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The Sichuan Basin is one of the most important gas-bearing basins in China, and its
production accounts for more than a quarter of the country. In the past 10 years, major
natural gas exploration discoveries in the basin were in ultra-deep ancient carbonate
formations. The discovery of large marine gas fields has gone through a long period of
exploration. For example, the Anyue gas field was discovered after more than 40 years of
exploration. The main difficulty stems from deep burial, old age, and the complex
geological evolution history of the carbonate rock and the resulting difficulty in
identifying gas-bearing reservoirs. Although state-of-the-art reservoir prediction
techniques have been used, the success rate of the exploration wells is relatively low.
At present, the success rate of the ultra-deep exploration wells is about 30%. To enhance
the reliability of the hydrocarbon detection of the ultra-deep carbonate reservoirs, we have
developed a few novel methods in the last 10 years, including seismic-print analysis (SPA),
depth-domain seismic dispersion analysis (DDSDA), and deep learning seismic analysis
Applications to field data show that the results obtained by the new methods are in better
agreement with the drilling results. This article presents the methods and their applications
in the identification of the ultra-deep carbonate gas-bearing reservoirs in the Sichuan
Basin, China. Key issues in hydrocarbon detection of ultra-deep carbonate reservoirs,
which have not been solved well, are also discussed.
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1 INTRODUCTION

Reliable reservoir hydrocarbon detection techniques are silver bullets expected in the hydrocarbon
detection field (Fawad et al., 2020). Since the 1970s, seismic exploration experts have developed a
series of seismic-based reservoir gas detection methods. These methods and technologies can be
roughly divided into three categories (Cao et al., 2019): bright spot technology (Hammond, 1974),
AVO analysis technology (Castagna and Backus, 1993), and seismic dispersion analysis technology

Edited by:
Wei Zhang,

Southern University of Science and
Technology, China

Reviewed by:
Jianyong Xie,

Chengdu University of Technology,
China

Zhaoyun Zong,
China University of Petroleum,

Huadong, China
Sanyi Yuan,

China University of Petroleum, Beijing,
China

*Correspondence:
Xudong Jiang

jiangxd@cdut.edu.cn

Specialty section:
This article was submitted to

Solid Earth Geophysics,
a section of the journal

Frontiers in Earth Science

Received: 10 January 2022
Accepted: 19 April 2022
Published: 26 May 2022

Citation:
Cao J, Jiang X, Xue Y, Tian R, Xiang T
and Cheng M (2022) The State-of-the-

Art Techniques of Hydrocarbon
Detection and Its Application in Ultra-

Deep Carbonate Reservoir
Characterization in the Sichuan

Basin, China.
Front. Earth Sci. 10:851828.

doi: 10.3389/feart.2022.851828

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 8518281

ORIGINAL RESEARCH
published: 26 May 2022

doi: 10.3389/feart.2022.851828

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.851828&domain=pdf&date_stamp=2022-05-26
https://www.frontiersin.org/articles/10.3389/feart.2022.851828/full
https://www.frontiersin.org/articles/10.3389/feart.2022.851828/full
https://www.frontiersin.org/articles/10.3389/feart.2022.851828/full
https://www.frontiersin.org/articles/10.3389/feart.2022.851828/full
https://www.frontiersin.org/articles/10.3389/feart.2022.851828/full
http://creativecommons.org/licenses/by/4.0/
mailto:jiangxd@cdut.edu.cn
https://doi.org/10.3389/feart.2022.851828
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.851828


(Robinson, 1979). AVO analysis is based on the Zoeppritz
equation which is complex. Therefore, scholars obtained the
approximate simplified equation of the Zoeppritz equation by
introducing different approximate conditions (Chopra and
Castagna, 2014). From these approximate equations, we can
develop a variety of pre-stack seismic inversion methods
(Veeken et al., 2004), obtain a variety of physical parameters
(Li et al., 2008), such as P–S wave velocity and density (Jin et al.,
2000), Poisson’s ratio (Zong et al., 2013), and relative wave
impedance (Cui et al., 2010), and thus, develop a variety of
hydrocarbon detection methods. Bright spot technology is the
strong reflection on the seismic profile relative to the background.
The emergence of bright spot technology is largely due to the
invention of automatic gain technology, which highlights the
change of reflection amplitude on the seismic profile and
improves the success rate of gas layer identification from
about 12% to 60%–80% (Cao and Tian, 2019). Other methods
and technologies with various names can be regarded as
derivative methods of these methods and technologies. For
example, the fluid factor method (Smith and Sutherland, 1996;
Russell et al., 2003) can be attributed to AVO analysis technology;
PG parameter prediction (Jiang et al., 2020b) and the low-
frequency shadow phenomenon (Castagna et al., 2003) is
essentially dispersion. These methods and technologies have
both successful cases and failure lessons. The main reason for
the failure is that these methods have certain applicable
conditions, such as bright spot technology is mainly applicable
to the shallow (Hammond, 1974) unconsolidated clastic
reservoir; AVO analysis technology is mainly suitable for the
situation of relatively simple and gentle formation structure,
while dispersion analysis technology is suitable for the
situation of known lithology. When the applicability
conditions of these methods and technologies are not satisfied,
the obtained results will naturally deviate from the real situation.

This article selects the actual data of ultra-deep carbonate
reservoirs located in the Sichuan Basin as the experimental data.
The Sichuan Basin is the most important gas-bearing basin in
China, and the annual output of natural gas accounts for more
than a quarter of the total annual output of the country. In the
past 10 years, major discoveries of natural gas exploration in the
Sichuan Basin are basically concentrated in the ultra-deep ancient
carbonate strata. The discovery of ultra-deep huge marine gas
fields in the Sichuan Basin has experienced a long exploration
period. The reasons why it is difficult to identify gas-bearing
reservoirs are deep burial, old age, long history of the geological
evolution of carbonate strata in the Sichuan Basin, many control
factors of natural gas accumulation, strong reservoir
heterogeneity, and a complex gas–water relationship of gas
reservoirs. For example, the Anyue gas field was discovered
after more than 40 years of exploration. Although the most
advanced method and technology will be used for reservoir
prediction and gas detection before drilling, the success rate of
exploration wells has been increasing slowly, and the achievement
rate of ultra-deep exploration wells is only about 30% (Cao et al.,
2019). Actual demand is the main driving force of scientific
research. To meet the needs of natural gas exploration in ultra-
deep ancient carbonate formations in the Sichuan Basin, we have

continued to study and develop a variety of reservoir gas
detection methods in the past 10 years, including the
seismic-print analysis method (Cao et al., 2011b; Cao and
Tian, 2011; Cao and Tian, 2019), depth-domain dispersion
analysis method (He et al., 2018), seismic deep learning method
(Cao, 2017; Cao and Wu, 2017; Cao et al., 2017), and new
time–frequency analysis methods (Xue et al., 2013; Xue et al.,
2014) to identify ultra-deep carbonate gas reservoirs more
reliably. These methods and technologies are basically data-
driven, without petrophysics and seismic response mechanism
modeling, and have better applicability to a weak seismic
response of the ultra-deep strong inhomogeneous medium.
The practical application results also show that these
methods can more reliably identify ultra-deep carbonate gas
reservoirs. This article reviews the principle and application
effect of these new reservoir gas detection methods and
discusses the development direction of future reservoir gas
detection methods.

2 SEISMIC-PRINT ANALYSIS

Seismic-print is a new term borrowed from voiceprint around
2011 (Cao et al., 2011a). The initial concept of the seismic-print is
called seismic voiceprint (Cao et al., 2011b). Voiceprint is widely
used to identify the speaker (Kersta, 1962). Speaker identification
technology based on the voiceprint characteristic analysis was
first applied to the field of intelligence listeners approximately in
the 1970s, and it began widely used in the civil alignment system
at the end of the 20th century (Li and Zhang, 2021). A seismic
wave has an intrinsic consistency with an acoustic wave.
Therefore, in theory, the geological properties of seismic data
volume can be identified through research on seismic wave
characteristics using voiceprint analysis method, such as
judging whether the reflective layer contains hydrocarbons.
We call the seismic attributes analysis method borrowed from
voiceprint analysis as seismic voiceprint analysis, referred to as
seismic-print analysis.

Almost all of signal analysis methods, from classic to modern,
are used in the voiceprint analysis which has the sound
characteristics analysis as a target, which are also used in the
seismic signal analysis and seismic attribute extraction. People
listen to sound, and identify the “accent” of the speaker. “Accent”
is not determined on the sound signal record, but is in the ripple
of the sound. The core of the voiceprint analysis aimed at the
speaker identification is to find out the characteristic signal
parameters for the speaker’s “accent,” and such parameters are
called voiceprint parameters. After decades of exploration,
currently, only a few parameters such as MEL cepstrum
coefficient (MFCC) can effectively identify the “accent” of the
speaker (Campbell, 1997; Das and Prasanna, 2018).

The purpose of reservoir prediction is to find oil and gas
reservoirs. The hydrocarbon store in the pore/crack of rocks, and
their volume and quality only account for a very small portion of
the reservoir rock. The seismic responses of the hydrocarbon are
very weak, which can only be reflected in the fine ripple structure
of the seismic record. Similar to the “accent” signal in the sound
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record, it is difficult to intuitively identify the hydrocarbon, and it
is also difficult to use the resolving method to calculate or use the
numerical method to simulate the hydrocarbons. Based on the
intrinsic consistency of the acoustic wave and the seismic wave, it
is possible to identify the pore fluid characteristics of the reservoir
by referencing to the sound pattern of “accent” signal
characteristics.

The key to the seismic-print analysis method is to find better
seismic-print parameters which can stably identify the geological
properties such as hydrocarbon reservoirs. The intrinsic
consistency of seismic waves and acoustic waves determines the
various voiceprint analysis methods such as cepstrum. MEL
cepstrum can also be applied to the seismic data for the
seismic-print analysis. Cepstrum, MEL cepstrum, and the other
voiceprint parameters can be derived for characterizing the
seismic-print features. However, the objective difference of
seismic records and sound records determines that we are
unlikely to use the voiceprint parameters to directly characterize
reservoir fluids. The difference in seismic signals and sound signals
ismainly reflected in repetitiveness, attenuation, frequency, and the
other parameters. The source of the voice signal is the human being
and the voice signal does not decay with the change of time.
However, the source of the seismic records is the reflection signal of
the seismic source signals. It is a secondary source. With the
increase of time, the seismic signal will be decayed. Although
the formation mechanisms of the seismic records and the voice
records are the same, the physical meanings of the parameters in
the wave equation have a big difference in the details. In addition,
the frequency of the voice signal is generally in the range of
100 Hz–7 kHz while the frequency of the seismic signal ranges
from several Hz to more than one hundred Hz. The most
important feature is that the “accent” features in sound records
can be characterized by repetition while the characteristics
response of the target body such as gas-bearing formation in
the seismic records is a small section of the whole seismic
records and is often transient. The similarity between the sound
records and seismic records determines that we can borrow the
voiceprint analysis method for analyzing the seismic records. We
have adopted the voiceprint analysis method to analyze the
cepstrum coefficents’, Mel cepstrum coefficients’, and linear
prediction cepstral coefficients’ (LPCC) parameters of the
seismic Ricker wavelet, the seismic responses of the
hydrocarbon reservoir model, and the field data, and we
obtained the following conclusions (Xue et al., 2016): (1) The
seismic-print parameters of the Ricker wave have a non-linear
relationship with the change of the wavelet frequency. (2) Seismic-
print parameters are sensitive to the change of the reservoir
parameters. (3) It is initially believed that the intersection of the
low value of the first-order cepstrum coefficient and the high value
of the second-order cepstrum coefficient can be used as a seismic-
print criterion for gas-bearing reservoirs.

2.1 Hydrocarbon Detection Based on
Seismic-Print Analysis
The key to hydrocarbon detection based on the seismic-print
analysis is to find the seismic-print parameters that can identify

the gas reservoir. Therefore, we systematically tested the speaker
identification parameters used in the field of voiceprint analysis
and found that the first and second cepstrum coefficients of the
seismic records have good identifications on the gas reservoir.

Cepstrum is a kind of homogeneous transform, and the
cepstrum c(n) of a time series signal x(n) can generally be
expressed as (Cao et al., 2011b)

c n( ) � T−1 ln T x n( )[ ]{ }{ }, (1)
where T denotes the Z transform or Fourier transform. We define
the first-order cepstrum coefficient C1 as c (0), the second-order
cepstrum coefficient C2 as c (1), and the rest is the same.

Generally the seismic data are represented by the convolution
of the reflection coefficients r(t) and the seismic wavelet w(t):

s t( ) � w t( )pr t( ), (2)
in which Ricker wavelet is the generally used wavelet t = 0, 1, . . .
, N − 1.

Taking the discrete Fourier transform of Eq. 2, we obtain

S k( ) � ∑N−1

n�0
w k( )e−j2πN nk

⎧⎨⎩ ⎫⎬⎭ · ∑N−1

n�0
r k( )e−j2πN nk

⎧⎨⎩ ⎫⎬⎭, (3)

in which k = 0, 1, . . . , N − 1.
Then, taking the absolute value on both sides of Eq. 3, we

transform Eq. 3 by using a logarithmic operation into

ln S k( )| | � ln ∑N−1

n�0
w k( )e−j2πN nk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

⎧⎨⎩ ⎫⎬⎭ · ln ∑N−1

n�0
r k( )e−j2πN nk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

⎧⎨⎩ ⎫⎬⎭. (4)

Finally, we apply the inverse Fourier transform to Eq. 4 and
obtain the cepstrum of the seismic data:

c n( ) � F−1 ln ∑N−1

n�0
w k( )e−j2πN nk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

⎧⎨⎩ ⎫⎬⎭ + F−1 ln ∑N−1

n�0
r k( )e−j2πN nk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

⎧⎨⎩ ⎫⎬⎭

� 1
N

∑N−1

k�0
ln ∑N−1

n�0
w k( )e−j2πN nk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣⎡⎣ ⎤⎦ej2πN nk

⎧⎨⎩ ⎫⎬⎭ + 1
N

∑N�1

k�0
ln ∑N−1

n�0
r k( )e−j2πN nk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣⎡⎣ ⎤⎦ej2πN nk

⎧⎨⎩ ⎫⎬⎭. (5)

Equation 5 is the general form of the cepstrum of the discrete
seismic data. Obviously, when n = 0, we have

C1 � ln w 0( )| | + ln r 0( )| |, (6)

C2 � 1
N

∑N−1

k�0
ln ∑N−1

n�1
w k( )e−j2πN 1k

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣⎡⎣ ⎤⎦ej2πN 1k

⎧⎨⎩ ⎫⎬⎭
+ 1

N
∑N�1

k�0
ln ∑N−1

n�1
r k( )e−j2πN 1k

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣⎡⎣ ⎤⎦ej2πN 1k

⎧⎨⎩ ⎫⎬⎭. (7)

Especially, if the seismic wavelet is assumed as

w t( ) � cos πfmt( )e−π2f2
mt

2
, (8)

Eq. 6 will turn into

C1 � ln r 0( )| |, (9)
in which fm is the dominant wavelet frequency. Equation 9
illustrates that the first-order cepstrum coefficient is the
logarithm of the reflection coefficient. Since the absolute value
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is used, the smaller reflection coefficient will lead to a larger
cepstrum coefficient. For example, when r (0) = 0.1, we get C1 =
2.3; however, when we set r (0) = 0.01, we get C1 = 4.6. This fact
shows that the first-order cepstrum coefficient is sensitive to weak
reflection. The high value anomaly of the first-order cepstrum
coefficient means a relatively weak reflection, that is, it indicates a
“dark spot.” Equation 7 shows that the second-order cepstrum
coefficient is a complex function of the high-order logarithmic
reflection coefficients and wavelet, and it reflects the strength of
the scatter wave. Similarly, the low value anomaly means a strong
scattering. Therefore, based on the symmetrical mirror symmetry

that is shown between the first-order cepstrum coefficient
abnormality and the second-order cepstrum coefficient
abnormality of the seismic response in the gas reservoir, we
introduced a new parameter C1−2 (defined as the difference
between the first-order and the second-order cepstrum
coefficients) as a reservoir gas-bearing evaluation parameter
for the seismic cepstrum feature. The workflow of
hydrocarbon detection based on the seismic-print analysis is
shown in Figure 1. In the seismic-print analysis method, the
window length N is a key factor which determines the frequency
ranges for a common cepstrum coefficient section. Generally, the

FIGURE 1 | Seismic-print analysis flow.

FIGURE 2 | The Seismic-print characteristics of two seismic sections intersecting different wells. (A) The seismic section intersecting the gas well. (B) The seismic
section intersecting the dry well. (C) The first-order cepstrum coefficient’s volume of the seismic section in (A). (D) The first-order cepstrum coefficient’s volume of the
seismic section in (B). (E) The second-order cepstrum coefficient’s volume of the seismic section in (A). (F) The second-order cepstrum coefficient’s volume of the
seismic section in (B). (G) The result of the new parameter C1−2 in (A). (H) The result of the new parameter C1−2 in (B).
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first-order cepstrum coefficient section will be in the frequency
range of (0, fs/2N), and the second-order cepstrum coefficient
section will be in the frequency range of (fs/2N, fs/N) (Xue et al.,
2016), in which fs is the sampling frequency.

Hydrocarbon detection technology based on the seismic-print
analysis directly extracts the rock’s pore–fluid information from
the seismic data, which do not explicitly involve the formation
mechanism of the seismic response, and have no approximate
problem with the numerical model. These features are the main
differences between seismic-print analysis-based hydrocarbon
detection technology and the other hydrocarbon detection
technologies based on forward modeling and the inversion of
the wave equation.

Figure 2 shows the seismic-print characteristics of two seismic
sections intersecting different wells: gas well (Figure 2A) and dry
well (Figure 2B) from marine carbonate reservoirs in Sichuan,
China. The target horizon is shown by a green line. The first- and
second-order cepstrum coefficients’ volumes of the seismic
section intersecting gas well show the mirror symmetry
relations in the reservoir area as shown by a rectangular box
in Figures 2C,E while the first- and second-order cepstrum
coefficients’ volumes of the seismic section intersecting the dry
well do not represent the similar characteristics as shown by
Figures 2D,F. And the result of the new parameter C1−2 is shown
by Figures 2G,H.

3 DEPTH-DOMAIN SEISMIC DISPERSION
ANALYSIS

Since Futterman (1962) first discussed in detail that the
absorption and attenuation of seismic waves by rocks
(frequency dispersion phenomenon) is the fundamental
characteristic of the formation, people have paid more and
more attention to the attenuation of seismic waves. Winkler
and Nur (1982) pointed out that the leading causes of seismic
wave attenuation in rocks are friction, liquid flow, viscous

relaxation, and diffusion. Different lithologies have different
absorption degrees of seismic waves. The stronger the
absorption of the stratum, the faster the attenuation of the
high-frequency component of the seismic wave (Pujol and
Smithson, 1991; Helle et al., 2003). According to the close
relationship between formation absorption properties and
lithofacies, porosity, and oil-gas composition, lithology can be
predicted, and the existence of oil and gas can be directly
predicted under favorable conditions (He et al., 2008). Dilay
and Eastwood (1995) discussed the frequency spectrum inside,
above, and below the reservoir and analyzed the influence of the
hydrocarbon property on the power spectrum. The research and
application practice shows that the frequency attenuation
gradient is an attribute that is more sensitive to hydrocarbon
reactions. According to the theory of viscoelasticity, the
amplitude of seismic waves attenuates exponentially as the
propagation distance of the seismic waves increases due to the
absorption effect generated by uniform incompletely elastic
media, that is,

A � A0e
−αx, (10)

whereA is the amplitude of the seismic wave after propagating for
a certain distance; A0 is the initial amplitude of seismic wave; α is
the absorption coefficient; and x is the propagation distance of
seismic wave.

The absorption coefficient of different lithologies shows a
colossal difference. For example, the absorption coefficient of
sandstone layers is larger than that of other rock layers (such as
limestone layers). Therefore, the spread of seismic waves in the
long-distance, its amplitude decay is severe, especially when with
the underlying cracks in filling the hydrocarbon, the amplitude
attenuation is more intense, which is the theoretical basis for
applying the frequency attenuation property to predict the
hydrocarbon properties of the formation (Berryman and
Wang, 2000).

At present, the measurement of dispersion is carried out in
the time domain, but the time-domain dispersion has the

FIGURE 3 | Model comparison diagram. (A) Depth-domain model. (B) Time-domain model.
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problem of inaccurate construction (Wu et al., 2007), and the
time profile and depth profile will not be completely
consistent. Because of the speed difference, the depth with
higher speed is greater than the depth with lower speed in the
same second and the time profile and depth profile will not be
completely consistent. Because of the speed difference, the
depth with higher speed is greater than the depth with lower
speed in the same second as shown in Figure 3, within the
same depth interval in the depth domain (e.g., 120 m, due to
different rock velocities (e.g., 5 and 4 km/s respectively), The
thickness of the form shown on the seismic profile in the time
domain can vary widely (in the case of 48 and 60 ms (two-way
travel time), a difference of 12 ms), and the dispersion
measured in the time domain can be used to estimate the
spatial distribution of the reservoir, resulting in incorrect
results.

Depth-domain seismic attributes are similar to time-
domain seismic attributes in that they derive special
measurements of geometry, kinematics, dynamics, and
statistical characteristics from seismic data. The dynamic
attributes reflect the amplitude variation of seismic data and
the variance, gradient, and energy curvature extended by the
amplitude (energy) (Singh, 2012; Zhang et al., 2017). The
meaning of the depth domain is consistent with that of the
time domain. Also, due to the more accurate positioning of
imaging points in the depth domain, the more accurate spatial
position of the measured attributes can better serve the
reservoir prediction (Zhang et al., 2017; Cavalca et al., 2015).

3.1 Time-Depth Conversion of Seismic Data
The time-depth conversion converts a two-way time-domain
seismic record to the depth domain, in effect transforming a
time-domain seismic wavelet into a depth-domain seismic

wavelet. A discrete expression for a two-way time–sine decay
wavelet in the time domain is given as

xw iΔt( ) � A0e
−aiΔt sin 2 π fm − fni/N( )iΔt i � 0, . . . , N( ) ,

(11)
where fm and fn denote the starting principal frequency and
frequency decay values of the wavelet, respectively; α is the time
decay exponents; and N is the number of wavelet points.
Similarly, we also give a discrete expression for the depth-
domain sinusoidal decay wavelet:

yw iM( ) � A0e
−βiΔh sin 2 π km − kni/N( )iAh i � 0, . . . , N( ) ,

(12)
where km and kn denote the initial main wave number and the
wave number attenuation value of the wavelet, respectively, β is
the spatial attenuation index, which is desirable for the sake of
consistency βΔh = αΔt.

Since the time domain is two-way time and the depth domain
is one-way depth, the frequency of the time domain to the wave
number of the depth-domain conversion relation should not be
the usual relation:

f � kv. (13)
Also, it should be written as

f � 1
2
kv. (14)

Here v is the time-depth velocity of logging interpretation, f is the
frequency, and k is the wave number. So, Eq. 11 can also be
written as

yw iΔh( ) � A0e
−βiΔh sin 2 π fm − fni/N( )i2Δh/v

� A0e
−aiΔt sin 2 π fm − fni/N( )iΔt . (15)

FIGURE 4 | Diagram of the EAA calculation method in the depth domain. (A) Deep seismic gathers; (B) depth time–frequency analysis diagram; (C) EAA extraction
instructions.
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From this, we get a conclusion that the sampling interval
relation satisfies

Δt � 2Δh/v. (16)
Then, after the wavelet frequency in the time domain is given,

the wavelet in the time domain and the depth domain are
numerically equal, that is,

xw iΔt( ) � yw iΔh( ). (17)

3.2 Calculation Method of Seismic
Dispersion Attenuation in the Depth Domain
Mitchell et al. (1996) proposed an analysis method for calculating
the energy attenuation of a seismic signal. The core of this
technology is to obtain the high-frequency exponential
attenuation coefficient of the signal spectrum. Due to the
attenuation of waves during propagation, seismic waves are
expressed as

A � A0e
−axei kxx±ut( ), (18)

where kr = k − iα, k is the plural; α is the attenuation coefficient of
the signal, which is also what we want to calculate. The calculation
process of the energy absorption analysis (EAA) technology is to
continuously analyze the spectrum of seismic channels with a
series of small windows and calculate the attenuation coefficient.
The guiding ideology of EAA technology is to eliminate regular
and uniform energy attenuation in the spectrum analysis to retain
the abnormal part of attenuation.

The depth-domain-specific algorithm of EAA is as follows:
first of all, for each seismic record do a depth frequency analysis
(Figure 4A), on the deep frequency section detect the maximum
energy frequency as the initial attenuation frequency (Figure 4B),
then calculate the frequency corresponding to 20 and 95% of the
seismic wave energy and the corresponding frequency in the
frequency range, according to the frequency of the corresponding
energy, fitting of the frequency and energy attenuation gradient.
The amplitude attenuation gradient factor is obtained
(Figure 4C). The process of EAA dispersion measurement
method based on the aforementioned steps is shown in
Figure 5. The main key points are the conversion of depth-
domain data and the extraction of dispersion parameters.

4 SEISMIC DEEP LEARNING

The advent of the era of artificial intelligence provides new ideas
and methods for many hydrocarbon exploration problems. Deep
learning forms more abstracted high-level attribute categories or

feature representations through a layer-by-layer combination of
low-level features, so it can deeply dig into the essential
information of data and show its unique advantages and
characteristics in recognition and classification (Goodfellow
et al., 2016). At present, the main applications of deep
learning in seismic exploration are fault recognition (Gan
et al., 2016), first arrival picking (Liao et al., 2019), noise
suppression (Liu et al., 2018), and velocity model construction
(Yang and Ma, 2019), which have good results. Gao et al. (2020)
using the transfer learning method for seismic reservoir gas
prediction, Song et al. (2022) proposed a kNN-based gas-
bearing prediction method by k nearest neighbor (kNN)
method, both having good results. Through the block
processing of seismic images and combining the respective
characteristics of supervised and unsupervised learning, it is
successfully applied in the hydrocarbon identification of 3D
seismic data. These successful examples have laid the
advantages of deep learning in establishing the non-linear
mapping relationship between two datasets. At present, there
are few applications in gas prediction, so the introduction of deep
learning to hydrocarbon detection has a long-term development
significance. Pre-stack seismic data have always been the key data
basis for hydrocarbon detection. The amplitude change
information contained in one time point of pre-stack data
includes reservoir gas and water information, which is also the
theoretical basis of AVO inversion. If the relationship between
pre-stack data and hydrocarbon is to be established directly, the
quality of pre-stack data is particularly important. To solve this
problem, we also developed a pre-stack trace set optimization
method based on bi-dimensional empirical mode decomposition
(BEMD) to improve the effective information of the trace set and
enhance the matching degree with a gas-bearing property (Jiang
et al., 2020a), and the method of removing the strong reflection
prominent effective signal (Jiang et al., 2021). The network selects
the fully-connected network to deeply mine information and
establish the non-linear mapping relationship between pre-stack
data and hydrocarbon.

4.1 Overview of Deep Neural Network
Algorithms
Establish the relationship between the labeled dataset and the
training dataset using a deep neural network algorithm (DNN) to
form a prediction network. Neural network technology originated
in the fifties and sixties of the last century, called perceptron, with
input, output, and a hidden layer. The input feature vector is
transformed to the output layer through the hidden layer, and the
classification results are obtained at the output layer. DNN can be
understood as a neural network with many hidden layers.
According to the position of the different layers, the inner

FIGURE 5 | Flow of the depth-domain seismic wave frequency dispersion analysis.
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neural network layer of DNN can be divided into three categories:
input layer, hidden layer, and output layer. Generally speaking,
the first layer is the input layer, the last layer is the output layer,
and the middle layer is the hidden layer. One layer and another
layer are fully connected, in other words, any neuron in layer i
must be connected with any neuron in layer i+1. Although DNN
looks pretty complex, it is still the same as perceptron from a
small local model, that is, a linear relationship:

z � ∑wixi + b, (19)
where z is the output layer, wi is the weight value, xi is the input
layer, b is the bias, and then the final activation function σ(z) is
added to form the basic structure of DNN. DNN is a neural
network algorithm with multiple hidden layers. In the forward
propagation phase, the hidden layer takes the output of the
former layer as the input for the latter layer:

bLk � ∑n
i�0

wL
�i · aL−1i + dL

k, (20)

aLk � f bLk( ), (21)

where bLk represents the output before the activation of the k
neurons in the L layer of DNN, aLk represents the output after the
activation of the k neurons in the L layer of DNN, wL

ik represents
the linear transfer coefficient from aL−1i to bLk , d

L
k represents the

bias constant of the forward propagation function of bLk , and f is
the activation function. Select Relu function as activation
function. Firstly, the Relu function is one of the common
activation functions expressed as follows:

f x( ) � max 0, x( ). (22)
The Relu function is a piecewise linear function, which

changes all negative values to 0, while the positive values
remain unchanged. This operation is called a unilateral
suppression. If the input is negative, the output will be 0. The
neuron will not be activated, which means that only part of the
neurons will be started simultaneously, making the network very
sparse and efficient for computing. Taking pre-stack seismic data
as inputs and hydrocarbon as labels, a direct non-linear mapping
relationship is established through the multi-hidden full
connection network (DNN) to realize hydrocarbon detection.

FIGURE 6 | DNN network structure.

FIGURE 7 | Flow chart of DNN hydrocarbon detection method.
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Similarly, when we input AVO features as labels, we can take a
certain time window vertically and select AVO features within the
time window as input features, such as 5ms, which will help to
improve the stability and continuity of the results. The network
structure is shown in Figure 6. The number of network layers and
neurons can be set according to the complexity of the data to
improve the adaptability and accuracy of the algorithm.

4.2 The Construction Principle of the Gas
Prediction Method Based on Deep Neural
Network
The classical AVO inversion analysis theory builds a non-linear
relationship between amplitude variation with offset and gas-
bearing properties. However, due to the universality of the
mapping relationship established by the classical method and

the strong approximation of the non-linear mapping
relationship, the prediction accuracy is often low, and the
adaptability is worse under deep conditions. The continuous
development of deep neural networks in recent years has shown
a unique advantage in non-linear mapping problems. Therefore,
according to the relationship between AVO characteristics and
the gas-bearing property, the deep neural network is selected as
a bridge to build its non-linear relationship. Combined with the
traditional AVO analysis technology, the calculation accuracy
and efficiency are improved. Based on AVO characteristics, the
input layer of the deep neural network is defined as the
amplitude variation of the processed gather with offset, and
the gas-bearing and non-gas-bearing results of the output layer
are the output. A multi-layered deep neural network structure is
defined. The whole algorithm flow is shown in Figure 7. The
deep neural network algorithm greatly simplifies the screening

FIGURE 8 | Structural diagram of study area.
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process of the traditional AVO analysis method. It directly
establishes the non-linear mapping relationship between pre-
stack gather and hydrocarbon. The results obtained through the
established network reduce the interference of human factors
and improve the accuracy and reliability of the results.

5 A CASE STUDY

5.1 Area Introduction
The study area is located in the Xiaoquan–Xinchang tectonic belt
of the western Sichuan exploration area, with 150 km2 as shown

FIGURE 9 | Seismic profile of the wells in the study area.

FIGURE 10 | Profile of the drilled wells in the study area.
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FIGURE 11 | Seismic-print analysis result.

FIGURE 12 | Results of the profile after time-depth conversion.

FIGURE 13 | Prediction results of depth threshold dispersion hydrocarbon.
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in Figure 8. The Xiaoquan–Xinchang tectonic zone is mainly
zonal distribution located in the Longmenshan foreland basin.
Among them, the collision and contact area of the Qinghai–Tibet
Plateau and the Yangtze Block, two important tectonic parts of
China, is the Longmenshan thrust belt–Longmenshan foreland
basin mountain basin system. The specific shape of the
Longmenshan foreland basin is a general zonal depression
located at the core of China’s abundant natural gas resources.
It gradually appeared in the Late Triassic period. The thickness of
the continental debris deposited in the basin differed, and some
areas could be more than 5,000 m. The main target interval was
the deep carbonate rock of the Leikoupo Formation. Three wells
have been drilled in the study area, and the seismic profile of the
wells is shown in Figure 9 where T2l41 is the top of the upper
reservoir of the fourth member of the Leikou profile group, and
T2l43 is the bottom of the lower reservoir of the fourthmember of
the Leikoupo group. T2l4 is the bottom of the fourth member of
the Leikoupo Formation, and T2l3 is the bottom of the third
member of the Leikoupo Formation. The main target interval of
this study is T2l41 – T2l43. From the seismic profile, it can be seen
that the reservoir is thin, and the signal is relatively weak, and the
seismic signal difference of the three wells is small. Well A, well B,
and well C’s drilling profiles are shown in Figure 10. The drilling
section mainly shows the upper and lower reservoir information
of the upper sub-member of the fourth Leikoupo formation.
From the logging interpretation results, the reservoir location
contains many thin reservoirs, and the reservoir conditions are
good, but the drilling results showed that not all of the high
quality reservoirs contain gas. Well B had a good gas-bearing
property in the upper sub-member of the fourth Leikoupo
formation, well A was a water well, well C was a gas–water
mixed well; well C had a good gas-bearing property in the upper
and lower reservoirs of the fourth Leikoupo formation, well A was
still a water well, and well B had a relatively weak gas-bearing
property. Both seismic data and drilling profiles show the
difficulty of hydrocarbon detection, and also indicate the
demand for gas prediction.

5.2 Results
5.2.1 Seismic-Print Analysis
The seismic-print analysis method is used to calculate the profile
in the study area, and the hydrocarbon detection results are
obtained. In Figure 11, the strong amplitude anomaly area
indicates that in the hydrocarbon area, the stronger the
amplitude, the stronger the hydrocarbon. It can be seen from
the results in T2l41–T2l43 that Well A is a water well, and the
amplitude anomaly is relatively weak, which is consistent with the
results. The hydrocarbon of wells B and C shows a strong
amplitude anomaly. The strong amplitude anomaly position is
in good agreement with the hydrocarbon position, and the overall
hydrocarbon detection distribution is in good agreement with the
geological distribution characteristics, which verifies themethod’s
effectiveness.

5.2.2 Depth-Domain Seismic Dispersion Analysis
Firstly, the time-depth conversion of the seismic data is carried
out to obtain the results of Figure 12. It can be seen that after
conversion, the actual structural distribution of the three wells is
more conducive to gas distribution and migration and a more
intuitive display of reservoir distribution. The EAA algorithm is
used to calculate the dispersion based on the depth-domain data,
and the results are shown in Figure 13. The same strong
amplitude represents the gas-bearing strength. The results
further demonstrate the non-hydrocarbon nature of well A
and the hydrocarbon nature of wells B and C, which have a
higher accuracy and can measure the hydrocarbon to some extent
in the horizon from T2l41 to T2l43.

5.2.3 Seismic Deep Learning
The pre-stack seismic gathers of well B and well C are used to
establish a training dataset corresponding to the gas-bearing
property after time-depth conversion (1 is gas-bearing, 0 is
non-gas-bearing). The dataset size is 24,000 training samples
(using the whole profile data set, the profile time range is
2,400–3,600 ms, and the number of samples corresponding to

FIGURE 14 | DNN hydrocarbon detection results.
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FIGURE 15 | Three dimensional result of hydrocarbon detection. (A) Seismic-print analysis of hydrocarbon detection results for upper member 4 of the
Leikoupo Formation (T2l41). (B) Seismic-print analysis of hydrocarbon detection results for the lower reservoir section of the fourth member of the Leikoupo
Formation (T2l43). (C) Prediction results of the dispersion hydrocarbon in depth domain of upper reservoir section 4 of the Leikoupo Formation (T2l41). (D)
Prediction results of dispersion hydrocarbon in depth domain of lower member 4 of the Leikoupo Formation (T2l43). (E) Prediction results of hydrocarbon
in DNN of upper member 4 of the Leikoupo Formation (T2l41). (F) Prediction results of the hydrocarbon capacity of DNN of lower reservoir Section 4 of the
Leikoupo Formation (T2l43).
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a single well is 1200. The five pre-stack gathers before and after
the two wells are used as training data to form a training set of
10*1200 = 24,000 samples). The whole profile is used as a
prediction sample containing 340,800 prediction samples. A
deep neural network with five hidden layers is established. The
activation function selects a sigmoid function, the number of
neurons is 200, the loss rate of neurons is 0.6, the single training
batch size of training samples is 45, and the number of iterations
is 1,000. Labels 0 and 1 are the label calibrations of gas-bearing
and non-gas-bearing reservoirs. The sigmoid function is used as
the activation function to distribute the predicted results [0, 1].
Thus, the predicted results represent a probability closer to gas-
bearing and non-gas-bearing reservoirs. When drawing, all values
below 0.5 are set as non-gas-bearing, and values above 0.5 are
expressed in an increasingly red color, and the profile results of
hydrocarbon detection results are obtained, as shown in
Figure 14. It can be seen from the results that the overall
hydrocarbon prediction results are highly consistent with the
drilling results and geological laws. The test results show that well
A is a water layer in T2l41–T2l43. Well B has strong gas-bearing
characteristics in the upper section of the fourth member of the
Leikoupo section. The overall results are consistent with the
drilling results, especially well A without network training, and
the results are also consistent with the actual, indicating the
effectiveness and stability of the neural network algorithm.

5.2.4 Three-Dimensional Data Analysis
Based on the two-dimensional profile calculation results, three
methods are used to predict the slicing results of the upper
reservoir of the Leikoupo fourth section, the lower reservoir of
the Leikoupo fourth section, and the Leikoupo third section in the
three main target horizons of the whole area. Figures 15A,C, and
E are the hydrocarbon prediction results of the upper sub-
member fourth of the Leikoupo Formation, and b,d, and f are
the lower members, Figures 15A,C, and E represent the seismic-
print analysis method, depth-domain dispersion, and the DNN
network method, and Figures 15B,D, and F correspond to the
meanings of a, c, and e. The upper and lower reservoir prediction
results show the effectiveness and consistency of the three
methods. The upper reservoir results show the characteristics
of well A without gas, well B with gas, and well C with the
gas–water mixture, while the lower reservoir results show the
characteristics of well A without gas, well B with gas, and well C
with gas. The predicted results are consistent with the actual
drilling results, indicating the effectiveness of the proposed
method.

5.3 Discussion
The burial depth of the carbonate strata of the Leikoupo
Formation in the study area is more than 5,500 m, and the
thickness of a single reservoir is several meters to 10 m. The
physical properties of the gas-bearing reservoirs and water-
bearing reservoirs are small, making the detection of gas-
bearing reservoirs based on seismic data prone to errors.
Before drilling, all the wells have been used for reservoir
prediction and gas-bearing detection using the most advanced
methods and technologies, including the failed well which is low

in production. Even after drilling, the test results are still not
completely consistent with the actual drilling results of some wells
by adding the well data constraints. This shows that the existing
gas detection methods cannot meet the exploration needs in deep,
complex reservoir conditions. From the experimental results
introduced in the previous section, the detection results of our
newly developed reservoir hydrocarbon detection method are
highly consistent with the actual drilling results. The seismic deep
learning (SDL) method has higher accuracy, but the calculation
cost is high. In comparison, the seismic-print analysis (SPA)
method has higher efficiency. The depth-domain seismic
dispersion analysis (DDSDA) method has more practical
significance and can accurately predict the gas-bearing depth
and location. This shows that the new method can better adapt to
strong heterogeneity and weak seismic response of the ultra-deep
ancient carbonate reservoir medium. The main advantage of the
new methods is that they are data-driven and do not need to
model rock physics and seismic response mechanisms, so they
can naturally adapt to any complex medium. In contrast to the
DHI methods such as AVO analysis, the calculation expression of
evaluation parameters has made many assumptions in derivation.
If the actual situation does not coincide with these assumptions, it
may be wrong. At the same time, we should also see that the
evaluation standard of data-driven reservoir hydrocarbon
detection depends on the calibration of well data. When the
available well data are few, or no well data are available at all, it is
possible to make mistakes according to experience. But, we
believe that with the accumulation of practical application
data, the reliability of data-driven reservoir gas detection
methods will be higher and higher. Data-driven reservoir gas-
bearing detection results are essentially probabilistic and, in most
cases, qualitative. The success of oil and gas exploration wells
depends on quantity. Only when the product reaches the level of
economic benefits can it be called a success. Therefore, the
evaluation of reservoir hydrocarbon should develop from
qualitative detection to quantitative prediction in the future,
and the technology of reservoir hydrocarbon prediction should
be developed. The existing drilling data reveal that the ultra-deep
ancient carbonate reservoir has strong heterogeneity. At the same
time, due to deep burial and other reasons, the seismic response of
the reservoir is weak and complex, so that the prediction of
reservoir hydrocarbon based on rock physics and seismic
response analysis modeling is almost impossible. Deep
network adaptive non-linear modeling based on deep learning
can play a role, which may be the most potential breakthrough
research.

In general, this article studies and discusses the current
hydrocarbon prediction methods for deep and ultra-deep
carbonate rocks. The seismic-print method is mainly for post-
stack data, which can quickly and efficiently obtain weak gas-
bearing information, but require a relatively high signal-to-noise
ratio for post-stack data. The noise immunity is not particularly
good. The depth-domain attenuation method can detect
hydrocarbon from a depth perspective, making the prediction
results more accurate, but the accuracy of time-depth conversion
needs to be improved; the neural network hydrocarbon
prediction is based on pre-stack data, which improve the
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efficiency and accuracy of calculation, but the establishment of a
sample database is still a problem that needs to be further studied.

6 CONCLUSION

This article describes three methods for gas reservoir
identification of ultra-deep carbonate rocks in the Sichuan
Basin: seismic-print analysis method, depth-domain dispersion
analysis method, and seismic deep learning method. The seismic-
print analysis method uses cepstrum analysis to highlight the
reservoir’s weak response signal and reveal the cepstrum
characteristics of the gas-bearing reservoir. The first-order and
second-order cepstrum coefficient anomalies are a convex mirror
symmetry. The depth-domain dispersion analysis method
converts the dispersion analysis usually carried out in the time
domain to the real space domain, creating conditions for
estimating the reservoir hydrocarbon based on dispersion. The
seismic deep learning method uses the adaptive non-linear
modeling ability of a complex system of the deep network to
construct the deep network model that directly predicts reservoir
hydrocarbon from pre-stack seismic data. These three methods
can be regarded as data-driven reservoir hydrocarbon detection
methods, which do not explicitly involve establishing rock
physical and seismic response analysis models. Therefore,
compared with the existing DHI method, the applicability of
these methods to the weak seismic response of ultra-deep strong
heterogeneous reservoirs is stronger. The practical application
results also demonstrate that these methods are more effective.
Nevertheless, it is still not a silver bullet, and there is still a

situation where the prediction results are not consistent with the
actual situation, and it has not been widely applied.
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