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It has been demonstrated that the matters in the earth’s interior are subjected to isotropic
hydrostatic pressure and are also extensively superimposed by the differential stress. The
differential stress contributes significantly to the free energy of matters and it is the
determining factor controlling the composition, structure, configuration, properties, and
interaction processes of the matter system. Hence, the differential stress is one of the most
fundamental thermodynamic variables governing the earth’s interior system along with the
temperature and the hydrostatic pressure. Nevertheless, due to the limitations of high-
temperature and high-pressure (HT-HP) setup and in situmeasurement techniques as well
as limited understanding of the differential stress, previous HT-HP experiments of the
earth’s interior didn’t cover the role of the differential stress except for some special stress-
strain mechanics experiments and piezolysis and kinetic metamorphism experiments. This
makesmany of the knowledge about the earth’s interior obtained fromHT-HP experiments
generally questionable. Currently, HT-HP experimental apparatus that can be used to
simulate the temperature, hydrostatic pressure, and differential stress in the earth’s interior
includes the Griggs press, the Paterson rheometer, the D-DIA press, the RDA press, and
the torsional diamond anvil cell. The maximum hydrostatic pressure that can be simulated
in the Griggs press at high temperatures is only about 2 GPa and there is large uncertainty
in the calibration of the differential stress. The Paterson rheometer provides too low
confining pressure. The D-DIA press and RDA press can simulate a wide range of
temperature and pressure but the D-DIA press can achieve very small strain variables
and the RDA press has very heterogeneous sample stresses. The torsional diamond anvil
cell can only accept a small sample size and it is difficult to calibrate the differential stress.
Also, these existing HT-HP experimental apparatus with the differential stress are not easily
interfaced with in situmeasurement systems for investigating the physical properties such
as electrical, ultrasonic, and thermophysical properties. Hence, scholars need to invest
more efforts in the research and development of HT-HP apparatus with the differential
stress in the future to properly understand the composition, structure, configuration,
properties, and interactions of the matter in the earth’s interior.
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INTRODUCTION

The composition, structure, constructions, properties, interaction
processes, and formation and evolution law of the earth’s interior
are the most important research contents in the study on the
earth’s inner working mechanism. Field observations such as
geological, geochemical, geophysical, costeaning, probing, and
drilling as well as laboratory analysis tests, theoretical
calculations, and HT-HP experiments are the main tools used
today to explore the inner working mechanism of the earth.
However, the conclusions obtained from field observations and
laboratory analysis tests require HT-HP experiments for
validation. Also, the inversion of field geophysical data and
theoretical computational simulations require HT-HP
experiments to provide various trait parameters for the earth’s
interior. The information on the earth’s interior obtained by field
surveys and laboratory analysis tests are relatively limited and
theoretical computational simulations are usually unable to
investigate the non-equilibrium thermodynamic system and
the naturally complex HT-HP matter system in the earth’s
interior. In contrast, HT-HP experiments can reveal new
phenomena and patterns that are difficult to reveal by field
surveys, laboratory analysis tests, and theoretical
computational simulations. Hence, HT-HP experiments of the
earth’s interior play an important role in the exploration of the
earth’s inner working mechanism (Karato, 2008, 2013).

In the stress analysis, the stress component also changes as the
orientation of the stress unit body changes. There is an
orientation of the stress unit body in which the shear stress
component on the unit body surface is zero meaning that only the
principal stress acts in the orthogonal section. When the stress
values in the three principal stress directions are different, the
object is subjected to the differential stress. Earth’s magnetic field,
mantle convection, mantle column, plate subduction, magma
intrusion, volcanoes, earthquakes, faults, folding, dynamic
metamorphism, and other geological phenomena all indicate
that the earth’s interior are subject to isotropic lithostatic
pressure (equivalent to hydrostatic or quasi-hydrostatic
pressure) or lithostatic pressure + pore/fracture fluid pressure,
and there is also extensive superimposed differential stress on it
(Kawamoto and Shimamoto, 1997; Niemeijer and Spiers, 2006;
Imber et al., 2008; Toy et al., 2011; Rowe and Griffith, 2015). The
differential stress acting on the earth’s interior system, whether it
produces elastic or plastic deformation, significantly contributes
to the free energy of the matter. The differential stress is the
decisive factor controlling the phase composition, structure,
construction, properties, and interaction processes of the
material system. Hence, the differential stress, like the
temperature and hydrostatic pressure, is one of the most
fundamental thermodynamic variables governing the earth’s
interior system. Nevertheless, previous HT-HP experiments of
the earth’s interior didn’t cover the role of the differential stress
except for some special stress-strain mechanics experiments and a
few piezolysis and kinetic metamorphism experiments. As a
result, much of what has been learned about the earth’s
interior from HT-HP experiments to date is generally
questionable. Hence, a proper understanding of the

composition, structure, construction, properties, and
interactions of the earth’s interior requires knowledge of the
physicochemical properties of the earth’s interior under high
temperatures, high pressures, or differential stresses.

In this study, the progress and problems in the study on the
physical properties of the earth’s interior under the differential
stress are briefly reviewed. Also, the existing HT-HP apparatus
that can generate the differential stress are reviewed and some
future research trends in this field are presented.

LITERATURE REVIEW

The effects of the differential stress on the phase, structure, and
properties of condensed matter are well known in many fields
such as condensed matter physics, materials science, and
microelectronics. For instance, Ma, et al. found using their
invented torsional diamond anvil cell type high-pressure
device that the addition of torsional stress can greatly reduce
the pressure of the phase transition of the metallic iron from α to ε
(Ma and Emre, 2006; Benjamin et al., 2012; Daniel et al., 2014).
The mechanism of the cold working hardening of metallic
materials is the process associated with the cold working of
materials to generate point defects and dislocations, to form
internal stress in the crystal lattice, and eventually to induce
the hardening of materials. The effects of the external differential
stress and the internal stress on the phonon spectra of condensed
matter and the peak positions and peak widths of X-ray
diffraction spectra have long been used to measure the stress
state of various materials especially for thin films and
semiconductor devices (Siakavellas et al., 1997; Cao et al.,
2006). The differential stress has a significant effect on the
structural phase transition and physical properties of
semiconductor materials (Grave et al., 2014; Budnitzki and
Kuna, 2016), ferroelectric materials (Li et al., 2015; Zhu, 2014;
Xu et al., 2016; Seyidov, 2016), superhard materials (Korotaev
et al., 2016), and nonlinear optical materials (Mylvaganam et al.,
2015). The differential stress significantly modulates the band
structure of semiconductor materials and the magnetic properties
and magnetic structure phase transition of ferromagnetic
materials (Xu et al., 2008; Li et al., 2014; Coe et al., 2012).

In the field of HT-HP experimental studies on the
composition, structure, construction, properties, and
interactions of the earth’s interior, the effect of the differential
stress as a fundamental thermodynamic variable on the
experimental results have not been taken into account due to
the limited HT-HP experimental apparatus or in situ
measurement techniques for simulating high-temperature and
complex stress conditions. The only exceptions are some
specialized stress-strain mechanics experiments as well as
piezolysis and dynamic metamorphism experiments (Tullis
and Yund, 1991; Demouchy and Mainprice, 2011; Anil et al.,
2012; Niwa et al., 2012; Ken et al., 2012; Liu et al., 2013;
Wassmann and Stöckhert, 2013; Miyakawa and Kawabe, 2014;
Kausala and Zhang, 2015; Ben-Itzhak et al., 2016; Pavel et al.,
2016) which had more reports on the effect of the differential
stress. Even though there have been occasional sporadic reports,
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the systematicity and completeness of these studies are still far
from being applied to solve specific earth science problems. As a
result, much of the knowledge on the earth’s interior material
obtained based on the HT-HP experimental results are
questionable. For instance, the effects of the differential stress
at high temperatures and high (quasi) hydrostatic pressures on
the phase transformation of geological materials have been
reported only in the following extremely sporadic cases for
pyroxene and quartz.

1) It is known that the Clinopyroxene-Orthorhombic pyroxene
phase transition boundaries obtained at high temperatures
and high pressures were significantly different from each
other. Based on the thermodynamic analysis of previous
experimental details and results, Coe (1970) proposed the
effect of the shear stress on the temperature and pressure of
the Clinopyroxene-Orthorhombic pyroxene phase transition.
However, unfortunately, no specific experimental verification
and further systematic study of this hypothesis have been
carried out since then.

2) Zhou et al. (2005) studied the phase transition of quartz at the
temperature of 950–1,000°C, the confining pressure of
1.3 GPa, and the axial compressive stress of 1.5–1.67 GPa.
The pressure of the phase transition from α quartz to coesite
was found to be closely related to the differential stress and the
presence of coesite at the interface between the indenter and
the sample. However, it is also unfortunate that this work was
not continued later. Richter (2016) found the formation of
coesite by the shear experiments at 600–900°C and 1–1.5 GPa,
but only qualitatively discussed that the formation of coesite is
closely related to the differential stress.

3) Singh et al. (2012) used the laser-heated diamond anvil cell
synchrotron X-ray diffraction to find a significant difference
in the transition pressure of stishovite from tetragonal to
oblique phases in the differential stress and hydrostatic
pressure environments (about 40 and 60 GPa, respectively).
However, this work only found such phenomena, and the
relationship between the differential stress and the phase
transition pressure for a given temperature and (quasi)
hydrostatic pressure could not be measured accurately in
the anvil cell. Also, the essential correlation between the
(quasi) hydrostatic pressure and the differential stress in
the anvil cell was not investigated. So no quantitative
results were available.

4) Demouchy andMainprice (2011) used a HT-HP second-stage
WC anvil apparatus using a 45° waist-cut sample assembly of
the sample column to find that the shear stress had an
important effect on the phase transition kinetics of
forsterite-wadsleyite. However, in situ measurement of the
shear stress and the essential correlation between the shear
stress and the confining pressure could not be achieved. So the
quantitative relationship between the temperature and the
pressure of the phase transition reaction and the shear stress
could not be obtained.

5) Niwa et al. (2012) used laser heating of diamond anvil cells in
combination with a high-fluorescence miniaturized X-ray
machine and found that the differential stress inside the

diamond anvil cells could reduce the transition
temperature of the silicate calixarene analog CaIrO3 from
calixarene to post-calixarene to room temperature. However,
it was also impossible to accurately measure the differential
stress in the anvil cell and the essential correlation between the
(quasi) hydrostatic pressure and the differential stress in the
anvil cell. Therefore, the quantitative relationship between the
differential stress and the temperature and pressure of the
phase transition could not be obtained. Experimental studies
on partial melting of geomaterials at high temperatures, high
(quasi-) hydrostatic pressures, and high differential stresses
were reported. But they focused on the relationship between
the differential stress and the partial melting kinetics, the
spatial distribution of the melt and melt segregation, as well as
the constitutive and rheological behavior of the partially
melted samples (Tumarkina et al., 2011; Holtzman and
Benjamin, 2012). So the quantitative relationship between
the differential stress and the temperature/pressure of the
melt phase transition of the solid sample has not been
reported yet. The effects of the differential stress on the
physical properties of geological materials at high
temperatures and high (quasi) hydrostatic pressures have
been reported only for the conductivity of magnetite-
bearing serpentine (Kawano et al., 2012) and
polycrystalline olivine (Caricchi et al., 2011; Zhang et al.,
2014). However, the experimental reports focused on the
mechanism of the differential stress-sample structure-
sample conductivity. There are no experimental reports on
the effect of the differential stress on the core factors that
directly constrain the conductivity of samples such as the
electronic band structure, the lattice defect types and
concentrations, and the carrier migration activation energy
of the constituent minerals.

In summary, there are very few existing reports for the effects
of the differential stress on the physicochemical properties of
geographical materials. The majority of reports are missing
quantitative results and only qualitatively discuss the
contribution of the differential stress. This is mainly due to
the slow research and development progress of differential
stress generators.

HIGH-TEMPERATURE AND
HIGH-PRESSURE EXPERIMENTAL
APPARATUS CAPABLE OF GENERATING
DIFFERENTIAL STRESS

The formation and evolution of various geological and tectonic
phenomena in the earth is ultimately the result of the deformation
of mineral rocks under complex physicochemical conditions. To
better understand the deformation of the earth’s interior under
various physical conditions such as the temperature, confining
pressure, differential stress, and strain rate, as well as chemical
environments such as the oxygen fugacity and fluids in the real
earth’s interior, special HT-HP experimental apparatus are
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needed to test the mechanical properties of the earth’s interior. In
the 1960s, David Griggs, a pioneer in the field of international
tectonics, developed a new high-temperature, high-pressure
deformation device, the Griggs rheometer (Griggs, 1967), by
modifying a piston-cylinder high-pressure device as shown in
Figure 1A. This device can be used to determine the stress-strain
properties of geographical materials and also to qualitatively
study the microstructural evolution of deformation. Based on
the work of predecessors, scientists have developed a new
generation of Griggs deformation apparatus, such as Ghaffari
has reported on the development of an ultrasound probe array
that allows us to monitor deforming samples in a high-pressure,
high-temperature solid medium apparatus (Ghaffari and Pec,
2020). However, the Griggs rheometer employing a solid medium
cannot obtain true isotropy of the confining pressure and the
friction between the loading axis and the confining pressure
medium makes the differential stress measurement quite
inaccurate (Ji et al., 2008). To overcome these disadvantages
of the Griggs rheometer, Paterson, et al. of the Australian
National University designed the Paterson rheometer
(Paterson, 1970) which is a deformation device employing a
gas medium as shown in Figure 1B. However, because the
Paterson rheometer uses a gaseous pressure medium, the
confining pressure obtainable is very limited (≤700 MPa)
and this method cannot be combined with other in situ
measurement techniques. In the 21st century, Wang et al.
(2003) developed the Deformation-DIA (Figure 1C) and
Yamazaki and Karato (2001) developed the Rotational
Deformation Apparatus (Figure 1D) for HT-HP
deformation measurement. The D-DIA consists of four

peripheral wedges with a trapezoidal cross-section sliding on
a 45° slope and a set of upper and lower symmetrical guide
blocks. The upper and lower anvils can move independently of
the four surrounding anvils, thus generating the differential
stress. The most important feature of the RDA device is that the
upper and lower anvils can rotate relative to each other. The
rotation of the anvil will cause a large frictional force between
the anvil surface and the sample, thus generating large shear
stress in the sample. Both D-DIA and RDA can now reach a
very high confining pressure of about 25 GPa and can be used in
combination with the synchrotron X-ray diffraction. So they
are greatly contributing to the development of solid-state
geosciences. The diamond-to-top anvil pressure chamber
(Figure 1E) is another important HT-HP device that can be
easily combined with synchrotron radiation. The small size of
the sample chamber (in the order of microns), the uneven
heating of the sample, and the incomplete separation of
pressure generation and plastic deformation in the DAC
experiments make rheological studies with DAC difficult,
especially because of the large errors in the stress-strain
measurements (Niwa et al., 2012). The temperature and
pressure range of the existing differential stress apparatus is
shown in Table 1.

The prominent influence of the differential stress on the
material properties and mineral phase transition is gaining
more and more attention, while the current technically mature
differential stress experimental apparatus has their own
drawbacks and shortcomings. Hence, there is an urgent need
to develop a HT-HP experimental apparatus that can accurately
simulate the temperature, hydrostatic pressure, and differential

FIGURE 1 |Differential stress apparatus. (A)Griggs deformation apparatus (Griggs, 1967), (B) Paterson deformation apparatus (Paterson, 1970), (C)Deformation-
DIA (Wang et al., 2003), (D) Rotational Deformation Apparatus (Yamazaki and Karato, 2001), (E) Diamond anvil cell (Niwa et al., 2012).
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stress in the earth’s interior and can be easily interfaced with
various in situ measurement techniques to investigate the
physical properties.

CONCLUSION AND OUTLOOK

With the rapid development and advancement of HT-HP
experimental techniques, the effects of the differential stress on
the physicochemical properties of rocks and minerals have been
clarified. The results of these studies are of great importance for
the deep understanding of geological processes in the earth’s
interior, deformation of the earth’s internal circles, plate
tectonics, geodynamics, and interpretation of geophysical
observations. However, due to the limitation of the equipment,
there are still many kinds of researches required regarding the
effect of the differential stress on the physicochemical properties
of matters such as the measurement of physical properties and
experiments under the differential stress which is
inseparable from the development of engineering techniques.

However, the confining pressure and produced stress that can
be obtained by the existent differential stress experiments are

limited. With the development of synchrotron radiation
technology and various large-chamber rheometer apparatus, it is
hoped that this research field can be extended to the bottom of the
lower mantle and even core conditions in the future. Synchrotron
radiation technology should be combined with more in situ
measurement techniques so that many new phenomena, new
effects, and new properties of the earth’s interior under high
temperatures, high pressures, and differential stresses can be
further discovered and applied.
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