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In this paper, a geophysical strategy based on the recently proposed Manta-Ray Foraging
(MRF) Optimization algorithm is adapted and presented for the blind computation of depth/
shape defining parameters frommagnetic anomalies due to buried geo-bodies. The model
parameters deciphered are the coefficient of amplitude (K), buried structure’s origin (x0),
the depth (z), magnetization angle (α), and a shape factor (q). After detailed and piecewise
design, the new inversion tool is originally trial-tested on anomaly data generated
synthetically. The uncorrupted version of the test data is first analyzed, then - it is
corrupted with noise varied at 5, 10, 15, and 20% corruption levels. Thereafter, it is
experimented with magnetic profiles taken from exploration fields in the United States,
Peru, and Egypt. From the evaluation of results obtained, the new procedure is observed
as exhibiting outstanding stability and flexibility especially with noisy dataset and notable
efficiency in the quantitative resolution of magnetic inversion problems. The results
obtained for the field cases are also mostly consistent especially when compared with
background results from similar studies conducted with other methods; further affirming
the new tool as reliable for the geophysical investigation of buried minerals.
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INTRODUCTION

Magnetic, gravity, electromagnetic, DC resistivity and self-potential techniques have successful
applications in mineral exploration (e.g., Biswas et al., 2014; Portniaguine & Zhdanov, 2000a;
Mehanee & Zhdanov, 2004; Pellerin & Wannamaker, 2005; Essa et al., 2021; Mehanee, 2022a;
Mehanee, 2022b). Synonymous with other conventional geophysical methods, optimal
interpretations require that magnetic field data be analyzed in ways generally deemed best for
the recovery of characteristic parameters mirroring those of the features causing the anomalies (Klein
et al., 2016; Balkaya et al., 2017; Xie et al., 2019; Ben et al., 2021c). Generally, geologic structures are
extensively classified into four geometrical categories: spheres, thin sheets, infinitely long cylinders,
and geological contacts (Ben et al., 2021a). These simple geometric models conveniently approximate
structures that are commonly in during magnetic data interpretation. Geophysical inversion aims at
unraveling parameters characteristic of geologic structures through numerical adjustments to these
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already defined models (Essa & Elhussein, 2020; Essa et al., 2020).
The notably sought-for parameters are usually those defining
anomaly position (in space), depth, and those characterizing the
anomaly shape (Ekinci et al., 2021; Essa et al., 2021; Mehanee,
2022b).

A review of published literature reveals that several strategies
have been priorly employed for magnetic inversion. An adept
number of them take advantage of computational approaches
such as those consistent with classical/numerical theories. Gay
(1965) using conventional curve fitting theories developed
standard curves for common geologic structures. Abo-Ezz &
Essa (2016) introduced a linear least-squares method for the
deciphering of buried geologic bodies from magnetic anomaly
profiles. Araffa et al. (2018) employed Euler deconvolution to
delineate subsurface structural features of basement complex
from magnetic data. Ouyang & Chen (2020) iteratively
modeled magnetic anomalies using the Fourier transform
technique. Duong et al. (2021) interpreted magnetic data at
low latitude areas using Marquardt algorithm and continuous
wavelet transform. Some of other deterministic methods
experimented and reported in literature for magnetic
anomalies include fair function minimization procedures
(Asfahani & Tlas, 2012; Abbas & Fedi, 2013), simplex
algorithm (Pan et al., 2009; Abdelrahman et al., 2019),
regularized inversion and image focusing (Portniaguine &

Zhdanov, 2000b) and Hilbert Transform (Dondurur and
Pamukçu, 2003). However, these inversion techniques
sometimes generate poor solutions mostly accrued to
causatives such as recursive noise, window size incompatibility
and the number of data points considered in the interpretation
out of the entire magnetic data profile. Furthermore, the majority
of them rely heavily on a series of initializations derived from
subjective historical geologic deductions. This pre-knowledge is
not always available and even if they are, their reputability can
sometimes be disputed.

With recent advancements in machine intelligence and with
increased efforts to address the aforementioned challenges,
interpretative heuristic methodologies are increasingly being
introduced for magnetic anomaly interpretations. Some of
these methodologies are based on; genetic algorithm, particle
swarm, differential evolution, ant colony optimization, and
genetic-price algorithm. Liu et al. (2015) optimized
interpretation of surface and subsurface magnetic
measurements using ant colony optimization. Biswas &
Acharya (2016) deployed VFSA for the interpretation and
modeling of magnetic anomaly over a vertically magnetized
rod-like structure. Biswas et al. (2017) developed an approach
to the estimation model parameters from the total gradient of
magnetic data based on Very Fast simulated Annealing (VFSA).
Agarwal et al. (2018) developed a grey-wolf optimer based

FIGURE 1 | Schematic cross-sections showing configurations of simple geometrical shaped models and their parameters; (A) Sphere (B) Horizontal cylinder (C)
Thin sheet.
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methodology for the inversion of magnetic datasets from surface
and airborne surveys. Ekinci et al. (2019) in their comparative
study analyzed the performance of differential evolution against
particle swarm optimization for magnetic parameterization
through direct search. Essa & Elhussein (2020) emphasized the
employment of particle swarm optimization for the inferring of
residual magnetic anomalies. Di Maio et al. (2020) introduced a
hybrid genetic-price heuristic for the inverse modeling of
magnetic anomalies due to simple geological structures.
Gobashy et al. (2020) introduced the Whale Optimization
Algorithm for the assessment of model parameters from
magnetic anomalies over mineralization structures. Balkaya &
Kaftan (2021) conducted inverse modeling of intrusive structures
using differential search algorithm. Essa et al. (2021) applied the
variance analysis method for magnetic profile interpretation.
Mehanee et al. (2021) carried out magnetic modeling using a
R-parameter imaging approach. Balkaya & Kaftan (2021)
interpreted magnetic anomalies caused by dyke-shaped bodies
using differential search algorithm. Du et al. (2021) proposed a
new method to conduct lp norm magnetic inversion of 2D data
using adaptive differential evolution technique. The most obvious
advantage of meta-heuristics techniques is that unlike their
analytical strategies, improvements in directions referencing
the feasible solution are not influenced by the gradients of the
minimized objective function (Kombe & Muguthu, 2019; Elaziz
et al., 2020; Hayyolalam & Pourhaji Kazem, 2020).

Noting the meritoriousness of the aforementioned, especially
in interpretative resolvability of buried structures, the reader
may be puzzled as to why a new optimizer-based procedure is
still developed to solve problems that previous optimizers have
already solved. A geophysical interpretation of the infamous No
Free Lunch Theorem of Optimization (Salcedo-Sanz et al., 2018;
Gharehchopogh & Gholizadeh, 2019; Gupta & Deep, 2019)
presents an appropriate response to this question. This is

that, while the majority of the previously proposed
methodologies based on intelligent optimization algorithms
have greatly improved anomaly interpretation quality,
analytical perfection has yet to be achieved, particularly in
terms of convergence and computation complexity. The
continuous pursuit of analytical perfection necessitates the
testing of new optimizers. This is also the primary
motivation for this research. In this research paper, we
present a new interpretative methodology for describing
geophysical anomalies over different geometrically-shaped
geologic bodies. The methodology is based on the manta-ray
foraging (MRF) optimization algorithm.

The MRF algorithm–originally introduced by Zhao et al.
(2020) leverages the foraging actions of manta rays for
resolving physical optimization problems. This is accomplished
by imitating the chain, cyclone, and saumasault foraging
techniques–three of the manta ray’s most efficient foraging
strategies. Ensuing experimentations in other fields such as
pharmacy and engineering, the optimization technique was
found to outperform existing metaheuristic algorithms
especially in the aspects of computing cost, performance, and
solution accuracy (Elaziz et al., 2020; Hemeida et al., 2020; Xu
et al., 2020; Ghosh et al., 2021; Hassan et al., 2021; Houssein et al.,
2021), the method has been recommended for the resolution of
structural problems such as those in geophysics (Elaziz et al.,
2020; Xu et al., 2020; Ghosh et al., 2021; Houssein et al., 2021). It
is worthy to note the efforts of Ben et al. (2021b) with vertically
dipping dykes and Ben et al. (2021a) with gravity anomalies.
Howbeit, to the best of the authors’ knowledge, and at the time of
preparation of the initial drafting of this research paper, no study
in published literature has explicitly employedMRF algorithm for
the modeling of magnetized subsurface materials of geometric
structure. The new method presents a couple of merits. First,
unlike deterministic schemes, iterative computations are
independent of the gradient of the objective function,
technically limiting immature convergence. Also, the wild
function injected during the cyclone foraging stage of the
algorithm design allows initial models to parametrize from
anywhere within a size-independent range (as would be seen
in the examples)—reducing reliance on subjectivity. Most
importantly, the superiority of the MRF tool actually lies with
its foraging character. With MRF algorithm, the search agents are
allowed to switch intelligently and at any point between the
strategies of chain foraging and cyclone foraging. The chain
foraging behavior allows significant local search while the

TABLE 1 | Characteristic inclination parameter for vertical, horizontal and total
magnetic field anomalies due to thin sheets and horizontal cylinders (after Gay,
1963, Gay, 1965).

Magnetic Field Inclination Parameter

Thin sheet Horizontal cylinder

Vertical IT-§ IT-90
Horizontal IT-§-90 IT-180
Total 2IT-§-90 2IT-180

TABLE 2 | Definitions of A, B and C parameters.

Parameter Sphere (total
mag. Field)

Sphere (vertical
mag. Field)

Spheres (horizontal
mag. Field)

Horizontal cylinders;
thin sheets

(FHD); geological
contacts (SHD),

(all fields)

Thin sheets;
geological contacts

(FHD) (all
fields)

A 3 sin2 α − 1 2 sin α −cos α cos α cos α
z

B − 3z sin(2α) − 3z cos α − 3z sin α 2z sin α sin α
C 3cos2 α − 1 −sin α 2 cosα −cos α 0
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cyclone foraging behavior concurrently assures non-
deteororation of global search during the process; a
mutualization of the two as allowed by the new technique
ensures comparatively quality solutions through thorough
exploration of the whole domain of the geophysical problem.

The paper begins with a magnetic inversion problem layout
and a step-by-step architecture of the MRF-based inversion
technique. The approach is then trial-tested through
applications to synthetic models that have been contaminated
with varying degrees of Gaussian random noise (0, 5, 10, 20, and
20%) as well as anomalies from multiple/interfering models. The
methodology’s performance with real-world anomalies is gauged
using field profiles taken from geologically-contrast exploration
mining areas. The resultant parameter values are then compared
against drilling results and those obtained using other traditional
approaches and documented in literature. Finally, we conclude
the paper with a review of the adaptability and performance of
MRF optimization method as an inversion tool for magnetic
anomalies as well as its gains and limitations with respect to
previous techniques.

FIGURE 2 | Anatomical structure of a conventional Manta ray.

FIGURE 3 | Pseudocode of the MRF algorithm.
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METHODOLOGY

Geophysical Inversion and the Magnetic
Anomaly Problem
In geophysical exploration, magnetic data inversion is
generally initiated by transforming so-called ill-posed
problems to optimization models constructed such that the
parameters of the model explained by observation data are
good descriptions of the subsurface anomaly (Mehanee et al.,
1998; Liu et al., 2015; Essa & Elhussein, 2020; Mbonu et al.,
2021). The process of finding a solution to an inverse problem
normally begins with the supposition of a good initial model.
This initial model commonly made from drilling data or
reports from previous geophysical expositions is
progressively smoothened in stepwise iterative runs until a
subjectively suitable fit between the measured and estimated
data is acquired. The smoothening is executed by making
meta-heuristic forward adjustments to the parameters of the
model (Gharehchopogh & Gholizadeh, 2019; Wang & Li, 2019;
Hayyolalam & Pourhaji Kazem, 2020). In this research, the
model parameters of interest are amplitude coefficient (K)
related to the composition of the body, depth (z), location of
the origin (xo), angle of magnetization (α), and a shape factor
(q) whose value is unique for each different structural shape
(Figure 1)

For this study, we employ the general formula for magnetic
anomaly profile -T (xj) over simple-geometrically shaped
structures meticulously extrapolated from the inductive
analysis of mathematical expressions for horizontal, vertical,
and total magnetic anomaly of spheres (Prakasa Rao &
Subrahmanyam, 1988), horizontal cylinders (Rao et al., 1973)
and thin sheets (Gay, 1963). The formula (Equation 1) is given as
(Mehanee et al., 2021):

T(xj) � K
Az2 + B(xj − x0) + C(xj − x0)2

[(xj − x0)2 + z2]q , j � 1, 2, 3, 4, . . . (1)

where z is depth to the buried anomaly, K the amplitude
coefficient and, α the angle of magnetization normally in the
plane of the principle profile coinciding with the x-direction. This
is illustrated by Prakasa Rao and Subrahmanyam, 1988) for
spheres and compiled by Gay (1965) for horizontal cylinders
and thin sheets (Table 1). x0 indicates the coordinate of the center
of the structure, §-the dip, IT the effective inclination of the
geomagnetic field in the vertical plane normal to the body’s strike
while q is the shape factor taken as 2.5 for spheres, 2.0 for
infinitely-long horizontal cylinders, and 1.0 for thin geologic
sheets (Mehanee et al., 2021). FHD and SHD are the first and
second derivatives of the anomaly respectively while A, B, and C
constants are defined in Table 2;

The five controlling model parameters (K, z, α, xo, and q) are
computationally obtained by strategically introducing procedures
outlined in the succeeding section on the objective function
expressed in Equation 2 (Essa & Elhussein, 2020). Puzzling of
optimal parameters for the geophysical model of interest is
carried out such that the misfit between the true and
estimated data (calculated using the objective function -
Equation 2) is minimized (Mehanee et al., 1998; Ouadfel &
Taleb-Ahmed, 2016).

∑S
i�1(Tm

i − Tc
i )2

S
(2)

where Ti
m and Ti

c are respectively the magnetic anomaly from
observed data and that estimated using the proposed
methodology.

TABLE 3 | Estimated parameters for the example involving synthetically generated noise-free models.

Type of model Parameters True Estimated

Noise free 5% noise 10% noise 15% noise 20% noise

Sphere K (nT.m3) 11000.000 11001.300 11615.407 11907.531 12006.877 12294.040
α (0) 60.000 60.000 60.983 61.217 59.745 60.022
z (m) 11.000 11.000 11.629 11.892 12.105 12.205
x0(m) 0.000 0.000 0.001 0.001 0.000 0.000
q 2.500 2.500 2.503 2.498 2.502 2.492

Time elapsed 31s 33s 35s 35s 37s
Horizontal Cylinder K (nT.m2) 400.000 401.021 402.573 387.476 376.085 421.741

α (0) 35.000 34.998 34.861 33.904 31.653 30.002
z (m) 5.000 5.000 5.388 5.142 5.271 5.300
x0(m) 0.000 0.000 0.000 0.002 - 0.007 0.003
q 2.000 2.000 2.000 1.986 2.002 2.007

Time elapsed 30s 32s 32s 34s 36s
Thin Sheet K (nT.m) 550.000 550.000 550.041 545.703 543.681 558.039

α (0) 30.000 30.000 30.584 29.628 28.518 29.711
z (m) 9.000 9.000 8.927 8.887 8.700 8.768
x0(m) 0.00 0.002 0.004 0.010 0.012 0.016
q 1.00 1.005 1.002 1.005 1.009 1.015

Time Elapsed 32s 34s 35s 37s 40s
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Manta Ray Foraging Optimization Algorithm
The MRF optimization algorithm (which is the backbone of
our new methodology) is designed based on the foraging
strategies of marine-living Manta rays (Figure 2). The
foraging strategies include chain, cyclone, and somersault
techniques (Ghosh et al., 2021). For our geophysical case,
the iterating vectoral positions of the Manta-rays (search
agents) represents the probable positions of physical
parameters sought-for. The position of the plankton itself
(also vectoral) points to the geoscientific optimization
problem’s solution. For the chain foraging strategy, the
agents identify and frame a head-tail formation (also
referred to as foraging chain) towards a potential plankton.
As a result, any plankton lost by one Manta-ray will not escape
the next; thereby improving the overall rate of exploitation. In
the cyclone style of foraging, the manta rays swim towards the
food in design spirals such that while maintaining its foraging
chain-line, each agent is concurrently advancing towards its
target food. Alternatively, the solution to the magnetic
problem is placed as a pivot in the summersault foraging
technique; such that the agents recurrently translate about
this pivot before moving into new positions. The result of this
is that the new positions are not purely random but rather,
circumvents of the best position found (at least up to that
point). These numerical constructs for these foraging
strategies as adapted from Zhao et al. (2020) and remodeled

for our geophysical case are described below; Chain foraging:
Equation 3

T(xj)Di � {T(xj)Di (t)+r.(T(xj)Dbest(t)−T(xj)Di (t))+w.(T(xj)Dbest(t)−T(xj)Di (t)) i�1

T(xj)Di (t)+r.(T(xj)Di−1(t)−T(xj)Di (t))+w.(T(xj)Dbest(t)−T(xj)Di (t)) i�2,3,...,N
(3)

w � 2.rand().






∣∣∣∣log(r)∣∣∣∣√

(4)
where T(xj)(t) is the ith search agent’s position at a time t. rand()
–a vector randomly generated within 0 and 1; w- the coefficient of
weight, N is the maximum iterations allowed; while T(xj)Dbest(t)
points to the healthiest pool of planktons representing the
optimum vectoral position of the sought geomagnetic
parameters. The exponentiation factor D represents the
dimension of the position. For the study, D = 4 since we are
dealing with four parameters Equation 4.

Cyclone foraging:

T(xj)Di (t + 1) � {T(xj)Dbest(t)+rand().(T(xj)Dbest(t)−T(xj)Di (t))+µ . (T(xj)Dbest(t)−T(xj)Di (t)) i�1

T(xj)Dbest(t)+rand().(T(xj)Di−1(t)−T(xj)Di (t))+µ . (T(xj)Dbest(t)−T(xj)Di (t)) i�2,3,...,N

(5)

where µ, known as the cyclone foraging’s coefficient of weight, is
generated stochastically using Equation 6;

µ � 2erand()
T−t+1
T() .sin2πrand() (6)

FIGURE 4 | Synthetically generated noisy and estimated (MFR)magnetic anomalies for a spheremodel with K = 11,000 nT.m3, z = 11 m, q = 2.5, α = 600, xo = 0 m
with (A) 5% (B) 10% (C) 15% (D) 20% gaussian random error.
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It is noteworthy to add that after executing Equation 5 for our
structural problem, we uncomfortably observe that the
optimizing parameters for our geophysical structure tend to
vacillate around a certain position in a loose loop-like manner.
To resolve this particularity, we force each of our agents to find
new positions far from its current best position in the search space
by randomly injecting a wild function qDrand with the whole search
taken as the reference position (Ben et al., 2021b). qDrand was
constructed numerically using Equation 7.

qDrand� LBD+rand(). (UBD−LBD) (7)
as such, Equation 7 became;

T(xj)Di (t + 1) � {qDrand(t)+rand().qDrand(t)−T(xj)
D

i
(t))+µ .(qDrand(t)−T(xj)Di (t)) i�1

qD
rand(t)+rand().(T(xj)Di−1(t)−T(xj)Di (t))+µ .(qD

rand(t)−T(xj)Di (t)) i�2,3,...,N
(8)

This strategy that the algorithm extensively performs global
search; substantially improving general exploration. Equation 8.

Summersault foraging:

T(xj)Di (t + 1)� T(xj)(t)+P.(rand().T(xj)Di (t)−rand()
.T(xj)Di (t), i � 1, 2, . . . ,N

(9)

where the term P - a constant known as the somersault factor
determines the range at which the Manta rays somersault.
Equation 9.

Generally, the chain strategy encourages individual
positioning based on short-term historical positioning and
current global best. The cyclone foraging strategy makes each
individual update its position with respect to both its preceding
neighbor and the reference position while the summersault
foraging technique enforces thorough adaptive search.

For exhaustive details about the adoption of the MRF
algorithm for optimization scenarios, the readers are referred
to Zhao et al. (2020). In our new method, we start by initiating a
random population of Manta-rays in the search domain
(designed around the upper bound (UB) and lower bound
(LB) of our magnetic model parameters) with each agent
position in the space representing characteristic parameters of
the geologic structure. In our geophysical case, the selection of
bounds are done based on priori geological knowledge such as
information from maps, geophysical data and drilling reports. At
each iterative step, the individuals are coerced to update these
positions based on the referential position and the individual out
front. This reference position depends on t/T which decreases
from 1/T to 1 (Xu et al., 2020; Mbonu & Ben, 2021). With t/T less
than rand (), exploitation is implemented else, exploration is
performed. Based on this, our MRF optimization algorithm
allows the individuals to decide and when necessary, switch
between chain and cyclone foraging behaviors. Then through
somersault foraging, the agents adaptively update their positions
within the space and with respect to the most optimal position so
far found.

FIGURE 5 | Synthetically generated noisy and estimated (MFR) magnetic anomalies for a horizontal cylinder model with K = 400 nT.m2, z = 5 m, α = 35, q = 2, xo =
0 m, with (A) 5% (B) 10% (C) 15% (D) 20% gaussian random error.
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It is noteworthy to add that these calculations and updates
explained are interactively performed step-wise until the stopping
criterion is met. After each step, the quality is assessed. This is
done by gauging the misfit between the measured and estimated
anomalies. The misfit is calculated using the root mean technique
(Abdelrahman et al., 2012; Mehanee, 2014).

Eventually, convergence is achieved and the four required
model parameters are returned. The pseudo-code for the whole
optimization process is shown in Figure 3.

Algorithm Configuration/Processing Time
The algorithm for this study is designed using the PYTHON
programming language and implemented on the virtual studio
code IDLE. The IDLE is installed on a PC operating with a
Windows 10 operating system and a core i7 processor. The
duration of the compilation process is found to depend on the
complexity of the anomaly. For simple structures, the iteration
process rounds off in 30–50 s. However, there was a 20% increase
in processing time for multi-model cases such as those in
Conclusion Section and Section 5.3. Howbeit, in all cases, the
process is found to completely round off in less than 100 s.

RESULTS AND DISCUSSION

The goal of this study is to assess the effectiveness of the MRF
optimization technique in modelling magnetic anomalies over

geometric geological structures. Tomonitor this performance, the
tool is tested on synthetic and then on field magnetic data.

Synthetic Examples
The proposed method is subjected to controlled experiments
using data generated synthetically for idealized spheres,
horizontal cylinders, and thin sheet models. First, analysis is
done on the synthetic anomaly constructed such that it is
noise-free; then the data is consciously corrupted with
different levels of noise and reanalyzed.

Noise-Free Models
The MFRO technique is employed to noise-free synthetic
anomalies due to geometric interpretative models consisting
of: a sphere with K = 11,000 nT m3, z = 11 m, q = 2.5, α =
60°, xo = 0 m, and profile length = 80 m; a horizontal cylinder with
K = 400 nT m2, z = 5 m, α = 35, q = 2, xo = 0 m, and profile length
= 120 m, and a thin sheet with K = 550 nT m, z = 9 m, α = 30, q =
1, xo = 0 m, and profile length = 180 m. The magnetic field
anomalies due to these models are computed using Equation 1.

The proposed methodology is initiated with 80 initial models
and broad search space. For the sphere, we set the range for K to
be from 5,000 to 300,000 nT m3, z from 3 to 15 m, α from -90° to
90°, q from 0 to 3, and xo from–30 to 30 m. For the horizontal
cylinder model, we set K from 100 to 9,000 nT m2, z from 3 to
15 m, α from -90° to 90°, q from 0 to 3, and xo from–30 to 30 m.
For the thin sheet model, we set K from 100 to 20,000 nT m, z

FIGURE 6 | Synthetically generated noisy and estimated (MFR) magnetic anomalies for a thin sheet model with K = 550 nT m, z = 9 m, α = 30, q = 1, xo = 0 m, with
(A) 5% (B) 10% (C) 15% (D) 20% gaussian random error.
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from 0 to 30 m, α from -90° to 90°, q from 0 to 3, and xo from–30
to 30 m. A total of 800 repetitive iterations are allowed for each
algorithm run. MFRO has very extensive and strong search
ability. Impressively, the best model parameters are arrived at
in under a quarter of that number of iterations.

From the result obtained (Table 3), it is observed that the
output for each of the five considered parameters (K, z, α, q, xo)
agree with those originally used to design the three models (with
very negligible errors).

Noisy Models
It is well recognized that geophysical data from real buried
anomalies are scarcely (if ever) pure. More also, due to the
heterogeneity of the earth, it is often very difficult to
understand what degree of noise is muddled up in such data.
Hence, to delineate the method’s efficiency, all the synthetic test
data were tweaked to simulate non-ideal geologic scenarios. For
this research, the non-ideal geologic scenarios are simulated by
contaminating the error-free synthetic anomalies with 5, 10, 15
and 20% white gaussian noise. The noise is generated using a
combination of the rand () function and the SCIPY library in
PYTHON. The noise percentage are computed using Equation
10 (Mehanee, 2022b).

Percentage ofNoise � ||Tn − T||
||Tn|| x100 (10)

where Tn and T are vectors of the noisy and noise-free anomaly
data respectively.

The proposed methodology is once again employed for the
estimation of the model-describing parameters. For this, Equation
2 is re-adopted as the cost function and bounds consistent with the
noiseless cases are re-selected. After each iteration session, the
convergence and level of misfit are meticulously analyzed.

At the end of the optimization process, it is observed that the
algorithm estimates (Table 3; Figures 4–6) and the true parameter
values are to an appreciable level, consistent. However, it is noticed
from the results in Table 3 that the M parameter tends to exhibit
more sensitivity with increasing levels of noise. This sensitivity -
which would only have likelihood of affecting interpretation when
dealing with extremely complicated and deep-seated surface
structures is not unrelated to the fact the K is a multiplier factor
in Equation 2; it can easily be handled by flexibly narrowing ranges
for UB and LB. Also, results indicate the misfit after acceptable
convergence and the RMS error at the end of the run as marginally
upsurging with increasing levels of noise. Nevertheless, this does not
wholly affect the general inversion process as parameter results
consistently remain attractive even to 20% noise level (Table 3). It
can thus be concluded that the new methodology is inherently stable
and exhibits admirable adeptness in handling noisy anomalies.

Figures 4–6 are plots illustrating the performance of the new
technique with synthetic data generated for the three geometric
models.

Applicability in Multi-Model Cases
We now seek to assess the new procedure’s performance with
anomalies from complicated and interfering subsurface

structures. To simulate this scenario, we once again
generate model data synthetically but, in this scenario, from
multiple source bodies (with multifarious parameters) placed
at proximity. For the sake of this example, we adopt a
horizontal cylinder model with K = 55,000 nT m2, z = 15 m,
α = 25, q = 2, xo = 30 m, and a thin sheet model with K =
75 nT m, z = 9 m, α = -15, q = 2, xo = 120 m. The profile length
is 400 m. The magnetic field anomaly generated is as shown in
Figure 7.

We then apply steps consistent with the proposed
methodology (as with those in the two preceding sections).
However, in this case, the structures are modeled together
with parameter bounds as displayed in Table 4 selected. From
results (Figure 7; Table 4), the parameters can be observed as
being well recuperated from and showing admirable consistency
with the actual field anomaly confirming the congruency of the
methodology.

Comparative Analysis of MRF Optimization
With Other Inversion Techniques
In this section, we compare the optimization performance of
MRF with those from other methods commonly used for
geophysical inversion. In our analysis, we are concerned with
the convergence rate, quality/depth of exploration, and accuracy.

For the analysis, three common inversion techniques were
selected namely; PSO, SA, and GA.

Particle Swarm Optimization
PSO originally introduced by Kennedy & Eberhart (1995) mimics
the behavior of swarms in nature. These swarms may be fish
schools or bird flocks. Members of the swarms represent
exploring search agents. The technique achieves optimization
by updating the positions and velocities of the swarm members
based on the positions and velocities of their in-swarm neighbors
their movement history. These updates are made using
Equations 11, 12;

vi(t + 1) � ωvi(t) + c1r1(pi − xi(t)) + c2r2(pg − xi(t))
(11)

xi(t + 1) � xi(t) + vi(t + 1) (12)
where ω is the inertia constant, c1 and c2 are respectively cognitive
and social coefficients, pi is the personal optimum of xi, and pg is
the global best. For this study, values of 0.729, 2.041, 0.948 were
assigned for the inertia weight (ω) and the cognitive and social
coefficients.

Simulated Annealing
SA is an optimization procedure the mimics the cooling of metals.
The value for the cost function corresponds to energy levels in a
melted metal while model parameters are depicted by its
molecules’ position. For any given parameter set with error ε0,
a new set is methodically generated using random walk. If ε < ε0,
the new set is discarded, and another is generated. Alternatively, if
ε ≥ ε0, then the set is accepted with a probability defined by
Boltzmann’s distribution (Equation 13):
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f(ΔE) � e
−Δε
kT (13)

where Δε = ε - ε0, T is the temperature while k is the Boltzmann
constant. This step is repeated iteratively until an equilibrium
state is arrived at. This is a penultimate state where the new set
possesses minimum energy at fixed temperature. A
generalization of the strategy introduced by Kirkpatrick et al.
(1983) adopts a controlled cooling scheme (annealing) where

the temperature is gradually (but strategically) reduced with
minimum error gauged at each temperature until it arrives at a
global minima. For this comparative study, the temperature was
reduced by multiplying the previous value by a coefficient less
than unity (0.85).

Genetic Algorithm
GA is a search heuristic inspired by the theory of natural
evolution. The algorithm reflects the process of natural
selection where the fittest individuals are selected to
reproduce for the next generation. A generational GA is
initialized by a randomly generated population (set
containing probable solutions), then the fitness (the
objective function) of each individual is evaluated. Then, a
new population is generated from the original one; this is
aided by some GA operators: selection, crossover, and
mutation. To form this new population, two solutions from
the original population are selected considering their fitness.
They are crossed over with the crossover probability to
generate two new offspring who are then mutated with a
mutation probability. The mutation guides against local
minima. After obtaining the new generation, the steps are
repeated. The algorithm terminates after reaching a finite
number of generations; and the individual with the best
fitness value returned as the solution to the problem. For
this study, a crossover probability of 0.7 and a mutation
probability of 0.1 was used for producing 800 generations.

FIGURE 7 | Synthetic and predicted magnetic anomalies of multimodel example consisting of a cylinder model K = 55,000 nT.m2, z = 15 m, α = 25, q = 2.0, xo =
30 m, and a thin sheet model with K = 75 nT m, z = 9 m, α = -15, q = 2, xo = 120 m.

TABLE 4 | Selected ranges of model parameters and numerical results for the
synthetic multimodal anomaly example.

Model parameter Range selected Result

Anomaly 1

K (nT.m2) 1,000–20,000 5422.422
α (0) -90—90 27.910
z (m) 1–300 14.817
x0(m) -3—3 29.387
q 0—3 1.964

Anomaly 2

K (nT.m) 0—200 74.449
α (0) −90—90 −14.445
z (m) 1–20 120.055
x0(m) −3—3 8.999
q 0—3 1.017

55s
Elapsed time
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Procedures consistent with PSO, SA, and GA were
concurrently implemented on the synthetic sphere model
constructed in Synthetic Examples Section. More also, bounds
consistent with those used for MRF optimization were adopted.
The results obtained are shown in Table 5. From the table, it can
be observed that with an RMS of 3.22 × 10–5, MRF optimization
technique produced results of greater quality than its
comparative counterparts. Figure 8 shows the convergence
character for the four techniques after 800 iterations. From
the plots, it is observed that while all the methods achieved
minimum errors in less than 250 iterations, MRF clearly boasted
the fastest convergence. This advantage is accrued to the
somersault foraging behavior of the procedure (as earlier
explained in Manta Ray Foraging Optimization Algorithm
Section). Notably, SA and GA did not achieve convergence
even after 800 iterations. More too, from Figure 9, the MRF
presented the greater error variability compared to GA, SA, and
PSO. The superior interquartile curve indicates that the MRF
algorithm possesses greater exploration capabilities than GA,
SA, and PSO. This is expected as the MRF optimization
algorithm allows for intelligent/situational switching between
cyclone and chain foraging strategies. The chain foraging
strategy favors local search while the cyclone foraging
technique allows for extensive global exploration.

Case Studies
The performance of the new technique is further investigated
using three field cases.

The Pima Copper Mine Anomaly
The Pima mine is an open pit, “complex” porphyry copper
deposit located off the northeast flanks of the Sierrita
Mountains at about 30 km south of Arizona, United States. At
full production, the mine can produce up to 50,000 tons of copper
per day (Hamel, 1979; Cox et al., 2006; Biswas et al., 2017).

Stratigraphically, the mine is fixated in an east-north-eastly
striking and south-eastly dipping Paleozoic to Mesozoic
sedimentary sequence intermediately intruded by quartz
monzonite porphyry believed to be of Tertiary age (Abbas &
Fedi, 2013). These Paleozoic sediments notably observed to be
dolomites, limestones, and sandstones have historically been anti-
frigidly metamorphized into calco-silicate skarns, marble, and
quartzite and then, unconformably overlain by marginally
recrystallized and hydrothermally altered Mesozoic to Triassic
clastic (Cox et al., 2006). The intrusions have characteristically
resulted in mineralization of high grade in the Paleozoic rocks
and ore dissemination in the relatively younger Mesozoic
sediments. Structurally, the area is dominated by east-west
post-mineralization faults in the western part of the mine, and

TABLE 5 | Parameter results from inversion of sphere model anomaly using MRF, PSO, SA and GA techniques.

True MRF PSO SA GA

K (nT.m3) 11000.000 11001.300 11035.231 11374.306 10585.321
α (0) 60.000 60.000 59.783 61.621 61.218
z (m) 11.000 11.000 11.032 10.532 10.824
x0 (m) 0.000 0.000 0.000 −0.010 0.007
q 2.500 2.500 2.498 2.552 2.531
RMS — 3.22 × 10–5 1.05 × 10–3 5.85 × 10–2 7.23 × 10–2

Elapsed Time — 30s 27s 22s 41s

FIGURE 8 | Comparative convergence for the MRF, PSO, GA and SA
methods.

FIGURE 9 |Curve showing error dispersion (Inter-quartile range-IQR) for
MRF, PSO, SA and GA.
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strong shearing and faulting of low angle truncating the ore body
at depth (Hamel, 1979; Barter & Kelly, 1982; Abbas & Fedi, 2013).

Figure 10 (red line with round markers) is a magnetic
anomaly profile over a buried ore body retrieved from
magnetic survey data taken across the Pima mine (Gay, 1963).
The profile was digitized with a sampling interval of 25 m. In this
research, the new method attempts at deciphering the parameters

characterizing the geologic feature whose structure (initially
unknown) can take any of the three studied geometric shapes.
We initialize the algorithm using bounds indicated in Table 6.
The algorithm is set to terminate after 1,000 iterations. At the end
of the MRF optimization session, the misfit was monitored using
the RMSE technique (Figure 10). The results obtained are
displayed in Table 6.

FIGURE 10 | Magnetic anomaly profile over the Pima copper mine anomaly, Arizona using the MRF algorithm.

TABLE 6 | Numerical results for Pima copper mine Anomaly.

Model parameters Selected ranges Result Error Time elapsed (s)

K (nT.m) 1,000–20,000 60081.313 4.96 33
α (0) −90—90 39.106
z (m) 0–500 61.748
x0(m) −12–12 −8.230
q 0–3 0.804

TABLE 7 | Comparative analysis of parameter results for the Pima copper mine anomaly.

Model
parameters

Gay
(1963)

Venkata Raju
(2003)

Abdelrahman et al.
(2003b)

Tarantola
(2005)

Mehanee et al.
(2021)

Drilling
information

Present
study

K (nT.m) — — 80,550 39190.00 46,424.38 — 60081.31
α (0) −50.00 −51.00 — −44.70 −55.11 — 39.11
z (m) 70.00 76.81 68.00 64.10 71.00 64 61.75
x0 (m) — — — — — — −8.23
q 1.00 — — 1.0 1.00 — 0.80
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Results from analysis suggest that the investigated structure’s
shape compares appositely with that of a perfect thin sheet model.
The parameters characterizing the model are estimated as K =
6,081.213 nT m, α = 39.106, xo = -8.230 m and z = 61.748 m.
More also, the obtained RMSE of 2.14 indicates that the actual
and estimated data fits excellently.

We now attempt to compare these results with those from
similar studies. Notably, the Pima anomaly has been widely
interpreted in literature. Initially Gay (1963) used classical
curve matching techniques to interpret the buried geologic
feature as a sheet-like structure inclined at about -50° at a
depth of 21.34 m. Venkata Raju, 2003) employed a LIMAT

FIGURE 11 | Magnetic anomaly profile over the Parniaba field anomaly using the MRF algorithm.

TABLE 8 | Numerical results for the Parnaiba anomaly.

Model parameters Selected ranges Result Error Time elapsed (s)

K (nT.m2) −5,000–5,000 642.606 2.571 34
α (0) −90–90 43.546
z (m) 0–200 3.35
x0 (m) −10–10 0.39
q 0–3 1.97

TABLE 9 | Comparative analysis of parameter results for the Parnaiba anomaly.

Model parameters Silva (1989) Abdelrahman et al.
(2019)

Abdelrahman et al.
(2003a)

Tlas and
Asfalhani (2011)

Tlas and
Asfalhani (2015)

Present study

K (nT.m2) — −717.90 −215.60 −552.30 −4007.6 642.606
α (0) — 33.30 52.58 46.83 41.3 43.546
z (m) 3.50 3.50 2.23 3.36 3.4 3.35
x0 (m) — — — — — 0.39
q — — — 2.00 2.00 1.97
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computer program for least-squares magnetic inversion over the
Pima anomaly. After adequate smoothening of the initial solution
usingMarquarst’s algorithm, he interpreted the anomaly as a thin
sheet of depth -76.81 m. Recently, the buried anomaly was
interpreted as between a thin sheet and dyke like structure
using the simplex algorithm (Tlas & Asfahani, 2015). After
calculations, Tlas & Asfahani (2015) gave the depth of the
Pima copper anomaly as 64.1 m. Mehanee et al., 2021)
employed an R-Parameter imaging method to pin-point the
anomaly to a sheet-like structure buried at depth of 71 m.
Petrophysical information reports the drilling depth as 64 m
(Biswas, 2018). Considering these findings (Table 7), it can be
concluded that results from our new methodology comparably
agree acceptably with previous studies.

The Parnaiba Anomaly
In our second field case, we analyze crustal anomaly in the
Parnaiba basin.

The Parnaíba basin is a 500,000 km-square wide Paleozoic basin
structurally situated between the São Francisco and Amazonian
cratons (Cordani et al., 2013; Daly et al., 2018) in north-east
Brazil and widely regarded by explorationists as one of the world’s
most promising modern onshore gas basin. Priori regional studies
report that the basin which is characterized by Neoproterozoic

structures mapped to the Brazilian Orogenic Cycle (Mckenzie &
Tribaldos, 2018) is accrued with 3–5 km of sediments in the main
depo-center of its Phanerozoic-aged sedimentary rocks (Solon et al.,
2018). These rocks overlie the Neoproterozoic structures of the
Brazilian Orogenic Cycle. Oregenically, the crustal masses of this
basin are convicted to be resultant from the massive splitting of the
Rodinia believed to have occurred before the development of the
trending Brazilian fold belts around 900Ma (Cioccari & Mizusaki,
2019; Jurandyr Luciano Sanches Ross, 2020). Basement inliers were
then formed with the surrounding of these classical cratonic
fragments by Neoproterozoic fold belts during the amalgamation
process of the Gondwana supercontinent. These inliers were further
reworked thermally and contracted into cratonic nuclei during the
Brazilian orogeny. However, the inclusive geo-magmatism widely
observed in greater portions of the Parnaíba Basin has been associated
with events of distention events and faults remobilization that
followed the rupturing of the Pangea and the opening of the
Atlantic Ocean (Cioccari & Mizusaki, 2019). Macedo Filho et al.,
2019) reports that these magmatic occurrences in the basin as well as
their associated geothermal gradients may have generated the much-
acclaimed hydrocarbons in the sedimentary sequences of the
Parnaíba Basin.

Figure 11 (red line with round markers) shows the vertical
magnetic anomaly resulted from a 26m-long profile over a

FIGURE 12 | Geologic map of the Quseir area, Egypt showing the Hamrawein shear (modified after Essa and Elhussein, 2018).
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FIGURE 13 | Magnetic intensity map of the Hamrawein field area showing Profile MN (redrawn after Essa and Elhussein, 2018).

FIGURE 14 | Magnetic anomaly profile over the Hamrawein field anomaly using the MRF algorithm.
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Mesozoic diabase intruded into the Paleozoic sediment of the
Parnaiba basin. The profile was sampled at an interval of 0.5m.
The uniqueness of this anomaly problem lies in the fact that the
oxidization of magnetite resultant from extensive weathering of the
upper part of the buried structure has led to the loss of most of its
magnetism (Silva, 1989). As a result of this geological peculiarity, we
expect the magnetic anomaly to be largely affected by random noise
at gross levels. Thisfield case is also a test of the stability of themethod
in the presence of such peculiarity.

The anomaly depth, magnetic angle, amplitude coefficient,
anomaly origin, and shape factor are estimated using MRF
algorithm are guided by UB-LB outlined in Table 8. This
magnetic anomaly is inverted with the cylinder model
considered as the priori anomaly causative.

After each iterating round, the misfit between sample data and
those from the estimated parameters are calculated (Figure 11).
The obtained results are displayed in Table 8.

Comparatively, it can be observed that depth to the center of
the anomaly estimated using our new method (z = 3.355 m)

agrees with previous reports from similar studies by Silva (1989);
Abdelrahman et al., 2019), Tlas and Asfahani, 2011), and Tlas and
Asfahani, 2015). Silva (1989) obtained a depth of 3.5 m after
converting the problem from non-linear to linear using the
M-fitting technique; Abdelrahman et al., 2019 using the least
square minimization method reported that the cylinder is buried
at a depth of 3.5 m. On the other hand, Tlas & Asfahani (2011)
and Tlas & Asfahani (2015) estimated the depth to the center of
the cylinder as 3.36 and 3.4 m by respectively employing the
deconvolution technique and simplex algorithm. Furthermore,
the obtained values of K and RMSE confirm the algorithm’s
stability in the presence of contamination.

The results obtained using the present technique as well as
those reported from the previous studies are displayed in Table 9.

The Hamrawein Field Anomaly
In our final case study, we will be analyzing a multi-model anomaly
fromHamrawein field–an Egyptian mining field situated around the
western throat of the Red Sea in North Africa. This geologic region is

FIGURE 15 | Convergence behavior of the investigated case studies (A) Pima anomaly, (B) Parnaiba anomaly and (C) Hamrawein anomaly.
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a constituted part of the East-African rift system believed to have been
structurally architected from the anti-clockwise rotational divergence
of the Arabian plate from the African tectonic Plate with the central
Mediterranean Sea as the pole of rotation (Noweir & Fheel, 2015).
The field is petrologically dominated with volcanic rocks such as
pillow tholeiitic basalts overly genetically on layers of ultramafic and
gabbroic strata. These layers of strata are unevenly covered with
volcanic and sedimentary rocks of calco-alkaline geochemistry
(Salem et al., 2005; Smith & Salem, 2005). Figure 12 is a
geological map of Qusier area showing the Hamrawein field.

Figures 13, 14 show a 15 km magnetic anomaly profile (MN)
extracted from a magnetic map designed from an extensive high
definition aeromagnetic survey data originally carried out by Salem
et al. (1999). For this study, the profile is digitized at a 200m interval.
From priori geologic studies, we can ascertain that the profile is
characterized by two prominent anomalies. However, the structure
or characteristics of these anomalies cannot be distinctly defined
initially and as such could be interpreted broadways as a
combination of any of the simple shapes. This situation normally
renders inherent non-uniqueness around solutions for the anomaly.

Fudging in the peculiarity of this problem and to resolve this
technical complication, we run the algorithm for all possible dual-
combinable shapes. The least RMSE error of 3.341 is achieved and
accepted for model shapes with q values of 1.032 and 0.981

respectively which proximate synonymously with models of thin
sheet structure. Then too, our algorithm eliminants K =
115,018.987 nT m, z = 494.74 m, α = 68.276° and xo =
4571.033 m as optimal model parameters for the first buried
structure while the parameters of the second structure are
computed to be K = 61,836.497 nT m, z = 458.023 m, α =
51.383° and xo = 14897 m (Table 10). From Figure 14, it can
be observed that the fit between the observed and estimated
anomalies is consistently excellent.

Table 11 compares results obtained in this present study with
those obtained from similar studies reported in literature. Salem
et al., 2005) modified the enhanced local wavenumber method and
used it to interpret the two subsurface anomalies as thin sheet
structures buried at depths of 555.7 and 441.2 m respectively. Salem
et al., 2005) did heterological computation of the anomaly using
analytic signal derivative but reported depths of 540 and 447m
respectively. Salem (2011) on the other hand conducted his analysis
of the Hamrawein anomaly using both total gradient (TG) and local
wave number (LW) methods. The LG methodology outputted
depths of 486.5 and 440.4 m while the LW method out-turned
432.6 and 422.8 m as respective depths to the two anomalies. Essa &
Elhussein, 2018 and Essa & Elhussein (2020) used particle swarm
optimization (PSO) to carry out magnetic inversion for the area.
While the former employed robust PSO for this task and reported
the subsurface structures as thin sheets with depths of 623.05 and
494.14m, the latter who emphasized the use of the optimization
technique to infer second moving average residual magnetic
anomalies also interpreted the structures as thin sheets but
emplaced them at depths of 604 and 500m respectively.
Comparing results from this study with these previous findings,
it can be generally deduced that resolutions using this new
methodology stand in good agreement with those from previous
reports. Figure 15 shows the convergence behavior of the
investigated case studies (Pima, Parnaiba, and Hamrawein
anomalies).

Evaluation of results obtained using this new methodology has
revealed that the technique exhibits admirable stability in the
presence of noise, remarkable flexibility especially when
confronted with interfering anomalies, and great pervasiveness in
the quantitative resolution of magnetic inversion problems. The
consistency of the results obtained from the analysis of the field

TABLE 10 | Numerical Results for the Hamrawein field anomaly.

Model parameters Selected ranges Result

First Anomaly
K (nT.m) 100–500,000 110531.368
α (0) −90—90 65.031
z (m) 100–1,000 446.832
x0 (m) 0–15,000 2377.424
q 0–3 0.921

Second Anomaly
K (nT.m) 100–500,000 49713.438
α (0) −90—90 57.382
z (m) 100–1,000 399.963
x0 (m) 0–15,000 13629.462
q 0–3 0.873

Elapsed time 90s

TABLE 11 | Comparative analysis of results for the Hamrawein field anomaly.

Model parameters Salem et al.
(2005)

Salem et al.
(2005)

Salem (2011) Essa &
Elhussein (2018)

Mehanee et al.
(2021)

Present study

First Anomaly
K (nT.m) — — 127595.3 507.64 102046.00 115.02
α (0) — — — 57.04 70.49 68.27
z (m) 555.7 ± 10 540 ± 30 486.5 623.05 480.00 494.74
x0(m) 4526.00 ± 7 4530 ± 10 — 4255.98 4550.00 4571.03
q 1.44 - 1.0 0.89 1.00 1.03

Second anomaly
K (nT.m) — — 83746.7 427.38 56549.52 61836.497
α (0) — — — 37.21 55.04 51.383
z (m) 441.2 ± 3 477 ± 25 440.4 494.14 400.00 458.023
x0 (m) 14858.00 ± 17 14850 ± 21 — 14823.96 15200.00 148973.295
q 1.20 1.2 ± 01 1.0 0.93 1.00 0.981
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examples when compared with background results from other
similar studies conducted with other methods further affirms the
reliability of the new methodology. While this consistency is
continuous for shape and depth parameters, Tables 6, 8, 10 show
that there are significant variations in the amplitude parameter for all
field cases. This large variation could be attributed to two main
reasons. The first, which is the mathematical role of K in the forward
model (Equation 1) has already been explained in Synthetic Examples
Section. Ambiguity makes up the second reason. The K
parameter—directly related to the magnetic susceptibility is a
physical property that points to the type of materials making up
the buried anomaly. As has been explained severally in literature
(Clark, 1996; Crowther, 2003; Marques et al., 2014; Teixeira et al.,
2018; César de Mello et al., 2020), magnetic susceptibility is a very
non-unique rock property and could sometimes range up to factors
of 104. It is therefore not surprising to find authors reporting different
values for K. Howasmuch, it will be rather skewed to conduct
appraisal of this parameter based on these literature reports alone.
The efficiency of the new method in the estimation of K would only
be assessed without bias if the result were gauged against laboratory
findings for cores harvested from these field sites. Unfortunately, this
information is not available for any of the three field cases.
Nonetheless, the new technique still exhibited comparative edge
over other well-known and conventional techniques especially on
the grounds of convergence rate, and quality of the anomaly
parameters (depth and shape) resolved.

CONCLUSION

In this study, we have introduced and investigated the applicability
and the performance of the Manta Ray Foraging Optimization
algorithm in elucidating distinctive physical parameters of simple
geometrically shaped geologic structures (spheres, horizontal
cylinders, and thin sheets). This new inversion technique has
been demonstrated successfully on synthetically generated
magnetic anomalies corrupted with different levels of Gaussian
noise (0, 5, 10, 15, 20%), applied to cases of anomalies from
multiple and intercalating structures, and finally experimented on
heterologous field cases taken from mining sites in Brazil,
United States, and Egypt.

Generally, the test examples (real and synthetic) treated in this
research work have all affirmed the MRF-based algorithm’s
suitability for the inverse modeling of magnetic anomalies caused
by conventional geometrically shaped structures. Furthermore, the
examples enabled us in the evaluation of the new technique’s
strengths with regards to geophysical optimization and
extendedly, as compared with existing methods. First, considering
reports so far published and even that from the comparative study in
this work, it has been observed that amongst stochastic geophysical
optimization techniques, the proposed algorithm presents one of the
best convergence rates. This rate, however, has no effect on its
optimization abilities, as the misfits calculated at the culmination of
the procedure still fell within acceptable levels. Most significantly, the
method was able to address the reoccurring challenge of immature
convergence and local optima (commonly resulting in poor

solutions) encountered by conventional intelligent methods such
as DE, PSO, GA, and ACO. This is enabled by the search agents’
propensity to transition between chain and cyclone foraging
strategies. The chain strategy contributes to the algorithm’s local
search ability, whereas the cyclone foraging behavior is significantly
dedicated to the algorithm’s global search capacity; a combination of
these two, as permitted by our new method, enables extensive
exploration of the entire problem domain and practically, greatly
improved the quality of solutions. It should however be added that
while the algorithm converge in fewer iterations, it took a longer time
to complete an iteration. This is but a limitation of this method. As a
recommendation, this temporal cost could be improved through
modifications (e.g., binary-MRF, quantum-MRF, Chaotic-MRF)
and hybridization (e.g., PSO-MRF, GA-MRF, ACO-MRF) of the
technique. Considering these gains, and the significantly lower
computational effort required to attain them (gauging the
limitation), MRF has been proven to positively outperform
conventional optimizers in the resolution of geophysical
optimization problems with respect to geometrically shaped
magnetic anomalies.

Hereto, the novel methodology can be recommended for ore/
mineral exploration as well as reconnaissance studies aimed at
efficiently resolving subsurface structures from magnetic field data.
As a recommendation for future studies, the method can be further
developed for the interpretation of other potential field data such as
resistivity and self-potential data.
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