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Late Cenozoic wildfire evolution in Inner Asia has been attributed to both ice-volume
modulating precipitation changes and surface uplift of the Tibetan Plateau. Whether this is
the case or not requires additional research and wildfire records from older periods. In this
study, 251 microcharcoal samples from the Huatugou section in the western Qaidam
Basin are used to reconstruct the early Oligocene-middle Miocene wildfire history of the
northern Tibetan Plateau. The results show that wildfires remained relatively frequent
before ~26Ma, then reduced gradually until ~14 Ma, and finally increased slightly but still at
low level between 14 and 12Ma. The wildfire variations can be correlated to the steppe-
based dryness changes, and both of which are coincident with global temperature
changes. We infer that mean annual temperature might have played a dominant role in
controlling wildfire frequencies in the northern Tibetan Plateau through modulating
atmospheric moisture content. This conclusion is in line with previous studies including
microcharcoal-based wildfire records of 18–5Ma successions from the Qaidam Basin as
well as soot-based wildfire records from Quaternary glacial–interglacial cycles of the
Chinese Loess Plateau.
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INTRODUCTION

The Earth’s surface has experienced wildfires since the appearance of terrestrial plants around 420million
years ago (Ma) (Scott and Glasspool, 2006). Wildfire is driven by factors such as carbon-rich vegetation,
seasonally dry climates, atmospheric oxygen, widespread lightning, and volcanic ignition sources
(Bowman et al., 2009). Wildfire records can therefore provide useful information about the evolution
of vegetation, climate, atmosphere, and human society (Dale et al., 2001; Bowman et al., 2009; Edwards
et al., 2010; Burton, 2011; Miao et al., 2016b).

For example, charred grass cuticles from tropical Africa have been used as a proxy for late
Cenozoic wildfires, which indicates essentially dry periods since 8 Ma (Morley and Richards, 1993).
Charred grains from southern Africa have also been used as a wildfire proxy but showing that wildfire
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reached a maximum at 7–6 Ma ago under moderately dry
conditions (Hoetzel et al., 2013). Similarly, wildfire and its
potential links with monsoonal precipitation have been studied
in inner Asia for the past 7 Ma (Zhou et al., 2014) or 16 Ma (Hui
et al., 2021). Wildfire patterns in East Asia have changed during
the last 13 Ma, possibly influenced by regional hydroclimatic
changes (Shen et al., 2018). In East Asia, the high-resolution soot
record shows unique and distinct glacial–interglacial cycles that
are synchronous with marine δ18O records, suggesting that
aridity, which was driven by global ice volume, controlled
wildfire intensity during the past 2.6 Ma (Han et al., 2020).
Similar correlations between global temperature and regional
wildfire intensity have also been found in the northern
Tibetan Plateau for the middle Miocene-early Pliocene
(18–5 Ma) period, while tectonic activities of the northern
Tibetan Plateau may have only played a secondary role (Miao
et al., 2019).

Globally, late Cenozoic wildfire patterns varied between
different places, and a diverse range of driving mechanisms
have been proposed (Bond, 2015), such as precipitation
amount, degree of aridity, and hydroclimatic conditions, etc.,
that are further driven by either solar radiation (Han et al., 2020),
atmospheric circulations (Jia et al., 2003), seasonality (Shen et al.,
2018), or topographic changes (Miao et al., 2019). These
hypotheses are largely based on evidence from individual sites,
which may not extend to other sites or different time intervals.
Extending such site-specific records to regional scales will help
improve our understanding of the driving forces of wildfire.

In contrast to the late Cenozoic sequences, wildfire records of
earlier periods are scarce. At present, the only wildfire record that

covers the whole Cenozoic period comes from the northern
Pacific Ocean (Herring, 1985), and the only record from the
southern hemisphere (Australia) covers the middle Eocene
(Kershaw et al., 2002). Records from the South China Sea
cover periods since the early Oligocene (Jia et al., 2003).
However, none of these Paleogene records can be directly
compared to the late Cenozoic wildfire records on land due to
their far localities and wildfire proxies. In this study, we focus on
sedimentary records of the microcharcoals from the Qaidam
Basin to reconstruct the early Oligocene-middle Miocene
wildfire history of the northern Tibetan Plateau, and then
integrate this new record with our previous reconstruction
from the same basin for the middle Miocene-early Pliocene
(Miao et al., 2019), to assess the drivers of wildfire in this
region over a long period.

GEOLOGICAL SETTING AND SAMPLING

Geological Setting
The Qaidam Basin, covering an area of 200,000 km2 and lying at
an average elevation of 2,800 m, is the largest topographic
depression on the Tibetan Plateau. The current climate in the
basin is arid to hyper-arid, with a mean annual precipitation of
less than 300 mm in the east, and less than 50 mm in the west. The
basin locates in cold climate zone with mean annual temperatures
ranging between 2°C and 4°C. The westerlies are the dominant
atmospheric circulation pattern throughout the year, while the
East Asian monsoon only reaches the southeastern basin during
summer (Wu et al., 1980) (Figure 1A). Vegetation in the basin is

FIGURE 1 | Physiographic map of inner to eastern Asia, showing the locations for the wildfire study. (A). Geographic map of the Tibetan Plateau, showing the study
area and a simplified representation of atmospheric circulation. LC section in the Loess Plateau (yellow area) is for reference (Han et al., 2020). (B). Morphotectonic map
of Qaidam Basin and the location, of the HTG section that was sampled in this study, and of the KC-1 core (Miao et al., 2019). (C). Geological map of the Youshashan
Range in the western Qaidam Basin. E3S: Shangganchaigou Formation, N1

1X: Xiayoushashan Formation, N2
1S: Shangyoushashan Formation, N3

1
–N2S: Shizigou

Formation, redrawn from (Chang et al., 2015).
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dominated by desert species, which grow on gravelly lake margins
and well-drained soils on alluvial fans. The main species include
Amaranthaceae (Chenopodioideae), Ephedra, Nitraria, Tamarix,
and Asteraceae, etc. Occasionally, Picea and Sabina, two types of
woods can be observed on high mountains in the eastern basin
(Miao et al., 2019).

Geomorphologically, the Qaidam Basin is bounded by the Altyn
Tagh to the northwest, the East Kunlun Shan to the south, and the
Qilian Shan to the northeast (Figure 1B). Tectonically, the basin is
bounded by the Altyn Tagh fault, Kunlun fault, and North Qaidam-
Qilian Shan thrust belts (Song and Wang, 1993; Yin et al., 2007).
Cenozoic stratigraphic units in the basin were deposited mainly in
fluvial-lacustrine environments. Although disputes exist concerning

the stratigraphic ages, there is a consensus that the depositional
center of the basin has shifted southeastward along the axis of the
basin from the early Cenozoic to the present (Song andWang, 1993;
Métivier et al., 1998; Wang et al., 2006; Yin et al., 2007; Cheng et al.,
2014). Provenance analysis indicates that the Cenozoic deposits in
the Qaidam basin were mainly sourced from surrounding
mountains (Rieser et al., 2005; Jian et al., 2013; Cheng et al.,
2016; Wang et al., 2017; Lu et al., 2019; Nie et al., 2020; Cheng
et al., 2021).

Study Site and Age Constraints
The Huatugou (HTG) section (bottom: 38.43°N, 90.89°E; top:
38.36°N, 90.88°E) lies at the southwestern side of the Youshashan

FIGURE 2 | Lithology, sedimentary facies with age between boundary, and microcharcoal results from the HTG section. Age estimates (Chang et al., 2015) and
sedimentary facies (Li et al., 2016). MC: total microcharcoal concentrations. Dashed arrows show the dominant MC trends.
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anticline in the western Qaidam Basin (Figure 1C) and is about
4,360 m thick (Rieser et al., 2005; Song and Wang, 1993). Strata in
the section include the early Oligocene to late Miocene
Shangganchaigou, Xiayoushashan, and Shangyoushashan
formations. Detailed lithofacies analysis indicates that the strata
between 200 and 2,700 m are dominated by marginal lacustrine
facies, while the parts below ~200m and above ~3,500 m are
dominated by braided river facies (Li et al., 2016) (Figure 2).
Magnetostratigraphic study of the HTG section indicates that the
strata between 1,200m and 4,100 m can be confidently determined
to be 20.7–11.6Ma, while there are two alternative age correlations
for the lower (0–1,200 m) section: either ~28–20.7Ma or
~31–20.7Ma (Chang et al., 2015).

METHODS AND RESULTS

Microcharcoal Extraction and Identification
A total of 251 samples of mudstone, sandy mudstone, and siltstone
were collected for microcharcoal analysis. Over two-thirds samples
were from the lower part of the section (older than 25Ma), while 28
samples are from the upper section (younger than 20Ma) due to the
lack of suitable sampling lays because of the coarse grain size
(Figure 2). All samples were pretreated using the following
procedures. After gentle grinding to fine powders, two different
types of acid were added successively, 10% HCl to remove
carbonates completely (usually 2–3 days) and then 40% HF to
remove silicates; after which the remaining powders went
through 10 μm sieve again to enrich microcharcoal grains. Then,

the pretreated specimens were mounted in glycerol for identification
(Miao et al., 2019). Samples were counted under a light microscope
at 400 × magnification with regularly spaced traverses.
Microcharcoal grains were counted and photographed under the
microscope. All samples were analyzed at the Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences.
A known number of Lycopodium clavatum spores (batch #
27,600) were initially added to each sample to facilitate the
calculation of microcharcoal concentrations (MC). The MC is
calculated as:

MC � [N/L] × 27600/W

N, identified number of microcharcoals (grains); L, number of
Lycopodium clavatum (grains); W, sample dry weight (g).

Microcharcoal Results
The results show that in the HTG section the MC varied between
410 and 54,650 grains/g with an average of 9,720 grains/g. In general,
theMC keeps at high values from the bottom of the section to 800m
(corresponding to ~31.0–26.0Ma or 27.0–23.5Ma according to the
two different age models), with the MC varies between 720 and
54,650 grains/g (average of 11,240 grains/g) in 146 samples. Then the
MC experiences a continuous decreasing trend until ~2,800m

FIGURE 3 | Correlations between lithological stratigraphy and MC at
500–1,000 m of the HTG section. No regular MC change with the lithology,
the high values can exist in either mudstone or sandstone.

FIGURE 4 |Correlations between wildfire to aridity and temperature. (A).
MC records according to older age model. (B). global temperature curve
(Westerhold et al., 2020) chosen according to the MC old model. (C). aridity
records basing on steppes in pollen assemblages during ~26–20 Ma
(Sun et al., 2014) and 18–5 Ma (Miao et al., 2011). Gray curve is a copy of the
(A) to couple to these two intervals and sample frequency in Lunpola is three.
The vertical light blue rectangles showed the positive correlations. Yellowish
solid line shows the LOESS Fit with span: 0.5.
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(~14Ma), with values ranging between 410 and 45,060 grains/g
(average 5,620 grains/g) in 98 samples. Except for two samples that
have high MC values of 21,470 and 45,270 grains/g at 3,001m and
3,141 m, respectively. The MC remains low in the upper section but
slightly higher than that at ~14Ma, with values ranging between 480
and 2,170 grains/g (average 1,410 grains/g) in six samples.

DISCUSSION

Data Evaluation and Wildfire Trends
The relationship between microcharcoal concentration and wildfire
is intuitive: higher MC corresponds to wildfires with higher
frequency or intensity, and vice-versa (Herring, 1985; Patterson
et al., 1987; Ward and Hardy, 1991; Whitlock and Larsen, 2002;
Miao et al., 2016a; Miao et al., 2019). This interpretation is based on
the assumption that sediment provenance is stable and that
sedimentary processes have little influence on microcharcoal
transport and accumulation, or at least that any influence is
constant (Patterson et al., 1987; Anne-Laure et al., 2013).

Three lines of evidence indicate that the MC variations in the
HTG section are not controlled by provenance or sedimentary
processes. Firstly, provenance studies of sandstones and
mudstones collected in the western Qaidam Basin show
negligible (Rieser et al., 2005) or a small variation (Cheng et al.,
2019) during the Oligocene to the middle Miocene. Secondly, the
sediment transport dynamics also have no influence on MC. As

shown in Figure 3, no correlations were found between MC and
lithofacies, e.g., mudstone, sandy mudstone, and siltstone, which
reflect different transport dynamics. Thirdly, magnetostratigraphic
analyses indicate that the accumulation rate increased abruptly
around 15Ma (from 180m/Ma or 130m/Ma to ~500m/Ma)
(Chang et al., 2015), but no abnormal changes in MC occurred
around 15Ma (Figure 4). In contrast, the most significant MC
change occurred within the fluvial environment at ~13.5Ma.

Compared with the other depositional environments, e.g.,
shallow lacustrine and fluvial, the interval of palustrine
environment shows a much higher MC (Figure 2). This is
reasonable as palustrine is a nearly still water environment
compared with the running water conditions in the other
depositional environments, and thus would accumulate more
microcharcoals for the same period. However, the MC variations
within the palustrine environment (both the short-term large
variations and the long-term general variations) and the very
high MC in the braided river environments indicate that,
excluding the influence of different depositional environments,
the long-term general variations still reflect wildfire intensities
and frequencies.

Based on the above arguments, we conclude that the MC in the
HTG section can be used to reconstruct ancient wildfire activities in
the northern Tibetan Plateau. The results indicate that the wildfire
experienced a higher frequency and/or intensity during the
Oligocene (e.g., before ~26 or ~23Ma), then decreased gradually
to stay at relatively lower levels since after and last until the middle
Miocene (In this study, we prefer the later age model, see
Supplementary Materials, Figure 4A).

Wildfire Mechanisms
Pollen records would have been ideal for reconstruction of the
aridification history of the Qaidam Basin (Cai et al., 2012;
Koutsodendris et al., 2019; Miao et al., 2012; Wang et al., 1999;
Wu et al., 2011), which could then be compared to the MC records
(Miao et al., 2019). However, no continuous pollen records have
been successfully retrieved from the HTG section or any sections
within or adjacent to the Qaidam Basin with reliable age constraints.
Here we compare our MC data with global mean air temperature
change reconstructed from benthic δ18O changes (Westerhold et al.,
2020) (Figure 4B) and two intervals of xerophytic pollen records
from the Lunpola Basin (25.5–19.8Ma) (Sun et al., 2014) and
Qaidam Basin (18–12Ma) (Miao et al., 2011) (Figure 4C).

It is observed that during stages of high amounts of steppes (such
as Ephedra, Nitraria and Chenopodiaceae, etc.), the MC is also high
and vice versa. This correlation indicates potential links between
strong wildfire and dry conditions (low precipitation). In fact, such a
correlation has also been found in other parts of East Asia. For
example, high-resolution soot records from the Loess Plateau to the
east, have been correlated to glacial–interglacial cycles of monsoonal
precipitation during the past 2.6Ma (Han et al., 2020) (Figure 5B):
stronger wildfires always correlate with less precipitation during
glacial periods. Similarly, two separate Miocene (e.g., 18–5Ma)
microcharcoal–based wildfire records from the Qaidam Basin
also agree with enhanced aridification under a global cooling
trend (Miao et al., 2019) (Figures 5A,C). All these records
support the hypothesis that dryness (less precipitation) plays a

FIGURE 5 | Correlations between wildfire in Inner Asia and global
temperature. (A). the MC records from the HTG section (this study) and KC-1
core (18–5 Ma) from the Qaidam Basin (Miao et al., 2019). (B). Quaternary
fires indicated by soot-MARs reconstructed from Chinese Loess Plateau
(Han et al., 2020). (C). global temperature curve (Westerhold et al., 2020).
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crucial role in driving wildfires, such that dryness (less precipitation)
facilitates dehydration of vegetation, which becomes more
flammable (Pechony and Shindell, 2010; Jolly et al., 2015).

Furthermore, positive correlations are also observed between the
MC records and global temperature changes, which further support
the hypothesis that stronger wildfires always occur during periods of
less precipitation (dry conditions). Lower global temperature helps
to reduce the amount of vapors evaporated from oceans and other
water bodies, which would then reduce the precipitation amounts in
continental interiors that would lead to higher fire frequency.
Further detailed explanations are as follows: according to
Avogadro’s Law, temperature determines the maximum
concentration of water vapor at sea level and standard air
pressure. As temperature rises, the water vapor concentration
increases significantly (Machine Applications Corporation, 1999).
The higher the temperature is, the more water vapor is pumped into
the atmosphere, leading to increased precipitation on land (Cai et al.,
2012; Held and Soden, 2006; Miao et al., 2017; Ruddiman, 2008;
Singh, 1988). For example, the annual precipitation data obtained
from passive microwave radiometry are correlated well with sea
surface temperatures (Stephens, 1990). Modeling studies have also
shown that when annual temperatures increase by 2.0°C, the annual
precipitation amount in the monsoonal Tibetan Plateau would
increase by ~3.9%; while in the westerlies dominated region of
the Tibetan Plateau, precipitation only increases by 0.8% (Wang
et al., 2021). Over large areas such as the Asian-Australian monsoon
regions, the total precipitation is likely to increase significantly (by
4.5% per °C) under the representative concentration pathways (RCP)
scenarios of 4.5 anthropogenic warming scenario (Wang et al.,
2014).

The positive correlations between global temperatures and
evaporation rates have been observed and supported by previous
studies (Machine Applications Corporation, 1999). We, therefore,
consider that global temperature might have played the primary role
to influence precipitation amount changes, which further drives
wildfire evolution in Inner Asia.

As in Introduction, the surface uplift the Tibetan Plateau has been
regarded as a dominant agent in the local and regional paleoclimate,
e.g., breeding the Asian summer monsoon (wetting the East Asia)
and bifurcating the westerlies, which might have influenced the
wildfire evolution. However, the onset of the surface uplift of the
Tibetan Plateau has been hotly debated, such as early Cenozoic (e.g.,
Ding et al., 2017; Wang et al., 2014; Su et al., 2019; Wang et al., 2008)
versus late Cenozoic (e.g., Coleman andHodges, 1995; An et al., 2001;
Spicer et al., 2003; Deng and Ding, 2015; Sun et al., 2014), which has
directly affected our judgment of the uplift of the Tibetan Plateau on
the wildfire.

CONCLUSION

In this study, we present a newmicrocharcoal dataset of 251 samples
from the early Oligocene-late Miocene section in the western
Qaidam Basin, northern Tibetan Plateau. We argue that the
microcharcoal concentration is minimally controlled by
sedimentation processes, and thus can be used to reconstruct
wildfire activities in the northern Tibetan Plateau. The data

indicate high frequency and/or intensity of wildfire during the
Oligocene (before ~26), then decreased gradually to stay at
relatively low levels until ~12Ma. Comparisons between dryness
records and global temperature change indicate that high levels of
wildfire are well linked to colder and drier periods. We infer that
wildfire is strongly influenced by temperature changes through
influencing the atmospheric moisture content that are evaporated
from ocean surface and other water bodies. Such correlations have
also been observed in the middle to late Miocene microcharcoal
records in the Qaidam Basin and soot-based Quaternary glacial-
interglacial cycles in the Loess Plateau.
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online at: https://www.frontiersin.org/articles/10.3389/feart.
2022.850809/full#supplementary-material

Supplementary Figure S1 | Correlations between wildfire obtained in the HTG
section and global air temperature at the bottom (<1750 m) of the section by
two age models. (A,B), the MC curve by older age model and comparison with
the global air temperature curve (Westerhold et al., 2020). (C,D), the MC curve
by younger age model and comparison with the global air temperature curve
(Westerhold et al., 2020). The temperature curves have been also shown as
gray shading in A and C for comparison. Shallow blue rectangles show the
unmatched correlations and thick solid blue lines show the LOESS Fit with
span: 0.5.
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