AUTHOR=Wang Hanyu , Liu Lei , Yang Longxing , Sun Fengxia , Yi Li , Liu Hong TITLE=The Structure and Elasticity of CaO3 Under High Pressure by First-Principles Simulation JOURNAL=Frontiers in Earth Science VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2022.848763 DOI=10.3389/feart.2022.848763 ISSN=2296-6463 ABSTRACT=
The structure, electrical properties, elasticity, and anisotropy of the newly discovered mantle mineral, CaO3, are obtained under 10–50 GPa by first-principles simulation to understand their relations with the composition and structure of the mantle transition zone. Crystal structure and phonon frequencies under 0–50 GPa indicate that CaO3 can exist stably under 10–50 GPa. Here, the band gap of CaO3 is 2.32–2.77 under the explored pressure and indicates its semiconductor property. The Mulliken population analysis shows that the Ca–O bond is an ionic bond, and O–O bond is a covalent bond, and the strength of the O–O bond is higher than that of the Ca–O bond. The density, bulk modulus, and shear modulus of CaO3 increase with increasing pressure. The compressional wave velocity (