenvalue abandonment algorithm and the eigenvalue perturbation algorithm, respectively. (C) and (D) are logarithmic display for the absolute values
of the amplitude errors in (A) and (B), respectively.
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eigenvalues to be stable than to abandon them directly, and this
can retain the effective component of the wavefield. The
eigenvalue perturbation algorithm is a better choice than the
eigenvalue abandonment algorithm. The former is more suitable
for the simulation of strongly heterogenous models. The time step
can be released beyond the CFL stability upper bound and even
toward the upper bound of the Nyquist sampling.

DISCUSSIONS

In the Methodology section, we analyzed and manipulated the
eigenvalues of matrixM based on Eq. 2, whose stable eigenvalues
range from 0 to −4. Equation 2 can also be written with the
following alternative form Gao et al., 2018:

[Un+1

Vn+1 ] � A[Un

Vn ] + [ �S
n

0
], (13)

where Vn+1 and Vn are the introduced auxiliary variables that
represent the wavefields at nΔt and (n − 1)Δt, respectively
(i.e., Vn+1 � Un and Vn � Un−1). According to the CFL stability
condition, the stable eigenvalues of matrix A range from 0 to 1
(Gao et al., 2018). Since Eq. 13 is equivalent to Eq. 2, the range 0
to −4 for the stable eigenvalues of matrix M is equivalent to the
range 0–1 for the stable eigenvalues of matrix A. All the methods
involved in this study can also be realized using Eq. 13. However,
the size of matrixM is (Nx × Nz)2, which is only a quarter of the
size of the matrix A. This means Eq. 2 is more memory saving
than Eq. 13. Therefore, we directly used Eq. 2 to introduce the
relevant algorithms instead of starting with Eq. 13.

The limitation for the time step of the combination method
using the eigenvalue abandonment algorithm is influenced by two
factors: wavenumber range of the effective wavefield and the
upper bound of the Nyquist sampling, which one is reached first
depend on the model parameters. Furthermore, the combination
method using the eigenvalue abandonment algorithm has the risk
of filtering out the effective wavefield in the low-velocity region in
the strongly heteronomous media, which is similar with the
combination method using the spatial filtering method
mentioned in Gao et al. (2019). The limitation for the time
step of the combination method using the eigenvalue
perturbation algorithm is only influenced by the upper bound
of the Nyquist sampling, and this method is more suitable for
strong heterogenous media (Gao et al., 2018). We preferred to use
the combination method using the eigenvalue perturbation
algorithm to release the time step upper bound of CFL
stability condition.

The MOR method can effectively reduce the amount of
calculation in the iterative process, but this skill is still
implemented based on the global operator M. The eigenvalue
decomposition calculation amount in preprocessing is still very
large, especially for memory consumption, which is still a
challenge faced by this method. Therefore, we still need to
research how to release the time step size beyond the CFL

stability condition by avoiding the global matrix operators in
the future.

CONCLUSION

We introduced the model-order reduction (MOR) method to
solve the acoustic wave equation. Only the updated matrix’s
eigenvalues and the expansion coefficients of the variables in
the wave equation are used to iterate the wave propagation, which
greatly reduces the amount of calculation in the wavefield
iteration process. Moreover, we introduced the eigenvalue
abandonment algorithm and the eigenvalue perturbation
algorithm to operate on the unstable eigenvalues of the
updated matrix. We successfully released the time step size of
the CFL stability condition for the explicit FD scheme. We then
introduced the time-dispersion transform method to eliminate
the time-dispersion error caused by the large time step and ensure
numerical simulation’s accuracy. Numerical experiments show
that the combination of the MOR method, eigenvalue
abandonment (and the eigenvalue perturbation), and the time-
dispersion method can simulate highly accurate waveforms
when applying a time step beyond the CFL stability upper
bound. The combination method using the eigenvalue
abandonment algorithm has the risk of filtering out the
effective wavefield in the low-velocity region in the
strongly heteronomous media. The combination method
using the eigenvalue perturbation algorithm is suitable for
strong heterogenous media and can successfully extend the
time step size toward the upper bound of the Nyquist
sampling. An unusually sparse time step can be used for
the seismic numerical simulation without suffering from the
time-dispersion error and stability problems.
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