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Tight gas makes up a significant portion of the natural gas resources. There are tight gas
reservoirs with great reserve and economic potential in the west Sichuan Basin, China. Due
to the complex mineral component and heterogeneity of the thick tight sand formations,
the reservoir parameters are challenging to evaluate from well logs using conventional
methods, even the fundamental porosity. The mineral components must be considered. In
this study, based on the analysis of different logging responses of varying lithologies, we
introduced the complex reservoir analysis (CRA) method. CRA is always used in the
carbonate reservoirs to calculate the different rock component volume fractions and can
be used to classify the lithology and calculate the porosity simultaneously. By analyzing the
component, a new equivalent component method (CRAE) is proposed based on the CRA
method in this paper. In this method, the AC-CNL equation-calculated porosity is
calibrated according to the core porosity data to set the rock components’ physical
parameters. After calibration, the rock component fractions and porosity can be calculated
accurately. Also, according to the relationship between the grain size and natural gamma-
ray, a granularity median model was established. Six lithology types, including coarse-
grained quartz sandstone and coarse-grained lithic sandstone, are distinguished, and the
porosity is estimated in the study area. The identification results are compared with the
mud logging data and other methods. It shows that this method is very well adequate in the
tight sandstone gas reservoirs in the study area.
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INTRODUCTION

Unconventional reservoirs have become the research hotspot (Gao et al., 2018; Cong et al., 2022). As
an essential source of unconventional natural gas, the tight sandstone reservoirs have attracted
extensive attention (Bai et al., 2013; He et al., 2020). These reservoirs in China have excellent resource
potential and are characterized by low porosity, low permeability, and complex pore structure (Li
et al., 2017). Stratigraphic lithology classification and identification are essential for evaluating fine
modeling reservoir parameters (Li and Li, 2013; Alzubaidi et al., 2021). Accurate evaluation of
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reservoir properties such as lithology identification and porosity
calculation is the basis of exploration and development, as well as
the basis for calculation of reservoir parameters (Yuan et al., 2018;
Zhou et al., 2018). Their accuracy is very important for predicting,
exploring, and developing rich areas of oil and gas resources.
However, typical characteristics such as complex lithology, low
maturity of sandstone, strong diagenesis, and substantial
heterogeneity bring difficulties and challenges to the accurate
identification of the lithologic zone and become the main
constraints for practical exploration of this type of reservoir
(Pang et al., 2019; Xiong et al., 2020; Bai et al., 2021; Wei
et al., 2021).

Previous research mainly focused on improving the
identification accuracy of lithologic types by using logging
curves by various methods (Tan et al., 2017; Liu et al., 2020).
Traditional lithologic identification methods include debris
logging, core logging, and cross plot (Zhao and Gao, 2003).
Gupta et al. (2012) used natural gamma-ray logging, high-
resolution resistivity logging, lithologic density logging, and
other logging data cross-mapping techniques to evaluate the
lithologic and physical property parameters of the reservoir
profile from two wells of fractured basalt. Cheng et al. (2016)
established the cross-plot method and logging curve calculation
method to identify sandstone, siltstone, etc. Zhou et al. (2017)
proposed a lithologic classification method based on thin
sections, logging curves, and core physical property data. Das
and Chatterjee (2018) identified gas sand, saltwater sand,
carbonate rock, and shales by analyzing vertical and horizontal
impedance diagrams. Khamees et al. (2021) used neutron-density
cross plot, acoustic-density cross plot, M−N cross plot, etc. The
results show that they are well applied in lithology identification
of Jeribe formation in a field in northern Iraq. For the unique
strata with strong heterogeneity and complex structure, the
traditional lithology identification method is challenging to
ensure identification accuracy (Sun et al., 2019).

With the re-emergence of deep learning in recent years, many
machine learning methods have been applied to lithology
identification using logging data. The combination of machine
learning algorithm and lithological classification model mainly
includes support vector machine (Sebtosheikh and Salehi, 2015),
neural network (Han et al., 2018), and decision tree (Duan et al.,
2016). Sebtosheikh et al. (2015) adopted the support vector
machine (SVM) classification method to predict the lithology
of a heterogeneous carbonate reservoir in Iran based on core
analysis data. Zhao et al. (2017) proposed a multivariate
membership function discriminant method, which regarded
lithology identification as a linear model in the fuzzy domain
and obtained target results by establishing a multivariate
membership function. Wang et al. (2018) proposed a KNN
clustering optimization method based on weighted cosine
distance to fit the lithologic model better. Xiang et al. (2020)
presented the application of deep learning to establish a deep trust
network (DBN) based on logging data in lithology. However, the
combination of machine learning methods with geological data is
less, and the results may not conform to the general geological
laws, resulting in unsatisfactory identification results. Also, most
of these methods are limited to lithology identification and rarely

combine with reservoir physical property data. Moreover,
machine learning methods may be affected by drilling fluid
(Chen et al., 2020).

Based on the geological data of the target interval, we classify
the lithology of the reservoir by integrating the thin-section
information, core analysis data, and well logging data in this
paper. The lithology of these reservoirs is mainly coarse-,
medium-, and fine-grained quartz sandstone and lithic
sandstone. By analyzing the relationship between rock
compositions, reservoir parameters, and logging response, we
proposed a new method based on the complex reservoir analysis
method (CRA) with equivalent components (CRAE). We used
the acoustic transit time (AC) log and compensated neutron
porosity log (CNL) to estimate formation porosity and set the
parameters of the matrix components to make the results agree
with the core data. Then, the fractions of the mineral components
are calculated. Also, we used the natural gamma-ray log (GR) to
calculate the granularity median. By combining the component
fractions and granularity median, we can accurately identify the
formation lithology of the Xu 2 Member tight gas reservoir in CX
depression, West Sichuan Basin. The second part of this article
gives the geological background. The third part introduces the
data and methods of the study. The fourth and fifth present the
application results and comparison and discuss the effect. Finally,
conclusions are drawn in the sixth section.

GEOLOGICAL SETTINGS

The West Sichuan Depression is located west in the Sichuan
Basin, east to the Longmenshan orogenic belt, and northwest to
the Yangtze block. It is a part of the western Sichuan foreland
basin (Figure 1), and the area is about 3.1 × 104 km2. It was
formed during the transition from the marine cratonic basin to
the continental basin in the Sichuan Basin in the Late Triassic.
There is a set of the coal-bearing clastic rock group from bottom
to top from marine facies to continental facies and dominated by
continental facies. The thickness of this set of formations does not
change much, with a slight decrease from west to east. CX
depression is a part of the west Sichuan Depression. From
bottom to top, it includes Xu 1, Xu 2, Xu 3, Xu 4, and Xu 5.
The section of interest of this study is Xu 2.

The Xu 2 member in the boreholes of the research area has a
depth of 4,300–6,000 m and a thickness of about 400–500 m. It is
dominated by gas-bearing lithic sandstone and lithic quartz
sandstone. There are primarily argillaceous siltstone and black
silty shale, interbedded with different thicknesses and with
carbonaceous shale and coal lines. Detrital materials, mostly
sedimentary and metamorphic debris with a small number of
volcanic debris, are abundant. The reservoirs generally contain
clay minerals and calcareous minerals such as calcite and
dolomite. They are dense. The porosity distribution of the
reservoir is shown in Figure 2, with an average porosity of
3.7% and a permeability of less than 0.1 micro-Darcy (mD).
The reservoirs are affected by multiple structures, formation
temperature, pressure, and cemented calcium and mud. The
frontal sedimentary subfacies of the braided river delta are
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relatively developed. The porosity is low, and the lithology is
complicated, making it challenging to identify the lithology and
calculate the porosity accurately.

METHODOLOGY AND DATA

CRA Method
Usually, the CRA method is used to analyze the lithological
composition of carbonate formations and allows porosity
calculation. The interpreter can specify the number and attributes
of themineral components according to geological conditions, but to

no more than four minerals. According to the cross-plot diagram of
two porosity logs (Figure 3), C1, C2, C3, and C4 are the porosity log
intersections of four minerals set according to the analysis
requirements of stratigraphic components. The junction of the
framework values of each two adjacent minerals can form a
lithological triangle with the water point. According to their
position on the intersection diagram, the triangles from top to
bottom are called the first, second, and third triangles. If the data
point falls into a particular triangle, it is considered a rock composed
of the two minerals forming this triangle. The interpreter can set the
minerals according to the formation component analysis results
from the thin casting sections. Then, a combination of any two

FIGURE 1 | Location of the West Sichuan depression.

FIGURE 2 | Porosity distribution histogram. FIGURE 3 | Triangle diagram of the CRA Method.
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porosity logging response equations of AC, CNL, or density log
(DEN) can be used for lithology analysis (Yong and Zhang, 2002).
The calculation steps are as follows:

1) Calculation of shale content by using GR or SP. Generally, we
choose GR to calculate the shale content. The equations are as
follows (Nie et al., 2017):

SH � GR − GRMIN

GRMAX − GRMIN
, (1)

VSH � 2GCUR×SH − 1
2GCUR − 1

, (2)

where the SH is the original shale content; GRMAX is the GR
values of maximum and GRMIN is the GR values of minimum in
the formation, and VSH is the calculated shale content. The
GCUR is the correction coefficient.

2) The bulk model of the formations is Eqn. 3, and the log
response equations are Eqn. 4–6:

VSH + VQZ + VFeld + VDeb +∅ � 1, (3)
VSHCNLSH + VQZCNLQZ + VFeldCNLFeld + VDebCNLDeb

+∅CNLf � CNL,
(4)

VSHACSH+VQZACQZ+VFeldACFeld+VDebACDeb+∅ACf�AC,
(5)

VSHDENSH + VQZDENQZ + VFeldDENFeldVDebDENDeb

+∅DENf � DEN,
(6)

where ∅ is the porosity; VSH, VQZ, VFeld, and VDeb are the
contents of shale, quartz, feldspar, and rock debris; CNLSH,
CNLQZ, CNLFeld, and CNLDeb are the CNL skeleton values of
shale, quartz, feldspar, and rock debris; ACSH, ACQZ, ACFeld, and
ACDeb are the AC skeleton values of shale, quartz, feldspar, and
rock debris; DENSH, DENQZ, DENFeld, and DENDeb are the
DEN skeleton values of shale, quartz, feldspar, and rock debris;
and∅CNLf ∅ACf, and∅DENf are the response value of CNL,
AC, and DEN of porosity fluid.

3) The volume content of each mineral is calculated with these
equations, and an optimum formation lithologic result is found
which contains shale and one or two mineral components.

CRAE Parameter Analysis
There are quartz, feldspar, rock debris, and less mud content in
the formations of the study area identified from the thin casting
section data. Since the feldspar content in the XC area is basically
below 10% and the physical properties are unstable, we choose to
ignore it in the bulk model. We only consider quartz, the physical
properties of which are stable, and a large number of
metamorphic rocks and igneous rocks in the debris with low
AC value are treated as an equivalent component. Also, because
the DEN log is greatly affected by the borehole enlargement, we
choose the AC-CNL cross plot to calculate the lithology profile.
Therefore, the formations are considered to consist of shale,
quartz, and rock debris, and GR, AC, and CNL logs are used.

According to the abovementioned analysis, due to the limitation
of research lithology types, the CRA method is not applicable in
this study; we can simplify the CRAmodel and propose the CRAE
model as follows:

VSH + VQZ + VDeb +∅ � 1, (7)
VSHCNLSH + VQZCNLQZ + VDebCNLDeb +∅CNLf � CNL,

(8)
VSHACSH + VQZACQZ + VDebACDeb +∅ACf � AC. (9)

We used the AC-CNL ensemble average value to calculate the
porosity. Taking the triangle formed by quartz and rock debris as
an example, reference for relevant equation derivation (Yong and
Zhang, 2002), the calculation equation is as follows:

1) Calculation of triangle coefficients:

VQZ + VDeb +∅ � 1, (10)
VQZCNLQZ + VDebCNLDeb +∅CNLf � CNL, (11)

VQZACQZ + VDebACDeb +∅ACf � AC. (12)
We make CNLQZ � Y1, CNLDeb � Y2, CNLf � Y3, CNL = Y,

ACQZ � X1, ACDeb � X2, ACf � X3, AC = X, VQZ � V1,
VDeb � V2, and ∅ � V3. Then, its mathematical
transformation is

V1 + V2 + V3 � 1, (13)
V1Y1 + V2Y2 + V3Y3 � Y, (14)
V1X1 + V2X2 + V3X3 � X. (15)

It is solved as

V1 � A1X + B1Y + C1, (16)
V2 � A2X + B2Y + C2, (17)
V3 � 1 − V1 − V2, (18)

where B1 � (X2 −X3)/D1, A1 � B2(Y3 − Y2)/(X2 −X3), C1 �
−(A1X2 + B1Y2), and D1 � (X2 −X3)(Y1 − Y2) − (Y2 − Y3)
(X1 −X2). B2 � (X1 −X3)/D2, A2 � B2(Y3 − Y1)/(X1 −X3),
C2 �−(A2X1 +B2Y1), and D2 � (X1 −X3)(Y2 −Y3) −(Y1 −Y3)
(X2 −X3). When X2 �X3, D1 �−(Y2 −Y3)(X1 −X2), B1 � 0,
A1 � 1/(X1 −X2), and C1 �−A1X2. When X1 �X3,
D2 �−(X2 −X3)(Y1 −Y3), B2 � 0, A2 � 1/(X2 −X3), and
C2 �−A2X1.The coefficients A1, B1, and C1 and A2, B2, and
C2 in the equation are called the triangular coefficients of the
intersection diagram, which can be calculated according to the
abovementioned equations according to the known parameters of
the fluid and the two minerals.

2) Shale correction for porosity log data:

According to the following equation, the shale correction is
performed on the porosity log.

CNL � NSH − (NSH − CNL)/OMSH, (19)
AC � TSH − (TSH − AC)/OMSH, (20)

OMSH � 1 − VSH, (21)
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where TSH is the AC value of the surrounding mudstone read
from the logging information, NSH is the CNL value of the
surrounding mudstone read from the log data, the OMSH is
the volume percentage of mud removed.

3) Mineral volume content and porosity calculation:

According to Equations 16–18, the data points are solved with
triangles, respectively, and the mineral volume and porosity of the
layer where the data points are located.

Median Grain Size Model
The median grain size, namely, MD (∅50), refers to the
abscissa value corresponding to the frequency of 50% on
the cumulative frequency curve of the grain diameters. It
represents the grain diameter size in the middle of the
population and is always represented by the ∅-value size
(Table 1). The median particle size can indicate the size of
the grains in a clastic formation.

The natural gamma-ray is a reflection of radioactive
materials, and its morphological changes are effected by the
content of mud and other radioactive materials in the
formation. The smaller the particle size, the stronger the
adsorption performance for radioactive materials; from the
perspective of the natural gamma baseline deviation from large
to small, it can reflect the change in particle size from coarse to
fine (Song et al., 2009). Therefore, the natural gamma-ray can
reflect the relative instability of the shale content in the clastic
rock formation and the change of the clastic grain size. From a
geological point of view, the higher the rock mud content, the
smaller the particle size. These two have a good corresponding
relationship, and the natural gamma is less disturbed by other
factors. Therefore, the continuous longitudinal characteristics
of the ΔGR defined as Eqn. 22 can be used to predict the MD
(Sima et al., 2017).

ΔGR � GR − GRMIN

GRMAX − GRMIN
. (22)

TABLE 1 | Correspondence between median grain size and ∅-value size.

Natural grain size
standard (mm)

ø-value size standard Terrigenous debris names Source debris names

≥ 128 ≤ -7 Boulders Boulder-grained crumbs
128 ~ 32 −7 ~ −5 Coarse-grained gravel Coarse-grained gravel
32 ~ 8 −5 ~ −3 Medium-grained gravel Medium -grained gravel
8 ~ 2 −3 ~ −1 Fine-grained gravel Fine-grained gravel
2 ~ 0.5 −1 ~ 1 Coarse-grained sand Coarse-grained sand
0.5 ~ 0.25 1 ~ 2 Medium-grained sand Medium-grained sand
0.25 ~ 0.06 2 ~ 4 Fine-grained sand Fine-grained sand
0.06 ~ 0.03 4 ~ 5 Coarse-grained silt Coarse-grained silt
0.03 ~ 0.004 5 ~ 8 Fine-grained silt Fine-grained silt
< 0.004 > 8 Mud Mud debris

Bold value represent a corresponding relationship between particle size and median particle size.

FIGURE 4 |Cross plot of porosity log. (A)Cross plot of CNL and AC. (B)
Cross plot of CNL and DEN.
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Data Collection
In this study, we collected the conventional well logging data, core
casting thin-section analysis data, and ΔGR value of 184 samples
of 46 wells. Most of these wells have lithological logs including the
spontaneous potential (SP), GR, wellbore caliper (CAL), the dual
lateral resistivity logs including deep resistivity (LLD) and shallow
resistivity (LLS), and the porosity logs, including CNL, DEN, and
AC. Also, the casting thin-section analysis data provide the
volume content of the shale, quartz, rock debris, and feldspar.

Analysis of Logging Response
Characteristics and Parameter Setting
Due to the known complexity of the rock components, we
introduced the porosity log cross plots, which are used to
determine the lithology in Figure 4. Figure 4A is the AC-
CNL cross plot. It shows most of the logging data points are
under the sandstone line, which means some components are
with very low AC in the formations. Also, Figure 4B is the DEN-
CNL cross plot. It also reveals that there are high-density
components. Those components with relatively low AC and
high DEN might be the volcanic or metamorphic debris,
which have calcium minerals or other elements with high
density and wave speed. Therefore, we introduced the CRA
method to this study.

The median particle size and ΔGR value of 184 samples were
statistically analyzed, as shown in Figure 5. The result indicates
that the MD and ΔGR are with an exponential relationship,
shown as follows:

MD � 1.1694 · e0.9262·ΔGR. (23)
According to the abovementioned cross-plot analysis, we can

conclude that the formations contain calcite, dolomite, and other
calcareous minerals and siliceous materials. Meanwhile, in the
well section with more rock debris, AC is lower, and CNL is
higher than sandstone, indicating that the rock debris has lower
AC and relatively high CNL. The AC of this debris is 43–49 μs/ft.
Under the action of calcareous cementation, the AC is reduced.

The Xu2 member is dominated by tight sandstone. The AC is
smaller than that of the more porous rocks. One reason for this is
the heavy mineral components. In addition, the depth of burial
also affects the response value of AC. As the depth increases, the
overburden pressure on the rock layer increases, which changes
the particle density, elastic modulus, and fluid density in the pores
of the rock. More importantly, the porosity of the rock formation
decreases regularly with the increase in the depth of the overlying
rock layer, which increases the acoustic velocity of the rock
formation. The AC of the same lithology formation decreases
(Zhang et al., 2009).

We tried to find the best parameters for the CNL andAC of shale,
quartz, and rock debris by calculating the formation’s porosity with
different parameters and comparing it with the core analysis result.
When the calculated porosity agrees well with the core data, the
parameters are adequate. Different from the previous quartz
parameter CNL and AC which are −2%, 55 μs/ft, we adjusted the
quartz’s parameter to −2%, 50 μs/ft, and the rock debris was adjusted
to 0% and 43 μs/ft for CNL and AC, respectively. At the same time,
we set up the AC-CNL physical parameters required for the
equations to calculate porosity and lithological components. The
process of lithology identification and porosity estimation is shown
in Figure 6.

APPLICATION RESULTS

According to the abovementioned analysis, applications were carried
out in the study area. The application results in well 1 are shown in
Figure 7. In Figure 7, the first three tracks are the original
conventional logs, and the fourth track is the depth track. The
fifth track is the lithological component profile we calculated by
using the CRAE workflow. The sixth track is the lithological profile

FIGURE 5 | Cross plot of Δ GR and median grain size.

FIGURE 6 | Flowchart of lithology identification and porosity estimation.

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 8500236

Wang et al. Tight Reservoir Lithology Classification

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


from mud logging. The right four tracks are the calculated porosity,
quartz, rock debris, and so-called shale content. The black horizontal
lines are the core analysis results. It can be seen that the porosity
calculated by AC-CNL is consistent with the core porosity. Also, in
the last three tracks, the component content of quartz, rock debris,
and shale content calculated by the response equation is compared
with the thin-section analysis results. It reveals that the calculated
quartz content is in good agreement with the core thin-section data.
The total volume fraction of the calculated shale content and rock
debris is consistent with the rock debris from the core analysis result.
Also, the computed shale content corresponds to the composition of
sedimentary debris from the core thin-section data. Thismeans there
are tiny silty debris and clay minerals in the sedimentary debris, and
this part contributes most of the GR radiation. The calculation and
discrimination results confirm the correctness of the profile
calculated.

According to the sandstone classification standard shown in
Table 2, the geological survey and lithologic composition of the
study area were classified. The final lithological classification result

can be obtained after adding the MD calculation result into the
lithology component profile. The MD was calculated by using the
ΔGR model. A classification result is shown in Figure 8. The final
classification results are compared with the Fisher discriminant and
the mud logging results. The last four tracks in this figure are the
mud logging, the Fisher discriminant and the calculated lithological
profile, and the calculated MD. From the figure, we can see the
lithological results of this well are consistent with the lithology in the
mud logging profile and more refined. The correct rate is 89.96% of
the calculated lithological profile by the CRAE method, and it is
higher than the Fisher discriminant (it is 78.62%), which shows that
this workflow has applicability in the study area.

DISCUSSIONS

The CRA method uses the GR or SP log to obtain the shale
content and two other porosity logs to determine the mineral
composition of the lithological composition. This method is

FIGURE 7 | Comparison of the lithological profile and formation composition of 4,440–4,455 m in well 1.

TABLE 2 | Lithologic classification standard.

Quartz + flint (%) Rock
debris content (%)

Median grain size ø Category of lithology

> 90 ø < 1 Coarse-grained quartz sandstone
1 < ø < 2 Medium-grained quartz sandstone
ø > 2 Fine-grained quartz sandstone

< 75 > 25 ø < 1 Coarse-grained lithic sandstone
1 < ø < 2 Medium-grained lithic sandstone
ø > 2 Fine-grained lithic sandstone

They are the basis for dividing lithology by component content.
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aimed at carbonate rocks, in which the calcite and dolomite
develop. As the minerals of calcite and dolomite have stable
physical properties, including acoustic wave velocity and
neutron porosity, the calculated mineral composition
content is always accurate. However, the CRA method is
rarely used in sandstone formations. One reason is that
normally in the conventional sandstones, the lithology is
simple; the other is the tight sandstones with complex
mineral components. In this study area, we propose the
CRAE method, in which we treat the tight gas reservoir
rock as a mixture of quartz, debris, and pores, ignoring the
relatively low volume fraction of the unstable mineral feldspar.
The rock debris includes sedimentary, metamorphic, and
igneous rocks. The sedimentary rocks can be calculated
from the GR log for their radioactivity. Also, the
metamorphic and igneous rock debris are combined and set
a parameter. Meanwhile, the calculated shale contents in
different formations have different meanings. The shale
content calculated in the tight sandstone formation is a
reflection of the sedimentary debris. Also, in shale and

other formations, it represents the actual shale content in
the formation.

In summary, this method is simple to select parameters. The
accuracy meets production needs, and the workflow is easy to
popularize. The determination of parameters is the most
crucial step. When this workflow is used in a new study
area, we should calibrate with core analysis data to select
accurate parameters. In other words, when the lithological
composition of the study area is different, the components can
be replaced. The matrix parameter value of the lithology can be
calculated according to the practical value of the study area and
calibrated by core porosity.

CONCLUSION

The complex geological structure and lithological categories of
tight sandstone gas reservoirs have posed challenges for logging
lithological identification and porosity calculation. This article
introduces a CRAE and MD calculation workflow to identify six

FIGURE 8 | Comparison of mud logging, Fisher discriminant, and the calculated lithological profile of formation mineral composition at 4,430–4,480 m in well 1.
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different lithologies and estimate porosity. The conclusions are as
follows:

1) The GR, CNL, and AC logs contain the lithological
information and can be used to reveal the components of
the formations.

2) Based on the component analysis, the rock bulk volume can be
equivalent to three parts: quartz, rock debris, and porosity.
The CNL and AC log parameters are selected and used in the
CRAE method. The calculated profiles reveal the effeteness of
the CRAE method. The agreement of the calculated shale
content from GR and the sedimentary debris reveals the
radioactive contributions are mainly from the sedimentary
debris.

3) The GR log and the MD of the formation have a good
relationship, and the ΔGR can be used to predict the MD
after the statistical modeling. The rocks can then be divided
into coarse, medium, and fine grained through their grain sizes.

4) The proposed lithology identification method and porosity
estimation have achieved good application results, providing a
new effective workflow for lithology identification in tight
areas. Parameters should be recalibrated when used in a new
study area.
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