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Solar radiation plays an important role in the cryospheric water cycle, especially in alpine
regions. This study presents an evaluation of the Modern-Era Retrospective analysis for
Research and Applications 2 (MERRA2), ERA5, High Asia Refined analysis version 2 (HAR
v2), JRA-55, and National Centers for Environmental Prediction/Climate Forecast System
Reanalysis datasets at different time scales by comparing observed datasets from July
2010 to December 2015 at 4,550m in the Laohugou Basin. In terms of shortwave
radiation, ERA5 performs significantly better than the other reanalysis radiation datasets.
For downward shortwave radiation, HAR v2 performs better than ERA5 on only two
timescales, 3 months and half-year, with mean absolute errors (MAEs) of 13.28 and
7.96 w/m2. The upward shortwave radiation, ERA5, outperforms the other reanalysis
datasets on all 12 timescales. For downward longwave radiation, ERA5 also performs
significantly better, with only MERRA2 outperforming ERA5 on the daily scale and annual
scale, with R2, bias, root mean square error, and MAE of 0.6, 0.95, −9.51 w/m2, −9.41 w/
m2, 34.98 w/m2, 9.46 w/m2, and 27.52 w/m2, 9.41 w/m2, respectively. In the upward
longwave radiation, HAR v2 performs better than the other reanalysis datasets on all
timescales, except for ERA5, which has a better R2 of 0.92 on the annual scale. All the
reanalysis datasets can show the variation trend of the four radiation parameters in different
seasons and achieve a better performance in winter. Therefore, ERA5 is recommended for
regions without shortwave radiation observations, and HAR v2 and ERA5 are
recommended for longwave radiation simulations. Although there are obvious
shortcomings in the reanalysis radiation datasets, they still provide important
supplementary information for research in high-altitude areas, where the observed
datasets are too sparse.
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INTRODUCTION

Solar radiation is the main source of Earth’s energy (Li, 2015).
Solar radiation and surface thermal conditions affect Earth’s
energy balance, energy exchange, and ecohydrological
processes (Liu et al., 2018), as well as the weather and
climate (Fu et al., 2015). The Intergovernmental Panel on
Climate Change (IPCC) reported that the atmosphere and
cryosphere are undergoing rapid changes (Cao, 2021; IPCC,
2021). Therefore, the study of radiation as an important driver
of climate evolution is important because of climate change.
Previous radiation research was previously based on measured
datasets, but sparse measured stations made it difficult to
obtain spatially continuous and long time series of surface
radiation datasets (Li et al., 2017; Zhang et al., 2018).
Reanalysis datasets, which were introduced and rapidly
developed in the 1990s, optimally combine observations of
different types and sources with short-term weather forecasts
through a constantly updated data assimilation system (Du
et al., 2019; Yang et al., 2020). The development of reanalysis
datasets has shown to be promising in the estimation of global
surface radiation; nonetheless, the different models and
assimilation techniques produce many systematic errors
(Liang and Xia, 2005; Power and Mills, 2005; Shi et al.,
2008; Deng et al., 2010; Shen et al., 2019). Therefore, it is
necessary to evaluate the applicability of various reanalysis
datasets and to obtain the appropriate reanalysis radiation
data for research.

Currently, many scholars have evaluated the applicability
of reanalysis datasets in different regions. At Dome A, Fu et al.
(2015) evaluated the applicability of four reanalysis datasets,
ERA-I, National Centers for Environmental Prediction
(NCEP)–DOE, NCEP/NCAR, and JCDAS, using annual-
scale radiation observations from February 2011 to January
2012 at the Southeast Polar Panda-1 station (73°39′S, 77°00′E)
and showed that ERA-I was the best. Similarly, ERA-I is also
more suitable for European regions than JRC-MARS based on
longtime series solar radiation datasets from 1983 to 2005
(Bojanowski et al., 2014). However, ERA-I does not apply to
all areas. For example, ERA-I performs worse than ITPCAS on
the Tibetan Plateau (Du et al., 2019), and ERA-I is severely
overestimated in western, northern, and Central China (Wang
et al., 2020a). For other reanalysis datasets, Babar et al. (2019)
evaluated four reanalysis radiation datasets, CLARA, SARAH,
ERA5, and ASR, based on 31 observed stations in Norway. The
results showed that the errors in ERA5 and ASR increased
with an increase in cloudiness, with ERA5 overestimating
TCWC under clear and moderate cloud cover conditions
while underestimating it under cloudy conditions. Wang
et al. (2020a) assessed the applicability of NCEP/DOE,
ERA-Interim, and GLDASV2.1 using Chinese radiation
observation datasets from 2000 to 2016. The results show
that the precision of the abovementioned reanalysis datasets is
higher in summer and autumn months than in winter and
spring months. NCEP is severely overestimated in the eastern
region, and GLDAS has the smallest average deviation. In the
winter months, the errors are smaller in the high-elevation

areas than in the low-elevation areas; however, they are not
obvious in the summer months. Liu et al. (2018) validated and
evaluated the SWDN-1.0 and SWDN-2.0 products using
observations from 91 stations in China from 2009 to 2014
and compared them with the CERES-SYN1deg and ERA-
Interim reanalysis irradiation datasets. The results show
that CERES-SYN1deg is closest to the observed datasets,
with R, root mean square error (RMSE), and bias of 0.92,
33.5, and 8.48 w/m2, respectively, and that ERA-Interim has
the worst performance, with an R of 0.84. These studies are
only assessed at annual or monthly scales and did not assess
the reanalysis radiation datasets at hourly and daily scales.
However, short time scale datasets are more important for the
study of ice mass balance.

Moreover, many studies on reanalysis radiation dataset
assessments have focused on low-latitude or flat terrain areas.
In addition, few studies have focused on the application of
reanalysis datasets in mountain regions with complex
topography and severe climatic conditions. The preformation
of all the reanalysis datasets in mountain regions is different
because of different assimilation methods and resolutions.
Although previous studies have evaluated different reanalysis
datasets in different regions on long time scales (annual,
seasonal, or monthly), the applicability of frequently used
reanalysis datasets in alpine regions, especially in glacier cover
zones or periglacial zones, warrants further discussion. Therefore,
we want to evaluate the applicability of several reanalysis datasets
at different time scales (from hourly to annually) in the Laohugou
Basin of the western Qilian Mountains.

The observed stations were located in the Laohugou Basin
(LHG) and 4,550 m a.s.l. The observed radiation datasets from
2010 to 2015 were selected to assess the applicability of five
reanalysis radiation datasets (Modern-Era Retrospective analysis
for Research and Applications2 [MERRA-2], JRA55, ERA5,
NCEP–Climate Forecast System Reanalysis (CFSR)/CFS v2,
and High Asia Refined analysis version 2 [HAR v2]) on
different temporal-spatial scales in LHG. This approach
facilitates the use and improvement of reanalysis radiation
datasets in alpine regions with sparse observation stations and
is important for the study and response to climate change in the
Qilian Mountains.

STUDY AREA

The LHG is located on the northern slope of the western Qilian
Mountains and belongs to the upper reaches of the Shule River,
with a location of 39°25′–39°35′N, 96°31′–96°33′E (Zhang and
Qin, 2017a). The length and width of the study area are 40 km
from east to the west and 25 km from north to south, respectively.
The LHG has a typical continental climate, with a large annual
difference in temperature; the warmest month is in July, and the
lowest temperature is in January. The average annual temperature
is −9.1°C, and low temperatures occur year round at 4,550 m a.s.l.
The LHG is controlled by westerly circulation, and the
precipitation amount is approximately 390 mm, mainly
concentrated from May to September and accounting for more
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than 70% of the annual precipitation (Zhang and Qin, 2017b). Air
relative humidity and specific humidity show significantly higher
values in July, August and September, with the maximum value
measured in July. The type of daily variation in barometric
pressure is double peak and double valley, and the seasonal
variation shows a single peak and single valley (Li et al.,
2017). There are 44 glaciers developed in the basin, with a
total area of 54.32 km2 (Zhang and Qin, 2013). The LHG is
located in the high value area of solar radiation in the country,
and the total annual solar energy resources are very rich, up to
6,937.9 MJ/m2; the total radiation in spring and summer is larger
than that in autumn and winter, with an annual average value of
220W/m2, and the daily maximum value of total radiation is
35.5 MJ/m2 (Sun and Qin, 2011b).

The No. 12 glacier (5Y448D0012, Figure 1) is the most typical
glacier in the LHG; it belongs to the extreme continental-type
glacier, with an area of 21.91 km2 and a total length of 10.8 km,
accounting for 40.3% of the glacier area and 65.8% of the ice
reserves in the basin, which is the largest valley-type glacier in the

Qilian Mountains (Zhang et al., 2017). Laohugou Glacier No. 12,
which is composed of two branches from east and west, converges
at an altitude of 4,560 m; the highest point is 5,483 m. The ice
tongue end is 4,250 m; the relative altitude difference is greater
than 1,000 m; and the mean elevation is 4,830 m, with a gentle
slope (Li, 2015; Sun and Qin, 2011a). Laohugou Glacier No. 12 is
the site of the first field station for glacier monitoring research in
China (Shi, 1988) and interests many glaciologists because of its
typical physical characteristics. Its glacial meltwater is an
important source of recharge for the Changma River, with a
water recharge of 40%, which eventually feeds into the Shule
River (Du and Qin, 2012).

Radiation income and expenditure studies on mountain glaciers,
where information is relatively sparse, are important for revealing the
hydrothermal conditions of modern glacier development and
glacier–climate interactions. The LHG is located in alpine regions,
with a complex environment and few artificial observations, which
need to be combined with reanalysis information. Thus, the LHG is
important to evaluate the accuracy of reanalysis data in this basin.

FIGURE 1 | Geographical location of the Laohugou Basin with the spatial distribution of observation stations.
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DATASETS AND METHODS

Datasets
Observed Datasets
Measured radiation datasets are derived from the automatic
weather station (AWS) located in the ablation area of glaciers
in LHG Glacier No. 12, with an elevation of 4,550 m in LHG
(Figure 1). The AWS radiation sensor models are shown in
Table 1. The equipment was calibrated and tested by the China
Meteorological Administration in strict accordance with the
Code of Practice for Specifications for Surface Meteorological
Observation (China Meteorological Administration, 2003). All
sensors are connected to a low-temperature–resistant data
collector, the CR1000 (Campbell, USA), which collects data
every 10 s and outputs an average value every 30 min. In this
article, four components of radiation datasets from July 7, 2010,
to December 31, 2015, were selected and divided into 12
timescales for analysis: hourly, 3 h, 6 h, half-day, daily, 3 days,
6 days, half-month, monthly, 3 months, half-year, and annually.
All times in the article are in Beijing Time.

Reanalysis Datasets
The radiation reanalysis datasets chosen for this article include
the European Centre for Medium-Range Weather Forecasts
(ECMWF) fifth generation of global climate and weather
reanalysis products ERA5; JRA-55, which is a comprehensive
climate reanalysis dataset produced by the Japan Meteorological
Agency (JMA) (JRA-55: Japanese 55-year Reanalysis, Daily 3-
Hourly and 6-Hourly Data, 2013); the NCEP CFSR and Climate
Forecast System version 2 (Saha et al., 2010; National Center for
Atmospheric Research Staff Eds, 2017); NASA’s atmospheric
reanalysis, which is the second MERRA2; and the HAR v2,
which is an atmospheric dataset generated within the
framework of the CaTeNA project (Climatic and Tectonic
Natural Hazards in Central Asia), which is funded by the

Federal Ministry of Education and Research (Wang et al.,
2020b). These five sets of reanalysis datasets are selected to
match the radiation datasets with the measured data for
evaluation. Detailed information on each reanalysis radiation
dataset is shown in Table 2.

Methods
The reanalysis datasets consist of grid point data, whereas the
observed data comprise site data. The reanalysis datasets are
stratified by atmospheric pressure and correspond to different
elevations. If the site elevation to be determined belongs to the
upper and lower boundary layers of the reanalysis datasets, it can
be calculated by interpolation and integration. Therefore, we
evaluated the point-to-point applicability by interpolating the
reanalysis radiation data to the corresponding station using the
nearest-neighbor method based on the latitude, longitude, and
altitude of 4,550 m a.s.l. The nearest neighbor method of
interpolation directly applies the original data to fill in the
points to be interpolated and uses the nearest of the four
nearby grid points around the point to be sampled as the data
for the point to be sampled (Liu and Luo, 2009). The formula is
expressed as follows:

f(x + u, y + v) � f(x, y) (1)
x, y are positive integers, u, v are floating point numbers in the
interval [0, 1], usually 0.5, and (x + u, y + v) are the coordinates
of the point to be identified.

In this article, four evaluation indices were adopted to
quantitatively assess the error characteristics of the suitability
of the reanalysis radiation datasets, including the bias, RMSE,
coefficient of determination (R2), and mean absolute error
(MAE). These statistical metrics were calculated as follows:

(1) Bias

TABLE 1 | Technical parameters and installation height of radiation sensors.

Meteorological elements
and units

Sensor model Manufacturer Measurement range Accuracy Installation height
(m)

Longwave radiation/(W·m−2) Kipp&Zonen CM3 Kipp&Zonen Wavelength: 0.305 < λ < 2.8 µm 10–35 W m−2 1.5
Shortwave radiation/(W·m−2) Kipp&Zonen CG3 Kipp&Zonen Wavelength: 5 < λ < 50 µm 10–35 W m−2 1.5

TABLE 2 | Detailed information of the five reanalysis radiation datasets.

Reanalysis dataset Spatial resolution Temporal resolution
(h)

Domain Temporal coverage Assimilation system

MERRA2 0.5° × 0.625° 1 −180.0°,−90.0°, 180.0°,90.0° 1980 to present GEOS-5 (version 5.12.4)
JRA-55 0.5625° × 0.5625° 3 89.57°N–89.57°S, 0°E–359.438°E 1958 to present 4D-Var
ERA5 0.25° × 0.25° 1 90°N–90°S, 0°E–360°E 1979 to present IFS Cycle 41r2 4D-Var
NCEP/CFSR 0.3° × 0.3° 6 90°N–90°S, 0°E–360°E 1979.1 to 2010.12 3DVAR
NCEP/CFSV2 0.2° × 0.2° 6 90°N–90°S, 0°E–360°E 2011 to present 3DVAR
HAR V2 10 km 1 Tibetan Plateau 1991 to 2020 WRF (version 4.1.)
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Reflects the degree to which the reanalysis radiation datasets
deviate from the observed datasets (Fu et al., 2015). The formula
is expressed as follows:

bias � �m − �k (2)

(2) RMSE

The smaller the value of RMSE is, the smaller the deviation of
the reanalysis datasets from the observed datasets (Bromwich and
Fogt, 2004). The formula is expressed as follows:

FIGURE 2 | 2010–2015 Scatter distribution of shortwave radiation observed datasets and reanalysis datasets on different time scales; (A) and (B) represent
downward shortwave radiation and upward shortwave radiation, respectively.
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FIGURE 3 | Five sets of reanalysis datasets shortwave radiation evaluation results; (A) and (B) represent downward shortwave radiation and upward shortwave
radiation, respectively.
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RMSE �
�����������∑n

i�1(mi − ki)
n

√
(3)

(3) Coefficient of determination (R2)

The coefficient of determination reflects what percentage
of the fluctuations in y can be described by the fluctuations in
x; that is, it characterizes what percentage of the variation in
the dependent variable Y can be explained by the control of
the independent variable X. The formula is expressed as
follows:

R2 � 1 − ∑i(mi − ki)2∑i(mi − m̂)2 (4)

Range of values: 0–1, the closer the value to 1, the better it fits.

(4) MAE

MAE avoids the problem of errors canceling each other out
and accurately reflects the absolute error (Jia et al., 2004). The
formula is expressed as follows:

MAE � 1
n
∑n

i�1
∣∣∣∣mi − ki

∣∣∣∣ (5)

In Eqs 2–5, mi and ki are reanalysis datasets and observed
datasets, respectively, and �m and �k are the averages of the
reanalysis data and observed data, respectively.

RESULTS AND DISCUSSIONS

Reanalysis of Shortwave Radiation
Evaluation
As seen from Figures 2, 3, on the hourly scale, the three sets of
MERRA2, ERA5, and HAR v2 well fit the shortwave radiation,
showing an underestimation for downward shortwave
radiation (SW↓) and an overestimation for upward
shortwave radiation (SW↑), with ERA5 having the lowest
error and the best performance. The better fit of the
reanalysis datasets on the 3-h scale improved. JRA55’s R2

of 0.46 and 0.37 were slightly lower than the R2 of the other
three reanalysis datasets, and JRA55’s MAE of 153.83 w/m2,
and 81.94 w/m2 for SW↓ and SW↑ were much higher than the
MAE of the other three reanalysis datasets, which yield a
poorer performance. At the 6-h scale, all four datasets are
overestimated, except NCEP/CFSR, which underestimates
SW↓. The R2 values for MERRA2, ERA5, and CFSR are
similar, and the RMSE of 170.28 w/m2 for CFSR is the
smallest of the five reanalysis datasets for the best
performance. For SW↑, the fits for MERRA2, ERA5, HAR
v2, and CFSR are similar, at 0.62, 0.65, 0.5, and 0.6, with RMSE
and MAE for ERA5 at 93.88 and 57.6 w/m2 being the smallest
of the five reanalysis datasets and achieving the best
performance, whereas JRA55 has the largest error and the
worst performance. On the 12-h scale, the fit of all five

reanalysis datasets to SW↓ and SW↑ decreases; JRA55 and
HAR v2 do not well fit the trends of both on the half-day scale,
and ERA5 and CFSR perform best.

Compared with the hourly scale, the NCEP/CFSR
performance at the daily scale is significantly lower and
performs worse than the other reanalysis for SW↓, with HAR
v2 performing the best at R2 of 0.46 and RMSE andMAE of 75.37
and 56.22 w/m2, respectively, both of which are the smallest
values of the five reanalysis datasets. On the 3-day scale, the
fit of the five sets of reanalysis radiation datasets to SW↓ increases
substantially, with MERRA2, ERA5, HAR v2, JRA55, and CFSR
showing good fits of 0.77, 0.82, 0.79, 0.78, and 0.19; all except
CFSR well fit the trend of SW↓. However, the five sets of
reanalysis radiation datasets do not fit the SW↑ trend well on
both the daily scale and 3-day scale, showing a significant
underestimation. MERRA2 is the most underestimated, and
ERA5 is the best performer at relative term scales. On the 6-
day and half-month scales, SW↓HAR v2 performed best, with the
highest coefficient of determination and lowest error (Table 3),
whereas NCEP/CFSR performed the worst. For SW↑, there is
minimal change in the five sets of reanalysis radiation datasets on
the 6-day scale. ERA5 performed best, with an R2 of 0.59 and
RMSE and MAE values of 39.07 and 28.41 w/m2, respectively,
among the five reanalysis datasets. On the half-month scale, the
fit of the five sets of reanalysis radiation datasets to SW↑ increases
substantially, with fits of 0.9, 0.95, 0.93, 0.92, and 0.29. All four
reanalysis datasets fit the observed SW↑ datasets well, except for
NCEP/CFSR, and ERA5 still performs best, having the highest
coefficient of determination and the lowest error.

As seen from the information reflected in Figure 3; Table 4,
on the monthly scale, for SW↓, ERA5 has the best
performance, with R2, bias, RMSE, and MAE values of 0.96,
15.18, 19.85, and 16.24 w/m2, respectively. For SW↑, MERRA2
has the highest degree of underestimation and the highest
error; ERA5 has the smallest bias, best fit, and smallest error,
performing best on this scale with R2, bias, RMSE, and MAE of
0.67, −19.31, 32.98, and 25.05 w/m2, respectively. The
difference between HAR v2 and JRA-55 is not significant;
HAR v2 has a slightly better fit than JRA-55, and NCEP/CFSR
does not well fit upward shortwave radiation and performs
poorly for downward shortwave radiation. At the 3-month
scale, the four sets of reanalysis radiation datasets fit better for
SW↓, but all exhibit a certain degree of overestimation. With
the exception of the CFSR, HAR v2 is the least overestimated,
with a bias of 5.43 w/m2, and the smallest error performs best
at this scale. The five reanalysis datasets show improved fits
and reduced errors for SW↑, again showing an
underestimation trend, with ERA5 being the least
underestimated with a bias of −19.31 w/m2 and a fit of 0.81
significantly higher than the other four datasets, of performing
best at this scale. The errors in all five sets of reanalysis datasets
for SW↓ on the half-year scale have been reduced, and their
precision is improved, but the coefficients of determination
have been reduced for all four datasets except NCEP/CFSR.
The combined four evaluation indicators performed best on
this scale for HAR v2, with CFSR performing the worst and the
other three datasets showing a similar performance. However,
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the fit and accuracy of the five sets of reanalysis data for SW↑
have improved significantly, with the combined four
assessment metrics performing best on this scale for ERA5,
with R2, RMSE, and MAE of 0.92, 19.84, and 19.58 w/m2,
respectively, and the worst performance for MERRA2.
Compared with the monthly scales, the annual scales show
a decrease in the fit of both upward shortwave radiation and
downward shortwave radiation, except for ERA5, whose R2

values are 0.86 and 0.95, respectively, and which performs best
at the annual scale.

The downward and upward shortwave radiation varies widely
over the seasons, with the five sets of reanalysis datasets showing
significantly better applicability of SW↓ and SW↑ in winter
(September to May) than in summer (June to August), as
shown in Figure 4 and Table 5. Only ERA5 is able to fit the
variation in upward shortwave radiation in summer, with R2,

bias, RMSE, and MAE values of 0.39, −35.25, 63.51, and
47.54 w/m2, respectively. For SW↓, NCEP/CFSR shows a
distinct trend of underestimation, whereas MERRA2,
ERA5, HAR v2, and JRA55 show a trend of overestimation
with biases of 49.29, 22.71, 25.68, and 28 w/m2. However, the
five reanalysis datasets show a distinct tendency to
underestimate SW↑, with HAR v2 being the least
underestimated and NCEP/CFSR being the most
underestimated, with biases of −3.62 and −52.91 w/m2.

Compared with summer, the fit to downward and upward
shortwave radiation improved for each reanalysis radiation
dataset in winter, but the CFSR still failed to fit the SW↓ and
SW↑ trends, with R2 values of 0.06 and 0.01, respectively. JRA55
still did not well fit the SW↑ trend, with an R2 of 0.22. TheHAR v2
reanalysis datasets have a low degree of underestimation for SW↓
with a bias of −1.6 w/m2 and the smallest bias, whereas the other

TABLE 3 | Evaluation of the day scales of shortwave radiation from five sets of reanalysis datasets.

SW↓ SW↑

Daily 3 days 6 days Half-month Daily 3 days 6 days Half-month

MERRA2 Bias 19.40 19.40 19.40 19.52 −67.17 −67.17 −67.17 −67.38
RMSE 73.29 43.48 36.12 31.48 83.57 79.48 78.25 76.34
MAE 52.78 29.90 24.54 21.32 70.45 69.46 68.85 68.51

ERA5 Bias 15.05 15.10 15.10 15.28 −19.28 −19.27 −19.27 −19.43
RMSE 72.98 35.53 27.54 21.78 54.1 41.77 39.07 36
MAE 53.02 26.85 21.32 17.65 40.23 30.39 28.41 26.76

HAR v2 Bias 5.43 5.43 5.43 5.36 −27.67 −27.67 −27.67 −27.94
RMSE 75.37 40.68 29.70 23.09 57.84 48.58 45.99 42.67
MAE 56.22 30.00 22.52 17 46.45 39.9 38.67 37.09

JRA55 Bias 12.38 12.38 12.38 11.72 −25.14 −25.14 −25.14 −25.56
RMSE 64.49 37.39 31.07 23.22 57.42 50.73 48.42 44.63
MAE 48.17 28.14 22.75 17.66 42.75 36.85 34.82 33.81

NCEP/CFSR Bias −16.23 −16.23 −16.23 −16.11 −55.94 −55.94 −55.94 −56.13
RMSE 102.64 78.83 70.56 61.37 80.56 75.31 73.44 70.35
MAE 79.73 59.91 52.57 44.67 63.27 60.57 59.53 58.54

TABLE 4 | Evaluation of monthly and annual scales of shortwave radiation from five sets of reanalysis datasets.

SW↓ SW↑

Monthly 3 months Half-year Annually Monthly 3 months Half-year Annually

MERRA2 Bias 19.41 19.41 19.41 19.67 −67.22 −67.22 −67.22 −66.36
RMSE 29.73 27.21 21 20.46 74.78 72.05 69.93 67.03
MAE 20.88 20.51 19.41 19.67 67.22 67.22 67.22 66.36

ERA5 Bias 15.18 15.18 15.18 15.09 −19.31 −19.31 −19.31 −19.58
RMSE 19.85 17.47 15.97 15.38 32.98 25.62 21.8 19.84
MAE 16.24 15.41 15.18 15.09 25.05 21.35 20.08 19.58

HAR v2 Bias 5.43 5.43 5.43 5.81 −27.72 −27.72 −27.72 −27.33
RMSE 20.61 17.23 9.15 7.92 39.94 35.12 30.74 27.91
MAE 14.58 13.28 7.96 7.25 34.49 28.68 27.72 27.33

JRA55 Bias 12.51 12.51 12.51 12.5 −25.06 −25.06 −25.06 −24.81
RMSE 21.32 17.58 13.82 13.2 42.03 36.73 28.17 25.88
MAE 16.46 14.87 12.69 12.5 30.53 25.89 25.06 24.81

NCEP/CFSR Bias −11.47 −16.07 −16.07 −15.32 −45.28 −55.95 −55.95 −54.95
RMSE 58.44 37.35 26.92 16.62 59.05 63.79 58.9 55.69
MAE 40.75 28.22 20.81 15.32 47.2 55.95 55.95 54.95
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four reanalysis radiation datasets show a trend of overestimation.
While the five reanalysis datasets show a tendency to
underestimate SW↑ in both winter and summer, the

underestimation of all four reanalysis radiation datasets shows
an increasing trend, except for ERA5, where the underestimation
decreases with a bias of −13.73 w/m2. A combination of the

FIGURE 4 | Trends in observed and reanalysis shortwave radiation datasets in different seasons; (A) and (B) represent downward shortwave radiation and upward
shortwave radiation, respectively.

TABLE 5 | Results of the five reanalysis datasets for shortwave radiation evaluated in summer and winter.

SW↓ SW↑

Bias RMSE MAE R2 Bias RMSE MAE R2

MERRA2 Summer 49.29 106.19 84.22 0.04 −46.66 78.34 58.80 0.14
Winter 9.04 57.65 41.88 0.55 −74.28 85.31 74.49 0.46

ERA5 Summer 22.71 91.25 71.29 0.13 −35.25 63.51 47.54 0.39
Winter 12.46 52.22 38.37 0.62 −13.73 44.73 33.80 0.47

HAR v2 Summer 25.68 104.83 82.38 0.18 −3.62 65.64 53.84 0.10
Winter −1.60 61.96 47.15 0.53 −36.01 54.88 43.89 0.38

JRA55 Summer 28.00 93.39 74.35 0.10 −17.78 65.92 52.07 0.10
Winter 6.97 50.76 39.09 0.61 −27.69 54.16 39.52 0.22

NCEP/CFSR Summer −74.32 133.56 109.73 0.04 −52.91 81.80 62.15 0.13
Winter 3.92 102.19 78.14 0.06 −57.00 79.87 63.18 0.01
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indicators evaluated shows that for SW↓, JRA55 has the highest
accuracy in winter with the best performance of 6.97, 50.76, and
39.09 w/m2 for bias, RMSE, and MAE, respectively. ERA5 for
SW↑ has the highest accuracy in winter, with the best

performances of 44.73 and 33.8 w/m2 for RMSE and MAE,
respectively.

The results of the assessment of shortwave radiation were
consistent with those of previous studies; ERA5 performed best,

FIGURE 5 | 2010–2015 Scatter distribution of observed longwave radiation datasets and reanalysis datasets on different time scales; (A) and (B) represent
downward longwave radiation and upward longwave radiation.
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FIGURE 6 | Five sets of reanalysis datasets longwave radiation evaluation results; (A) and (B) represent downward longwave radiation and upward longwave
radiation, respectively.
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and CFSR and MERRA2 performed worse (Jiang et al., 2019; Seo
et al., 2020; Wang, 2020; Zhang et al., 2021). The advantages of
the ERA-5 reanalysis datasets are particularly evident on snow
and ice surfaces (Wang, 2020; Zhang et al., 2021). Because of
cloudiness and other meteorological factors, the accuracy of rainy
and cloudy conditions is lower than that of clear-sky conditions
on the daily and monthly scales; on the seasonal scale, the
accuracy is significantly higher in winter and spring than in
summer and autumn (Jiang et al., 2019; Zhang et al., 2021).

Reanalysis of Longwave Radiation
Evaluation
As seen through Figures 5, 6, on the hourly scale, both MERRA2
and ERA5 are able to roughly fit the downward longwave
radiation (LW↓) with R2 values of 0.42 and 0.48, respectively.
The HAR v2 fit is poor, with an R2 of 0.28, and the ERA5 error is
significantly smaller than that of MERRA2, which performs
better. The three reanalysis datasets MERRA2, ERA5, and
HAR v2 well fit the upward longwave radiation (LW↑), with
R2 values of 0.72, 0.79, and 0.73, which are overestimated. HAR v2
has the smallest error, with bias, RMSE, and MAE values of 7.02,
24.53, and 18.92 w/m2, respectively, which is the best
performance. There is some improvement in the fit of the
reanalysis datasets on the 3-h scale for LW↓. The R2 of HAR
v2 is 0.27, which is slightly lower than that of the other three
reanalysis datasets. The RMSE and MAE are 57.57 and 44.98 w/
m2, respectively, which are higher than those of the other three
datasets, with poorer performance. ERA5 performs best with
minimal error. However, in LW↑, the R2 values of MERRA2,
ERA5, HAR v2, and JRA55 are similar, at 0.74, 0.8, 0.75, and 0.79,
respectively. HAR v2 has the best performance, with RMSE and
MAE values of 23.74 and 18.35 w/m2, respectively, which are
lower than those of the other three datasets. At the 6-h scale,
MERRA2 and HAR v2 underestimate and poorly fit LW↓,
whereas the other datasets are overestimated. The fits for
MERRA2, ERA5, and JRA55 are similar, with ERA5 having

the lowest RMSE and MAE of 41.39 and 33.4 w/m2 of the
three, performing best. MERRA2, ERA5, HAR v2, and JRA55
provide a better fit to LW↑, with values of 0.76, 0.82, 0.76, and
0.81, and all errors decrease. HAR v2 still has the smallest error
and the best applicability. The fit of the five reanalysis datasets on
the half-day scale continues to improve. NCEP/CFSR and HAR
v2 have worse fits for LW↓ trends on half-day scales, whereas
ERA5, MERRA2, and JRA55 perform similarly, with ERA5
performing slightly better. ERA5, MERRA2, HAR v2, and
JRA55 are similar for LW↑ in R2, and HAR v2 has the
smallest error, with bias, RMSE, and MAE values of 7.02, 18.4,
and 14.71 w/m2, respectively, which are the best performances.

Combined with Table 6, the five sets of reanalysis radiation
datasets well fit the LW↓ and LW↑ trends on four scales—daily,
3 days, 6 days, and half-month—with an increase in accuracy, but
all show a tendency to overestimate. For LW↓, MERRA2 has the
best performance, with RMSE and MAE values of 34.98 and
27.57 w/m2, respectively, which are the smallest values of the
three datasets. On the 3-day scale, the R2, RMSE, and MAE of
ERA5 are 0.85, 18.08, and 14.85 w/m2, respectively, which is a
small error and the best performance. On the 6-day and half-
month scales, ERA5 performs best, with an R2 of 0.97 and
minimum error RMSE and MAE of 9.21 and 7.24 w/m2,
respectively. For LW↑, HAR v2 is the least overestimated and
decreasing dataset, reaching its lowest value on the half-month
scale with a bias of 6.97 w/m2. On the daily to half-month time
scales, the fits of the four reanalysis radiation datasets—MERRA2,
ERA5, HAR v2, and JRA55—exceed 0.9, except for JRA55, which
is 0.86 on the half-month scale, and well fit LW↑, with HAR v2
performing the best.

Based on the information reflected in Figure 6 and Table 7, it
can be seen that on the monthly scale, all four sets of reanalysis
datasets, except NCEP/CFSR, fit above 0.95 and well fit the LW↓
at this scale. The best fit is achieved by ERA5, with the smallest R2,
bias, RMSE, and MAE values of 0.98, 4.41, 8.02, and 6.35 w/m2.
All five sets of reanalysis datasets show a tendency to overestimate
LW↑, with HAR v2 being the best and showing the lowest degree
of overestimation and the smallest error, bias, RMSE, andMAE of

TABLE 6 | Evaluation of the day scales of longwave radiation from five sets of reanalysis datasets.

LW↓ LW↑

Daily 3 days 6 days Half-month Daily 3 days 6 days Half-month

MERRA2 Bias −9.52 −9.52 −9.52 −9.59 39.19 39.19 39.19 39.15
RMSE 34.98 20.69 15.28 11.95 42.97 42.11 41.65 41.27
MAE 27.57 16.46 12.24 10.23 39.27 39.19 39.19 39.15

ERA5 Bias 4.37 4.44 4.44 4.37 22.38 22.44 22.44 22.41
RMSE 37.64 18.08 12.88 9.21 33.37 31.31 30.8 30.36
MAE 30.81 14.85 10.11 7.24 26.99 24.45 24.03 23.64

HAR v2 Bias −0.63 −0.63 −0.63 −0.63 7.01 7.01 7.01 6.97
RMSE 40.92 22.27 15.9 11.41 15.31 12.45 10.81 9.6
MAE 32.88 18.15 12.97 9.17 12.43 9.76 8.67 7.65

JRA55 Bias 12.07 12.07 12.07 12.07 36.04 36.04 36.04 29.5
RMSE 35.32 23.19 18.63 15.76 38.81 37.87 37.4 33.94
MAE 29.63 19.16 15.47 13.25 36.1 36.04 36.04 30.71

NCEP/CFSR Bias 17.71 17.71 17.71 17.67 41.9 41.9 41.9 41.84
RMSE 60.05 51.26 46.93 43.37 57.56 56.53 55.52 55.22
MAE 48.08 39.81 36.44 34.64 48.24 47.62 47.08 46.69
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7.01, 9.16, and 7.56 w/m2. At the 3-month scale, MERRA2 and
HAR v2 show an underestimated trend, and the other three are
overestimated. The bias of HAR v2 is the smallest at −0.6 w/m2;
combining the other three indicators proves that ERA5 performs
best at this scale. The error in the ERA5 reanalysis datasets for
LW↑ is higher; the others are not significantly different from the
monthly scale, and HAR v2 is the least overestimated, with a fit of
0.98, and performs best on this scale. The errors in the five
reanalysis radiation datasets for LW↓ and LW↑ on the half-year
scale are essentially the same as those on the 3-month scale, and
the NCEP/CFSR fit is significantly better. The combined four
evaluation indicators performed best on this scale for HAR v2.
Compared with the monthly scales, the fit of the reanalysis data to
both LW↓ and LW↑ is significantly reduced on the annual scale,
except for the NCEP/CFSR, where the fit to LW↓ is improved.
MERRA2 fit is better than the other three datasets, with a slightly
higher error than ERA5, and its R2, bias, RMSE, and MAE values
were 0.95, −9.41, 9.46, and 9.41 w/m2, respectively, which are the
best performances in LW↓. ERA5 has a distinct advantage for
LW↑ with an R2 of 0.92. HAR v2, JRA55, and CFSR are not much
different; HAR v2 produces error less than both and performs
slightly better, whereas MERRA2 performs the worst, with R2,
RMSE, MAE, values of 0.62, 39.65, and 39.56 w/m2.

The downward and upward longwave radiation varies
considerably over the seasons, with the five sets of reanalysis
datasets showing significantly better applicability in winter than
in summer, as shown in Figure 7 and Table 8. Only ERA5 and
JRA55 are able to fit the variation in upward longwave radiation
in summer, with R2, bias, RMSE, and MAE values of 0.39, 0.26;
48.22 w/m2, 41.39 w/m2; 50.77 w/m2, 43.17 w/m2; and 48.24 w/
m2, 41.39 w/m2, respectively. MERRA2, HAR v2 and NCEP/
CFSR show a distinct trend of underestimation for LW↓, whereas
ERA5 and JRA55 are overestimated. The five biases of MERRA2,
ERA5, HAR v2, JRA55, and CFSR are −11.01 w/m2, 9.23 w/m2,
−11.69 w/m2, 12.22 w/m2, and −37.49 w/m2, respectively, with
the combined four assessment indicators ERA5 performing the
best. However, the five reanalysis datasets show a distinct
tendency to overestimate LW↑, with NCEP/CFSR

underestimating the least and MERRA2 underestimating the
most, with biases of 0.22 and 55.48 w/m2, respectively.

Compared with summer, the fit to downward and upward
longwave radiation improved for all reanalysis radiation datasets
in winter, but HAR v2 and CFSR still do not fit the LW↓ trend
well, with R2 of 0.25 and 0.08, respectively. The CFSR still does
not fit the LW↑ trend well, with R2 of 0.12. Only the MERRA2
reanalysis shows an underestimation trend for LW↓with a bias of
−9 w/m2, whereas the other reanalysis radiation datasets show an
overestimation trend for LW↓ and LW↑. ERA5 and JRA55 have
the best fit, with R2 values of 0.46 and 0.44 for LW↓, respectively,
and MERRA2 is the next best with an R2 of 0.39. All three models
fit better for downward solar radiation in winter. A combination
of the evaluation indicators shows that for LW↓, ERA5 has the
highest accuracy in winter, with the best performance of 31.67 w/
m2 for RMSE and 25.78 w/m2 for MAE. However, the fits of
ERA5, MERRA2, HAR v2, and JRA55 are similar, with R2 values
of 0.84, 0.84, 0.82, and 0.82 for LW↑; the HAR errors are
obviously lower than the three datasets, with biases, RMSEs,
and MAEs of −5.7, 14.2, and 11.42 w/m2, respectively, which are
the best performances.

The assessment of longwave radiation is also consistent with
previous studies, with HAR v2 and ERA5 performing better but
still performing better in winter than in summer on a seasonal
scale (Jiang et al., 2019; Zhang, 2019; Zhang et al., 2021).

Reasons for the Different Performances
The radiation assimilation performance of different reanalysis
datasets for glacier ablation areas (4,550 m) in the LHG basin
showed significant differences at different timescales. In alpine
regions, the accuracy of reanalysis datasets is significantly
influenced by topography, weather, land surface,
assimilation methods, and accurate observed datasets (Fan
and Van den Dool, 2008; Luo et al., 2019; Jia et al., 2021).
We analyze the possible reasons for the errors in the reanalysis
radiation datasets, taking into account the assimilation model
and the basic principles of the dynamic downscaling model.
First, different assimilation methods are the main error

TABLE 7 | Evaluation of monthly and annual scales of longwave radiation from five sets of reanalysis datasets.

SW↓ SW↑

Monthly 3 months Half-year Annually Monthly 3 months Half-year Annually

MERRA2 Bias −9.54 −9.54 −9.54 −9.41 39.18 39.18 39.18 39.56
RMSE 10.93 10.12 9.92 9.46 41.19 40.75 39.34 39.65
MAE 9.73 9.54 9.54 9.41 39.18 39.18 39.18 39.56

ERA5 Bias 4.41 4.41 4.41 4.69 22.45 22.45 22.45 22.88
RMSE 8.02 5.64 5.64 4.99 30.01 51.7 23.54 23.05
MAE 6.35 4.52 4.52 4.69 23.56 50.78 22.45 22.88

HAR v2 Bias −0.6 −0.6 −0.6 −0.94 7.01 7.01 7.01 7.46
RMSE 9.96 8.83 3.36 2.46 9.16 8.38 7.85 7.81
MAE 8.28 7.9 2.85 1.99 7.56 7.24 7.01 7.46

JRA55 Bias 12.04 12.04 12.04 12.25 36.04 36.04 36.04 36.22
RMSE 14.72 12.8 12.41 12.34 36.95 36.69 36.16 36.25
MAE 12.71 12.04 12.04 12.25 36.04 36.04 36.04 36.22

NCEP/CFSR Bias 17.7 17.7 17.7 18.49 30.85 41.91 41.91 42.52
RMSE 40.06 27.84 18.53 18.88 49.83 46.14 42.44 42.64
MAE 31.36 21.94 17.7 18.49 41.12 42.97 41.91 42.52
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FIGURE 7 | Trends in observed and reanalysis longwave radiation datasets in different seasons; (A) and (B) represent downward longwave radiation and upward
longwave radiation.

TABLE 8 | Results of the five sets of reanalysis datasets for longwave radiation evaluated in summer and winter.

LW↓ LW↑

Bias RMSE MAE R2 Bias RMSE MAE R2

MERRA2 Summer −11.01 36.05 29.55 0.17 53.48 55.26 53.48 0.19
Winter −9.00 34.60 26.89 0.39 34.24 37.78 34.34 0.84

ERA5 Summer 9.23 33.84 28.14 0.26 48.22 50.77 48.24 0.39
Winter 2.78 31.67 25.78 0.46 13.50 22.61 17.82 0.84

HAR v2 Summer −11.69 41.32 32.94 0.16 10.80 18.14 15.32 0.16
Winter 3.20 40.78 32.86 0.25 5.70 14.20 11.42 0.82

JRA55 Summer 12.22 37.08 31.05 0.16 41.39 43.17 41.39 0.26
Winter 12.01 34.69 29.14 0.44 34.18 37.18 34.26 0.82

NCEP/CFSR Summer −37.49 73.71 58.34 0.01 0.22 51.99 44.65 0.01
Winter 36.85 67.31 52.73 0.08 56.35 71.84 60.79 0.12
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sources. In the abovementioned results, the four sets of
reanalysis datasets, except NECP/CFSR, can roughly fit the
variation characteristics of downward shortwave radiation,
upward shortwave radiation, downward longwave radiation,
and upward longwave radiation. This finding is attributed
mainly to the production of MERRA2 using the GEOS
5.12.4 model, which reduces certain spurious trends and
jumps in the observing system and updates in the CIS
scheme (Rienecker et al., 2011; Gelaro et al., 2017; Wu
et al., 2019). JRA-55 uses the 4D-Var datasets assimilation
system with variable component bias correction (VarBC) for
satellite radiation and adds a new source of observed datasets
(Kobayashi et al., 2015). The better performance of HAR v2 is
attributed to the notion that it is generated for dynamical
downscaling using ERA5 driving WRF 4.1, with a horizontal
maximum of 10 km (Orsolini et al., 2019). ERA5 performs best
because it uses the 4D-Var dataset assimilation and prediction
model in Integrated Forecasting System (IFS) CY41R2, has 137
mixed pressure levels in the vertical direction and at the top of
0.01 h Pa, and has available surface and single layer datasets
(Hersbach et al., 2020).

Second, cloud cover is an important factor that affects the
wireless signal received by the sensor and that further affects the
dataset accuracy. The five sets of reanalysis radiation datasets
underestimate upward shortwave radiation with significantly
lower accuracy, possibly due to inaccurate estimates of
subsurface type by the respective models, inaccurate estimates
of atmospheric transparency and cloudiness, and biases in surface
reflectance simulations. The worse fit of the five reanalysis
datasets to downward longwave radiation may be caused by
inaccurate model estimates of cloudiness. In summer, the LHG
basin is influenced by the western wind band, with concentrated
precipitation and increased cloud cover, as well as clouds with a
less longwave radiation effect than shortwave radiation, making
the reanalysis radiation data more applicable to longwave
radiation than shortwave radiation. Third, the type of
underlying surface can also cause errors in the reanalysis
datasets. The applicability of the five reanalysis radiation
datasets is significantly higher in winter than in summer. The
high radiation values and temperatures above 0°C in the LHG
basin are mainly concentrated between June and August, whereas
temperatures are largely below 0°C from September to May. The
basin is in the ablation period from June to August, with rapid
changes in albedo, and reanalysis datasets have produced
inaccurate subsurface estimates, causing bias (Gueymard et al.,
2019).

There are many factors that affect the accuracy of reanalysis
datasets, but ERA5 is the optimum radiation reanalysis dataset for
LHG in the western Qilian Mountains. Possible main reasons are
listed as follows: ERA5 provides data for 240 variables with high
spatial and temporal resolution and updates the IFS cycle from
31r2 to 41r2 with the 4DVARmethod, absorbing a larger number
of observations and satellite data (Hersbach & Dee, 2016;
Hersbach et al., 2020). Furthermore, ERA5 assimilates
historical observations based on the data assimilation
ensemble (EDA) system developed by ECMWF to account for
errors in observation and forecast models, making ERA5 more

applicable (Meng et al., 2018). The HAR v2 reanalysis datasets are
formed by WRF4.1 power downscaling with ERA5 as the driving
data, and its horizontal resolution of 10 km is significantly higher
than those of the other four reanalysis datasets, making it second
only to ERA5 in terms of applicability (Wang et al., 2020b).

Therefore, to reduce the error of different assimilation
methods, many researchers have attempted to combine
multiple reanalysis datasets based on different merging
methods (Shi and Liang, 2013; Xu et al., 2020; Davison et al.,
2021). However, the accuracy of merged datasets cannot be suited
to regional scales to some extent, especially in alpine mountains.
To fundamentally solve the problem of errors in reanalysis
datasets, the main ideas should be to improve the sensor and
to eliminate the effect of clouds.

CONCLUSION

This article evaluates five sets of reanalysis radiation datasets
(ERA5, JRA55, MERRA2, HARv2, and NCEP/CFSR) at different
time scales based on 2010–2015 observed radiation datasets in the
4,550-m glacial ablation zone of the LHG basin. The conclusions
are presented as follows:

(1) For shortwave radiation, ERA5 has the best performance
compared with the other reanalysis datasets on different time
scales. For downward shortwave radiation, HAR v2 is better
than ERA5 on only two timescales, 3 months and half-year.
The upward shortwave radiation, ERA5, outperforms the
other reanalysis datasets on all 12 timescales. Therefore,
ERA5 is recommended first in regions without shortwave
radiation observations.

(2) For downward longwave radiation, ERA5 also performs
significantly better, with only MERRA2 outperforming
ERA5 on the daily and annual scales. For upward
longwave radiation, HAR v2 is better than the other
reanalysis datasets on all timescales, except for ERA5,
which has a better R2 of 0.92 on the annual scale.

(3) All the reanalysis datasets can show the variation trend of the
four radiation parameters in different seasons. They have
better performance in winter and worse performance in
summer because of much cloud cover. However, ERA5 is
still the most recommended dataset.
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