
Learning From Success, Not
Catastrophe: Using Counterfactual
Analysis to Highlight Successful
Disaster Risk Reduction Interventions
Maricar L. Rabonza1,2*, Yolanda C. Lin3 and David Lallemant1,2

1Asian School of the Environment, Nanyang Technological University, Singapore, Singapore, 2Earth Observatory of Singapore,
Nanyang Technological University, Singapore, Singapore, 3Department of Geography and Environmental Studies, University of
New Mexico, Albuquerque, NM, United States

In the aftermath of a disaster, news and research attention is focused almost entirely on
catastrophic narratives and the various drivers that may have led to the disaster. Learning
from failure is essential to preventing future disasters. However, hyperfixation on the
catastrophe obscures potential successes at the local scale, which could serve as
important examples and learning resources in effective risk mitigation. To highlight
effective risk mitigation actions that would otherwise remain unnoticed, we propose
the use of probabilistic downward counterfactual analysis. This approach uses
counterfactual modelling of a past hazard event with consequences made worse (i.e.
downward counterfactual) by the absence of the mitigation intervention. The approach
follows probabilistic risk analysis procedures where uncertainties in the simulated events
and outcomes are accounted for and propagated. We demonstrate the method using a
case study of Nepal’s School Earthquake Safety Program, implemented before the
2015 Mw 7.8 Gorkha earthquake. Using a school building database for Kathmandu
Valley, Nepal, we present two applications: 1) the quantification of lives saved during the
Gorkha earthquake as a result of the retrofitting of schools in Kathmandu Valley since
1997, 2) the quantification of the annual expected lives saved if the pilot retrofitting program
was extended to all school buildings in Kathmandu Valley based on a probabilistic seismic
hazard model. The shift in focus from realised outcome to counterfactual alternative
enables the quantification of the benefits of risk reduction programs amidst disaster, or for
a hazard that has yet to unfold. Such quantified counterfactual analysis can be used to
celebrate successful risk reduction interventions, providing important positive
reinforcement to decision-makers with political bravery to commit to the
implementation of effective measures.
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1 INTRODUCTION

Success in disaster risk management (DRM) means that natural
hazard events do not turn into disasters, and communities
continue to function and be resilient to shocks and stresses
from hazards. Since the extent of a disaster can be
characterised by loss of life and disruptions to the physical,
built and social environments, (Moore, 1958; Mileti, 1999;
Smith, 2005), the extent of success of risk reduction
interventions manifest primarily as reduced impact. As such,
success is measured as an absence (e.g., no damage, fewer
casualties, etc). This poses a challenge for recognising and
incentivising important investments in DRM interventions
since they are made invisible by their very nature.

In the aftermath of earthquakes, storms, and floods, narratives
of catastrophe dominate the interest of media, political and
research communities. However, this hyper-fixation on the
catastrophe can obscure important successes amid the broader
disaster. Another challenge is to recognize successful
interventions if the hazard they were designed for has not yet
occurred. This happens when we rely on a disaster occurrence to
make mitigation benefits visible. For extreme and rare hazard
events, for example, the benefits of risk reduction may manifest
only in the distant future. Because of the significant time delay
between the interventions and their benefits being manifested,
such interventions can be perceived as unsuccessful or
squandered until the event occurs. These are two of the
challenges described in Lallemant et al. (2022) where
successful DRM interventions are made invisible: “invisible
success in the midst of broader disaster”, and “invisible
success due to yet unrealised benefits.” These invisible successes
of mitigation interventions are related to a cognitive tendency
called outcome bias - the tendency to judge the quality of a
decision by the outcome alone (Robson, 2019).

To address outcome bias, we propose a probabilistic downward
counterfactual analysis approach. It relies on comparing the
outcome of a realised event in which a risk reduction was
implemented, to an alternative branch of history (i.e.
counterfactual) in which the disaster risk reduction
intervention was not implemented. Throughout the paper, we
use the term realised to refer to events or outcomes that
transpired (in juxtaposition to counterfactual), in alignment
with prior literature on probability and counterfactual analysis
(Roese, 1997). An imagined scenario where an intervention is
absent is considered a downward counterfactual because the
assumed outcome is worse than what was observed in reality
(Roese, 1997). This is in contrast with an upward counterfactual
where the assumed outcome is better. Probabilistic downward
counterfactual analysis is probabilistic in that it follows
probabilistic risk analysis procedures to propagate and account
for uncertainties in events and outcomes. In this paper, we
present two applications of probabilistic downward
counterfactual analysis to highlight the effectiveness of risk
reduction in terms of probabilistic lives saved. The first
application estimates the benefits of an intervention in a past
earthquake through comparison of fatalities modelled without
the risk intervention and actual fatalities. The second application

estimates the probabilistic benefits of a mitigation for a hazard
that has not yet occurred. Instead of an actual past event, a hazard
model is used to calculate the intervention’s benefits.

The paper’s main contribution is in combining the
probabilistic risk analysis framework and counterfactual
analysis to calculate and highlight lives saved from successful
disaster risk reduction interventions, that otherwise go unnoticed.
The significance and novelty of this work is in shifting our
perception of the benefits of risk reduction intervention, by
using an appropriate counterfactual scenario as the baseline
against which to calculate and judge these benefits. Rather
than focusing entirely on realised outcomes, the analysis of
counterfactual outcomes shines light on the value of a
mitigation intervention by demonstrating what would have
been without such intervention. Downward counterfactual risk
analysis has only so far been used to identify potential worse
impacts for the purpose of insurance, preparedness, or future
mitigation (e.g. Woo et al., 2017; Shepherd et al., 2018; Woo and
Mignan, 2018; Aspinall and Woo, 2019; Aspinall and Woo, 2019;
Oughton et al., 2019; Woo, 2019; Lin et al., 2020). This study
pioneers a systematic approach to creating incentives for good
decision-making on the basis of probabilistic risk. The
quantification of probabilistic lives saved by effective risk
reduction programs in a major hazard event serves as a
powerful indicator of the intervention’s success that would
otherwise remain unnoticed amidst a disaster. In addition, the
calculated probabilistic benefits of an intervention provide
important incentive and encouragement to decision-makers
committed to implementing effective measures even if the
benefits are not materialized yet by the occurrence of a hazard
event. Altogether, this work is a new domain of application of
counterfactual analysis with much potential across the broad
spectrum of hazards.

The proposed framework has significant implications to
multiple potential stakeholders. For policymakers, there is
currently little political capital gained from investing in
resilience if the benefits of such investments are invisible. By
having the benefits of these investments visible to their
constituents, policymakers will be incentivised for risk-
informed decision-making. For donors and funders, this
framework would enable them to monitor progress in terms of
probabilistic impacts reduced, even if such benefits remain
unrealized until a disaster strikes. For disaster risk
management practitioners, while it is important to learn from
failures, it is equally important to learn from successes, and share
them broadly so they can be emulated, scaled, and adapted in
other contexts where they are needed. Importantly, it also
provides a mechanism to recognise and elevate the important,
humble, long-term, and dedicated work conducted by many to
keep our communities safe, even when their work is unseen.

The paper is organized as follows. Section 2 introduces the
proposed framework in the context of probabilistic risk analysis.
In Section 3, we describe the earthquake risk intervention that
will be the focus of our two applications: the school earthquake
retrofitting program in Nepal, implemented before the 2015 Mw

7.8 Gorkha earthquake. In the subsequent sections, we present the
methods (Section 4) and two applications (Section 5) that shed

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 8471962

Rabonza et al. Celebrating Successful Risk Reduction Interventions

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


light on the benefits of the retrofitting program. The first
application estimates the number of lives saved during the
Gorkha earthquake as a result of the retrofitting of schools in
Kathmandu Valley since 1997. The second application calculates
the annual expected lives saved if the retrofitting program was
extended to all school buildings based on a probabilistic seismic
hazard model we generated for Kathmandu Valley, Nepal. This is
followed by Discussion (Section 6) and Conclusion (Section 7).

2 COUNTERFACTUAL RISK ANALYSIS
FRAMEWORK

The main idea of counterfactual disaster risk analysis is to explore
alternative branches of history to assess past situations where a
disaster might have occurred but was averted or failed to
materialise (Woo, 2018). Impacts associated with a past event,
i.e., a realised event, can be expressed as the function of the 1)
Hazard, the likelihood of potentially damaging events, 2)
Exposure, the characteristics of assets such as people, buildings
and infrastructure and 3) Vulnerability, the susceptibility of the
exposed assets to sustain impact for a given hazard intensity
(UNISDR, 2009). Then, we can write the losses from the realised
event as

Irealised � f θH, θE, θV( ), (1)
where θH, θE, and θV are the hazard, exposure and vulnerability
parameters consecutively. Modifications (δ.) of one or multiple
parameters that define the realised event allow one to define the
impact of a counterfactual event:

Icounterfactual � f θH + δH, θE + δE, θV + δV( ), (2)
The purpose of the deviations, δH, δE, and δV, to the realised

event’s parameters is to explore counterfactuals. δH helps us
explore counterfactuals in the hazard (e.g., what if the
earthquake had occurred at a slightly different location, or
with opposite directivity of rupture?). δE helps us explore
counterfactuals in the exposure (e.g., what if the 1906 San
Francisco earthquake were to hit today’s building stock?). δV
helps us explore counterfactuals in vulnerability (e.g., what if all
unreinforced masonry buildings had been retrofitted?). In this
paper, we focus on δV, while δH and δE = 0, to highlight the value
of effective vulnerability reduction programs that often go
unnoticed.

Modelling the impact of events with either Eqs (1) or (2) relies
on probabilistic risk analysis. Traditionally used in engineering
reliability assessments and performance-based design,
probabilistic risk analysis has been an established approach to
assess the risks from natural hazards to entire regions and cities
(Paté-Cornell, 2002; Stergiou and Kiremidjian, 2010).
Probabilistic risk analysis systemically quantifies the potential
impacts of hazard events on a system and the likelihood that such
consequences would occur (Bedford and Cooke, 2001). In the
case of Eqs (1), (2), the impacts Irealised and Icounterfactual and their
likelihood are obtained through the joint probability of the risk
parameters.

The expected benefits (B) of effective risk mitigation is then
calculated as the difference between the expected value (the
mean) of impacts of the realised event E(Irealised) and the
counterfactual event E(Icounterfactual) (see Eq. 3 and Figure 1).
Assuming the realised impacts are less than those of the
counterfactual, B is expected to be a positive value in Eq. (3).

B � E Icounterfactual( ) − E Irealised( ) (3)

3 INVISIBLE SUCCESS OF SEISMICALLY
RETROFITTING SCHOOLS IN NEPAL

In this paper, we implement the proposed framework to highlight
invisible benefits of effective earthquake risk mitigation.
Specifically, we focus on one of the most significant risk
interventions in recent years that led to improved construction
practices - the seismic retrofitting of school buildings in Nepal.
Amid the destruction and tragic loss during the Gorkha
earthquake, the life-saving benefit of the school retrofitting
was obscured. Likewise if an earthquake event has not yet
occurred, the retrofitting program may seem like a waste even
though an earthquake may occur at any time. Probabilistic
counterfactual risk analysis can be used to shed light on these
invisible benefits.

School buildings in Nepal are recognized to be at high risk
amidst the region’s high seismicity from the convergence of the
Indian tectonic plate with the Eurasian plate, and due to informal
construction practices done with little engineering guidance
(Marasini et al., 2020). Damage to school buildings was
extensive from large earthquakes in recent history - the
1988 Mw 6.6 Udayapur earthquake (Gupta, 1988), and the
2011 Mw 6.9 Sikkim/Nepal border earthquake (Rai et al.,
2012). The 2015 Gorkha earthquake is a unique example in
terms of the impacts on schools because the earthquake
happened on a Saturday, whilst the school was not in session.
Had the earthquake hit on a school day, over one million students
would have been affected (Dixit et al., 2014).

Seismic retrofitting of school buildings started in 1997 through
the leadership of the National Society for Earthquake Technology
(NSET) as part of Nepal’s School Earthquake Safety Program
(SESP) (Marasini, 2019). By the time of the Gorkha earthquake in
2015, 300 schools had been retrofitted, 160 of which were in
Kathmandu Valley. It was a big achievement that none of the
schools retrofitted under SESP collapsed or needed major repairs
after the earthquake. Because the buildings were found to be
structurally sound, all the retrofitted buildings served as safe
shelters and required fewer temporary classrooms (Marasini,
2019). Following the direction of SESP towards safe learning
facilities, the Government of Nepal aims to achieve minimum
school safety criteria nationwide by 2030 through the
Comprehensive School Safety Master Plan developed by
Nepal’s Ministry of Education, Science and Technology
(CEHRDC, 2018) based on the global Comprehensive School
Safety Framework (UNISDR and GADRRRES, 2017).
Recognizing the need to strengthen more than 60,000 school
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buildings all over Nepal (Marasini et al., 2020), one of the
activities in the Master Plan is to retrofit school buildings in
earthquake-affected areas.

4 METHODS

4.1 School Building Database
The analyses in this paper are carried out on a database of
Nepalese school buildings surveyed and georeferenced in 2013
through the partnership of the Open Data for Resilience
Initiative (OpenDRI) and the Government of Nepal with

support from Kathmandu Living Labs (OpenDRI, 2012).
The building database covers Kathmandu Valley and was
produced to understand the seismic risk in the education
and health infrastructure. Parts in the dataset related to
educational infrastructure were tagged as either school,
college, university, or kindergarten. The database provides
information on the location, number of daytime occupants
on a school day, structure type, and whether the school
building was retrofitted or not. We chose the OpenDRI
dataset for this paper because these building attributes allow
us to determine which school buildings were retrofitted under
SESP before the 2015 Gorkha earthquake. In addition, the

FIGURE 1 | The concept of the counterfactual risk analysis framework for quantifying the probabilistic benefits of effective risk reduction. This graphic serves as a
demonstration of the framework that is specific for a risk intervention that reduces vulnerability.

FIGURE 2 | A map of the school building database used in the analysis. Shown are the buildings’ retrofit state and structure type as surveyed in 2013 by the Open
Data for Resilience Initiative and the Government of Nepal.
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buildings’ structure type can be used to identify the buildings’
vulnerability, while the number of daytime occupants can be
used for fatality calculations.

After screening the raw OpenDRI dataset for missing
information or non-school buildings, the final dataset we
use for this work consists of 5,029 school buildings, of
which 70 were retrofitted (see Figure 2). We highlight that
the OpenDRI dataset we use for this study provides
information on only 70 out of the 160 retrofitted school
buildings identified by NSET in Kathmandu Valley’s
affected areas (Marasini, 2019). The database consists of
buildings with unreinforced masonry-type (URM-type) and
reinforced concrete-type (RC-type) structures. The daytime
occupancy for the 70 retrofitted schools go up to 800, with a
mean of 134, whereas the occupancy for the 5,029 school
buildings go up to 2000 with a mean of 120.

4.2 Building Vulnerability Modelling
A fundamental step in estimating the benefit of a seismic
retrofitting intervention involves obtaining the structure’s
probability to exceed a certain damage level before and after

the intervention. This paper focuses only on the collapse damage
level since a vast majority of earthquake fatalities worldwide are
due to building collapse (Spence, 2007). Collapse fragility curves
are used to represent the probability of collapse for a given
earthquake intensity and building class.

In this work, we have adopted collapse fragility curves
developed by other authors to represent the probability of
collapse of the buildings in their retrofitted and non-retrofitted
states. The collapse fragility curves we use for the Nepalese
school building stock in this study are presented in Figure 3.
The median η and lognormal standard deviation β of the
fragility curves expressed as peak ground acceleration
(PGA) lognormal distributions are shown in Table 1.

For non-retrofitted buildings, we adopt Giordano et al.
(2021a)’s empirical-based fragility curves specifically
developed for Nepalese school buildings. The curves were
generated using a Bayesian approach to incorporate well-
established fragility models such as the HAZUS database
(Federal Emergency Management Agency, 2015) and World
Bank’s Structural Integrity and Damage Assessment database
(SIDA) that was conducted under the Global Program for Safer

FIGURE 3 | Collapse fragility curves adopted in the analysis.

TABLE 1 | Fragility curve parameters adopted in the analysis for the school buildings in the OpenDRI database. The parameters follow a lognormal model where η (g) is the
median PGA and β is the lognormal standard deviation.

References Building class Structural
state of building

Collapse
state

parameters

η β

Giordano et al. (2021a) Non-retrofitted URM - Unreinforced masonry bearing wall low-rise (pre-code) Un-retrofitted 0.55 0.76
Giordano et al. (2021a) Non-retrofitted RC - Concrete frame buildings with unreinforced masonry infill walls, low-rise (low code) Un-retrofitted 1.13 0.84
Giordano et al. (2021b) Retrofitted stone masonry buildings Retrofitted 1.133 0.452

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 8471965

Rabonza et al. Celebrating Successful Risk Reduction Interventions

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Schools (Worldbank, 2019). The collapse fragility curves from
Giordano et al. (2021a) were assigned to the buildings in the
OpenDRI dataset based on their structure type - unreinforced
load-bearing wall schools were assigned the URM collapse
fragility curve, while reinforced concrete schools were assigned
the RC collapse fragility.

For retrofitted buildings, we use the collapse fragility curve
developed by Giordano et al. (2021b) for retrofitted stone
masonry buildings in Nepal that are considered to have good
quality material. The fragility curves in Giordano et al. (2021b)
were produced analytically using a non-linear static pushover
analysis for stone masonry buildings retrofitted with the RC
strong-back approach. It should be noted that the selected
fragility curve for retrofitted school buildings does not
necessarily represent the variation in the retrofit solutions
available in Nepal, as well as the workmanship and original
quality of the buildings, rather this is the best information
available to the authors at the time of writing.

4.3 Expected Fatalities From Building
Collapse
A vast majority of earthquake fatalities worldwide are due to
building collapse (Spence, 2007). Therefore, this paper focuses
on quantifying the fatalities from earthquake-induced
building collapse, and the reduced estimated fatalities from
retrofitting interventions.

To estimate fatalities due to building collapse, we adopt a semi-
empirical casualty model that takes advantage of the availability
of detailed building inventory and collapse fragility curves specific
to the building types in Nepal. The approach is adopted from the
semi-empirical forward model implemented in the USGS Prompt
Assessment of Global Earthquakes for Response (PAGER) system
(Jaiswal et al., 2011) for determining the extent of earthquake
impacts globally. In contrast to USGS PAGER’s use of Modified
Mercalli shaking intensities, the earthquake intensity for this
study is expressed in terms of PGA. In this study, we calculate
the total estimated fatalities E[I] for a given building portfolio
having a total number of m buildings from a single earthquake
event. Each building i in the portfolio has a known structure type
ki. Using the empirical casualty model, we can write E[I] as

E I[ ] � ∑
m

i�1
Oi · FRi ki( ) · Ci imi, ki( ) (4)

whereOi is the total exposed population inside building i at the
time of the earthquake, FRi (ki) is the fatality rate associated with
the collapse of building i based on its structure type ki, and Ci(imi,
ki) is the probability of collapse of building i given the earthquake
intensity at its location imi and its structure type ki.

A fixed fatality rate of FRi (ki) = 20% for all structure types ki in
the dataset is adopted for the study. This fatality rate is based on
NSET’s recommendation for both RC and masonry building
classes, of which all the buildings in the dataset fall into
(NSET, 2000). This comes with an assumption that the same
level of casualty is expected regardless of the level of school (e.g.,

primary or higher grades), nature of escape routes, or the
occupants’ level of preparedness.

By calculating E[I] for a counterfactual and a realised
scenario using Eq. (4), and plugging into Eq. (3), we can
calculate the expected benefits of effective risk mitigation in
terms of lives saved. In order to generate the entire probability
distribution of fatalities, we conduct Bernoulli simulations
(10,000) for collapse given a shaking intensity Ci(imi) at
each building location and for each building class ki for
both the realised and counterfactual scenario. The complete
source code is available at https://github.com/ntu-dasl-sg/
frontiers2021-PLS.

5 APPLICATIONS

5.1 Lives Saved During the 2015 Gorkha
Earthquake due to the School Retrofitting in
Kathmandu Valley
In order to quantify the reduced fatalities from the school retrofit
program in Kathmandu Valley, we estimate the fatalities during
the 2015 Gorkha earthquake in the 70 retrofitted school buildings
in our database as well as in the counterfactual scenario where
these are not retrofitted. By chance, the earthquake occurred
during a school holiday, during which occupancy was very low.
For both re-analysis scenarios (current retrofit and counterfactual
non-retrofit schools), we analyse fatalities for the expected
occupancy during the school day. While there were a total of
160 schools retrofitted in Kathmandu Valley at the time of the
2015 Gorkha earthquake (Marasini, 2019), our database
contained information on 70. Hence while the focus of our
analysis is on the life-saving benefit of the retrofit of the 70
schools in our data, the true reduction in fatalities due to the
earthquake retrofitting program is much greater. A map of the 70
retrofitted school buildings used in this analysis is shown in
Figure 4.

The shaking intensity at the school sites during the 2015
Gorkha earthquake is obtained from the broadband ground-
motion simulations produced by Chen and Wei (2019) for the
earthquake event. This hazard model was selected because the
location of sources of the high-frequency energy (strong-motion
generation areas) is a critical factor in explaining the relatively
low damage phenomenon observed in Kathmandu Valley during
the 2015 Gorkha earthquake (Gallovič, 2016; Koketsu et al.,
2016), aside from the effects of site conditions and rupture
directivity (Dixit et al., 2015; Gallovič, 2016; Koketsu et al.,
2016; Rajaure et al., 2017). A map of the PGA values at the
location of the retrofitted buildings is shown in Figure 4. With
this hazard model, PGA values at the location of the retrofitted
buildings range from 0.065 to 0.149 g, and come in a resolution of
0.0167°, or around 1.85 km. More details about the PGA data are
summarised in Chen and Wei (2019) and its companion paper,
Wei et al. (2018).

In order to calculate the estimated impacts in a counterfactual
scenario, E[I]counterfactual, in which the SESP seismic retrofitting
program was absent before the Gorkha earthquake, we use Eq. 4
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to estimate the total fatalities for the 70 buildings under this
counterfactual scenario. The probability of collapse Ci(imi, ki) of
any building i is obtained from the fragility curve of the building
at its non-retrofitted state and the Gorkha earthquake event-
specific PGA at the building’s location imi. The collapse fragility
curves for the non-retrofitted state are assigned as described in
Section 4.2, and the PGA values at the building locations are
extracted from Chen andWei (2019)’s hazard model. Using these
inputs in Eq. (4) results to E[I]counterfactual = 25 fatalities.

The expected fatalities from the realised event E[I]realised can be
calculated using the same approach, but using the collapse
fragility curves corresponding to the retrofitted state of the
buildings as assigned in Section 4.2. This approach results in
E[I]realised = 0 fatalities, which is the expected total number of

fatalities in the realised scenario for the 70 buildings. By
comparing the fatalities from the two scenarios as in Eq. (3),
we estimate that the lives of approximately 25 school occupants
were saved in Kathmandu by the retrofit of the 70 schools (see
Figure 5).

In an attempt to explore the sensitivity of the casualty
estimates to different hazard models for the 2015 Gorkha
earthquake, we repeated the analysis using a PGA map from
the USGS ShakeMap (Wald and Allen, 2007; USGS ShakeMap,
2015). While using Chen and Wei (2019)’s hazard model results
in 25 lives saved, using the USGS ShakeMap hazard model results
in 68 lives saved (see Supplementary Figure S1). The analysis
using either model highlights the life-saving benefit of the school
retrofitting program, but we believe that the fatality analysis using
Chen and Wei (2019)’s model is more accurate in terms of
representing the shaking during the 2015 Gorkha earthquake.
Chen andWei (2019)’s model better captures the amplification or
attenuation of the seismic shaking as it accounts for the location
of sources of the high-frequency energy (strong-motion
generation areas), rupture directivity, and site conditions
critical in understanding the relatively low damage
phenomenon observed in Kathmandu Valley during the
earthquake.

5.2 Annual Expected Lives Saved Through
Scaling the Retrofit Programs to all Schools
in Kathmandu Valley
Part of the Comprehensive School Safety Master Plan is the
ambition to scale earthquake retrofitting to all vulnerable schools
(CEHRDC, 2018). As such, we develop a second case study to
better understand the life-saving impact of such a program. We

FIGURE 4 | A map of the 70 retrofitted schools and their corresponding structure type used in the analysis described in Section 5.1. The basemap shows the
hazard model developed by Chen and Wei (2019) for the 2015 Gorkha earthquake in terms of peak ground acceleration (in g-units).

FIGURE 5 | Distribution of estimated fatalities from the 2015 Mw 7.8
Gorkha earthquake based on earthquake intensity values from Chen and Wei
(2019). Two scenarios are shown: the actual scenario where all 70 school
buildings were retrofitted prior to the 2015 Gorkha earthquake, and a
counterfactual scenario where the schools were not retrofitted. Our analysis
show an estimated 25 lives saved in the 70 retrofitted schools.
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assess expected fatalities if the 5,029 schools in Kathmandu Valley
were retrofitted, and if they remained in their current state. This
analysis is conducted for the entire seismic hazard of Nepal, to
better reflect the distribution of potential events to impact
Kathmandu Valley.

A probabilistic seismic hazard analysis (PSHA) was developed for
the school building sites based on twenty-three independent seismic
source zones for Nepal identified by Ram and Wang (2013) and
adopted in Chaulagain et al. (2015)’s PSHA model. The ground

motion prediction equation by Chiou and Youngs (2014) for active
shallow crust regions is used within a logic tree for an event-based
probabilistic seismic hazard calculation in the OpenQuake-engine
(Silva et al., 2014). To reach statistical convergence, 100,000 stochastic
event sets with a 1-year time interval were generated (Silva, 2016).
The result of the simulation is a large number of realisations of
seismic events and corresponding shaking at the locations of the
schools within a year. The resulting hazard curves for some selected
schools in the database are shown in Figure 6.

FIGURE 6 | Hazard curves for three sample school building locations in the analysis.

FIGURE 7 | Benefits of extending Nepal’s school retrofit program to 5,029 schools in the database in terms of the shift in the annual fatality exceedance curve.
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For every event generated, the number of fatalities in the building
portfolio due to collapse is estimated using Eq. (4). In the fatality
calculation of each event, we incorporate the probability distribution
of school building occupancy. In Nepal, schools are open and run
220 days a year, and each school day lasts for 6 h (Government of
Nepal, 2009). This means that out of the 8,760 h in a year, 1,320
(15%) are school hours in Nepal. To account for this, we simulate a
large number of Bernoulli trials for each event that takes a 15%
probability of occurring during school hours. The resulting annual
fatality exceedance probability curves for two different retrofitting
scenarios are shown in Figure 7. The fatality calculation in this study
assumes no uncertainty related to the time of the day during school
hours. This means that the building occupancy is constant during
school hours, whereas outside school hours, the building
occupancy is 0.

The average annual fatalities are obtained by integrating the
integrating the annual fatality exceedance probability curve. For
the scenario in which none of the 5,029 school buildings is
retrofitted, we estimate 13 average annual fatalities, whereas
when the retrofitting program is extended to all buildings, we
estimate an average of 1 annual fatality. In this probabilistic
analysis, we calculate an average of 12 annual lives saved from
scaling the retrofit program in all of Kathmandu Valley.

6 DISCUSSION

6.1 A Counterfactual Analysis Approach to
Celebrate Effective Risk Reduction
In a field focused on long-term resilience to rare (i.e., volatile)
hazard events, perceptions of risk are biased by realised outcomes.
The perception of no impacts when in fact DRM work is
successful can result in policymakers and society at large to
undervalue the importance of proactive intervention. Shedding
light on successes and what might have been, not only recognizes
the outstanding work of those working to reduce risk, but is also a
crucial component of encouraging decision-makers to continue
investments in measures that keep our communities safe.

We highlight the need to celebrate the often invisible successes of
disaster risk reduction interventions, in order to incentivise, better
learn and replicate investments in such interventions. We further
propose and demonstrate the use of a probabilistic counterfactual
risk analysis framework to identify, quantify and highlight these
invisible successes. The framework demonstrates that judgement of a
risk reduction intervention should be based on a broad exploration
of possible outcomes, not only on specific outcomes.

We demonstrated two applications of the probabilistic
downward counterfactual risk analysis to 1) celebrate lives
saved by a disaster risk reduction intervention (earthquake
school retrofitting) amidst a past event (the 2015 Gorkha
earthquake in Nepal), and 2) assess expected annual lives
saved due to the intervention with the use of a probabilistic
hazard model. The two applications show that even in the midst
of a tragic disaster, or if a hazard event has not occurred yet, there
are often successes in risk reduction intervention to celebrate. The
counterfactual analysis showed that numerous expected fatalities
were avoided during the Gorkha earthquake because of the

government-led retrofitting of school buildings starting in
1997, and many more could be saved if the retrofit program
were scaled to all schools in Kathmandu Valley.

6.2 Lives Saved as a Risk Reduction Benefit
Metric
In our demonstrations, the risk benefit of DRM intervention is
measured in terms of a reduction in loss of life - the first target
metric within the Sendai Framework For Disaster Risk Reduction
(UNISDR, 2015). A risk benefit metric in financial units can also
be used, as with a typical cost-benefit analysis. However such
analysis tends to highlight interventions that effectively protect
high-value areas instead of high-vulnerability areas, which
exacerbates inequities (Lallemant et al., 2020; Markhvida et al.,
2020).

More alternative risk reduction benefit metrics for this
analysis include the number of displaced people, business
downtime, damage to buildings and cultural heritage,
psychological distress and more. For the Nepal case study,
for example, the benefits of retrofitting go well beyond the
reduced physical vulnerability of the buildings. Retrofitted
schools served as immediate community shelters, field
hospitals and relief centres. Classes in the retrofitted
buildings were operated without fear, resulting in less
demand for temporary classrooms (Marasini et al., 2020).
Loss avoidance is not the only invisible benefit of disaster
mitigation, and the benefits of DRM interventions go beyond
reduction of impact. Certain intervention designs can have co-
benefits such as retrofit programs that improve the
environmental comfort of classrooms, that serve as training
platforms to local constructors who replicate the methods in
other building constructions, or that are linked with student
and teacher earthquake preparedness programs (Spence and
So, 2021).

6.3 First Order Approach
The analyses and estimates of lives saved presented are first order
and serve as proof of concept of the counterfactual framework to
highlight successes in DRM. Following are limitations that need
to be noted for future work:

• The analysis did not account for fatalities from partially
collapsed buildings. To account for this, one may use
NSET’s recommendation to use a 10% fatality rate for
heavily damaged buildings (NSET, 2000)

• The building portfolio dataset we use in the two case studies
is only a subset of all the schools within the study area. The
dataset used for the first case study (Section 5.1) contains
only 70 out of the 160 retrofitted schools in Kathmandu
Valley. For the second case study (Section 5.2), we also did
not include school building data that has no information on
the occupancy and structure type.

• For the second case study, the assumption that all 5,029
school buildings will be retrofitted seems in line with the
plans of the Government of Nepal. However, it is not a
forecast of the future, as much uncertainty remains. We
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hope that our analysis serves to support policy decisions for
more resilient schools.

6.4 Broader Applications With Other
Domains of Hazard and Interventions
Probabilistic downward counterfactual risk analysis has potential
for application to other hazards. A key step of the framework is to
identify which risk component the intervention influences.
Earthquake risk reduction, for example, influences either the
reduction of exposure or vulnerability. Measures such as
restricting development in high-hazard zones decrease
exposure, whereas better construction standards decrease the
structural vulnerability of buildings and infrastructure.

Beyond earthquake risk reduction, the proposed framework
can also be used in other domains of hazard. Following are a few
selected examples of natural hazards and corresponding
interventions that could be celebrated using counterfactual
analysis. Enclosed in parenthesis are the risk component/s that
the intervention influences.

1. Earthquake
• Reconstruction and seismic retrofit (Vulnerability)
• Construction inspection (Vulnerability)
• Preparedness exercises (Exposure, Vulnerability)

2. Tropical cyclone and Tsunami
• Early warning system and timely announcements
(Exposure)

• Evacuation and provision of temporary shelters (Exposure
and Vulnerability)

• Public awareness about the hazard (Exposure and
Vulnerability)

3. Flood
• Limiting urban development in flood-prone zones
(Exposure, Vulnerability)

• Enhanced flood management infrastructure (Exposure,
Hazard)

• Timely emergency response (Vulnerability, Exposure)
• Preservation or restoration of natural ecosystems for flood
mitigation (Hazard)

4. Landslides
• Early warning system via geodynamic monitoring
(Exposure)

• Mitigation infrastructure, e.g. drainage systems (Exposure,
Hazard)

5. Wildfires
• Early warning system via dynamic weather forecasts
(Exposure)

7 CONCLUSION

This study combines the probabilistic risk analysis framework
and counterfactual analysis to quantify and highlight the
significant benefits of successful disaster risk reduction
interventions that often go unnoticed. By using an appropriate
counterfactual scenario as a baseline against which to compare

realised outcomes, it makes clear that the impact of hazards
would be much worse without important investments in risk
reduction.

Using this approach, we demonstrate that an estimated 25
lives were saved (probabilistically) during the 2015 Gorkha
earthquake from the retrofitting of 70 schools in Kathmandu
Valley alone. If such a retrofitting program were scaled to all the
approximately 5,029 schools in Kathmandu Valley, we estimate a
reduction of 12 annual school children fatalities based on the
significant seismic hazard of the region. These are clearly
important programs that should be prioritized, celebrated,
scaled, and replicated in areas with high seismic risk.

Loss of life reduction is an important metric for risk reduction,
not only because the life-safety of children and all people is
paramount, but also because doing so centres attention on high-
vulnerability areas and buildings, even if the financial losses
associated may be small. However loss-avoidance is not the
only invisible benefit of disaster mitigation, and the many co-
benefits can also be included to further highlight the value of risk
reduction interventions.

While this study demonstrates the application of probabilistic
counterfactual risk analysis to quantify the life-saving value of a
school earthquake retrofitting program in Kathmandu Valley, the
methodology can be used in other contexts and hazards.
Programs for typhoon and tsunami early warning, hazard
informed urban development planning, flood-management
through nature-based solution are all examples of important
programs whose true benefits could be more accurately valued
through the use of probabilistic counterfactual analysis. In so
doing, such analysis would provide increased incentives to invest
in risk reduction programs, learn from ones with demonstrated
success, and serve to encourage those whose humble work is
critically important even when often unnoticed.
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