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Due to the increase in extreme rainfall events in India, there is an urgent need for prior
communication of the expected impacts and appropriate responses in order to mitigate
the losses of lives and damage to property. Extreme rainfall events cause numerous
casualties, damage to property and infrastructure and vast displacement of people.
Hence, the development of an approach where the rainfall forecasts are well analyzed,
associated risks are identified, and the probable impacts are clearly communicated to
relevant stakeholders is required. In this study, we aim to develop a framework for
generating the impact-based forecasts (IBF) and associated warning matrices over the
selected districts of eastern Uttar Pradesh, India, by integrating the rainfall forecasts and
the socio-economic characteristics such as population, economy and agriculture. The
selected districts lack proper infrastructure, have poor socio-economic conditions and
have been historically prone to frequent extreme rainfall. The basic idea is to estimate the
impacts that could occur over various sectors of population, economy and agriculture and
suggest appropriate actions in order to mitigate the severity of the impacts. To this end, we
identify the vulnerable districts based on the frequency of the number of extreme rainfall
forecasts (ERFs) in the past four years (2017–2020) and the nature of socio-economic
conditions. We selected three vulnerable districts based on the expected impacts,
i.e., Shravasti (high category), Gorakhpur (medium category) and Jaunpur (low
category) and subsequently, the corresponding IBFs are generated. Furthermore, a
warning matrix is created for each district which provides updated information
regarding the potential risk for a district a few days in advance. This study is significant
since it identifies the different levels of potential impact over multiple sectors of society,
presents a framework to generate impact-based forecasts and warnings, informs about
the expected impacts, and suggests mitigation actions to reduce potential damage and
losses.
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1 INTRODUCTION

India has witnessed an increase in extreme rainfall events during
the summer monsoon season, which is expected to intensify in
the future (Goswami et al., 2006a; Mukherjee et al., 2018; Singhal
and Jha, 2021a; Singhal et al., 2022). Extreme rainfall cause
damage to property and infrastructure, numerous casualties
and vast displacement of people. The increase in the extreme
rainfall also means an increase in the total seasonal rainfall during
the monsoon season, thus leading to frequent floods (Pattanaik
and Rajeevan, 2010). Floods incur huge losses of life and economy
over different parts of the country. According to an estimate,
floods caused due to extreme rainfall amounts to economic losses
of around 3 billion USD per year in India, which is around 10% of
the global economic losses (Roxy et al., 2017). In addition, they
constitute the maximum share of mortality (46.1%) among all the
extreme weather events in India (Ray et al., 2021). This happens
despite the fact that various Quantitative precipitation Forecasts
(QPFs) are available in many regions of the world, and the
majority of extreme rainfall events are forecasted. The QPFs,
obtained from the Numerical Weather Prediction (NWP)
models, help in predicting the possible rainfall amount over a
certain region a few days in advance (Froude, 2010; Verdin et al.,
2016; Jha et al., 2018). In the recent decades, QPFs have shown
improvement both in the quality and quantity of information
(availability of lead-times) mainly due to advancement in
technology, availability of real-time data and increased
capability of computer simulations.

One of the main reasons for the losses in life and property
despite the availability of QPFs is that the QPFs rarely include
warnings about the potential impacts they may have over a certain
region or over a certain population. Even if the warnings are
included, they lack proper communication to the general public
(Basher, 2006; Uccellini and Ten Hoeve, 2019). Several methods
have been utilized for communicating the consequences of high
impact weather events in the past. The methods include interviews
(Bostrom et al., 2018; Tozier de la Poterie et al., 2018), surveys
(Morss et al., 2018; Potter et al., 2018), experience-based decisions
(Casteel, 2018; Losee and Joslyn, 2018), social media analysis (Rossi
et al., 2018) etc. However, the communications are mostly based on
theoretical and subjective responses of the exposed population
themselves. Recently, it has been emphasized that along with the
QPFs, the nature of impact which may be caused due to extreme
rainfall such as area and number of people exposed, regions
expected to flood, damage to trees or infrastructure must also
be communicated (Pittore et al., 2017). In the same line, at the
Third UNWorld Conference on Disaster Risk Reduction in 2015,
the Sendai Framework for Disaster Risk Reduction recommended
include multi-hazard early warning systems and rapid disaster risk
information by 2030 (WMO, 2015). Various national and regional
rainfall forecasting agencies have started issuing risk-based
warnings, which include both the probability of occurrence and
the degree of potential impacts arising from the extreme rainfall
(Weyrich et al., 2018; Silvestro et al., 2019). Such an approach in
which the forecast information is provided on the basis of the
potential impact of the event is termed as Impact-Based
Forecast (IBF).

IBF is an integrated framework that includes hazard, exposure
and vulnerability data for identifying risks and enabling decision-
making. The overall objective of IBFs is to add scientific information
to severe weather warnings to promote timely response and reduce
losses of lives. A more effective and user-friendly warning comprises
the information regarding “What the weather will do” instead of
“What the weather will be” (Kaltenberger et al., 2020). They are
expected to include the specific social, economic and environmental
impacts of hazard in the warning to enable people to adapt and
mitigate the possible adverse consequences (WMO, 2015; Kox et al.,
2018). Previous studies suggest that IBF improves the understanding
of forecasts for the general public as it bridges the gap between the
raw QPFs, its related warnings and potential impacts (Potter et al.,
2018; Taylor et al., 2019). Moreover, it facilitates people to take
timely defensive measures against the impending extreme rainfall
(Casteel, 2016). However, providing IBFs can be challenging atmany
levels. For instance, a significant number of resources in terms of
time, money and workforce is required to combine the produced
weather informationwith the exposure and vulnerability prevalent at
the ground level. Regular updates of the socio-economic status of the
region must be kept so that the IBFs are consistently accurate. Socio-
economic developments such as urbanization and population
growth are expected to influence the exposure and vulnerability
of many regions across the world, especially in hazard-prone regions
(Winsemius et al., 2015; Jongman, 2018). Consequently, large
datasets of socio-economic progress are required to be processed
under changing scenarios for multiple sectors. Nevertheless, greater
precision of QPFs, greater availability of data and lead-times (LT)
provide new opportunities for enhancing IBFs (Silvestro et al., 2019).

The topic of IBF is still in its early stage and has started to gain
momentum in recent years. Worldwide, few studies have explored
the utility of IBFs in the case of various extreme weather hazards. For
instance, Silvestro et al. (2019) used a multi-model ensemble
approach to design an impact-based flash-flood probabilistic
forecasting system in northwestern Italy. Sai et al. (2018) explored
the use of color-codes in developing impact-based forecasts of floods
among a flood-exposed community in a district of Bangladesh.
Mendis (2021) developed a warning matrix as a tool of IBF to
relate the risk of heavy rain hazards in Sri Lanka. Otieno et al. (2014)
used a predictivemodel and observed satellite rainfall as a covariate to
estimate flood impacts on exposed communities in a river basin of
Kenya. In India, to the best of our knowledge, the potential use of
QPFs and socio-economic data for IBFs is lacking. With the rise in
events of extreme rainfall, there is a need to develop an approach in
Indiawhere theQPFs are analyzed, associated risks are identified, and
the probable impacts are estimated. Once the risks and potential
impacts are identified, proper communication to local stakeholders is
crucial so that the impending impacts are mitigated at the ground
level (Reddy et al., 2021).

In this study, we aim to develop impact-based forecasting
approach by integrating the available QPF and the local socio-
economic data over the districts of the eastern part of Uttar
Pradesh, India. The basic idea is to estimate the possible impacts
that could be caused due to potential extreme rainfall over various
social and economic sectors such as local population, marginalized
groups, agriculture and economy and subsequently suggestmitigation
actions. The deterministic rainfall forecast data from the National
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Centre for Medium-Range Weather Forecasting (NCMRWF)
available for the period of 2017–2020 is used as the rainfall
forecasts in the study. The socio-economic data is collected from
various state and national agencies. The number of extreme rainfall
events calculated for each district is correlated with the corresponding
spatial maps created using the socio-economic data. The IBFs are
generated on the combined basis of the frequency of the extreme
rainfall and the nature of the socio-economic condition of the district.
Furthermore, warningmatrices are formed for the vulnerable districts,
which provide information regarding the overall risk probability of a
district in the case of an extreme rainfall event. This study is significant
since it identifies the different levels of potential impact over multiple
sectors of society and issues impact-based warnings to reduce
probable damage and losses.

The rest of the paper is organized as follows. Section 2
describes the study area and dataset. The methodology is
explained in Section 3. Results are presented in Section 4.
Discussions are dealt with in Section 5, followed by
conclusions in Section 6.

2 STUDY AREA AND DATASET

2.1 Study Area
The study area includes thirty-two administrative districts of the
eastern part of Uttar Pradesh located in the Ganga River Basin of
India. Figure 1A shows the location of the state of Uttar Pradesh in

India along with the selected districts, and Figure 1B shows the
expanded view of the selected districts. The districts are located
between 23°53′N to 28°24′N latitude and 80°30′E to 84°38′E
longitude. The area is one of the most densely populated regions
of India, with agriculture being the predominant source of livelihood
for the majority of the population. The climate of the region is
generally hot and humid, with much of the rainfall occurring during
the summer monsoon season (June to September). The region has
poor infrastructure, poor drainage facilities etc., due to which
extreme rainfall events often lead to flash floods and
waterlogging. Moreover, the presence of the Ganga River is also
one of the reasons for frequent inundation of the region when heavy
rainfall occurs in the upper parts of Uttarakhand. The main reason
for selecting the region as our study area is that it faces a high rate of
mortality of humans and livestock and annual displacement of a vast
population each year due to extreme rainfall. Moreover, the socio-
economic conditions of the population are generally poor with a low
literacy rate. Hence, the availability of reliable forecasts along with
their proper interpretation and subsequent guidelines can mitigate
the losses of lives and annual displacement of a vast population.

2.2 Datasets Used
This study uses two kinds of data: 1) quantitative precipitation
forecast data and 2) socio-economic data. The forecast data is
obtained from the NWP model of NCMRWF, which is the
premier weather forecast center of India. It provides rainfall
forecasts in real-time by performing medium-range global

FIGURE 1 | The study area map showing (A) the state of Uttar Pradesh in India; (B) the expanded view of the districts in Uttar Pradesh (East) selected as the study
area along with the names of key districts for this study which are prone to frequent extreme rainfall forecasts.
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assimilation. The data is downloaded from the TIGGE data portal
after interpolation (at the TIGGE portal itself) at 0.5° × 0.5° spatial
grid resolution for the years 2017–2020. The temporal resolution of
the data is 24 h, along with a lead time of 5 days. Moreover, various
socio-economic data such as population density (total population,
female population, children population), net sown area, gross
domestic product (GDP), airports, percentage of population
below the poverty line and number of homeless people are
collected for each district. These datasets are collected from
various secondary sources, such as the census handbooks of each
district and primary census data. The handbooks are available at the
website of the census of India (www.censusindia.gov.in).

3 METHODOLOGY

In this study, we use the integrated approach of using the
QPFs (along with lead-times) and the relevant socio-

economic data for generating the IBFs. The overall
approach of generating the IBFs can be divided into three
steps, as shown in Figure 2.

3.1 Processing of Rainfall Forecast
The available rainfall forecast is gridded in nature which must be
calculated at the district level to make it suitable for this study. To
this end, we use the method of area-weighted average to estimate
the rainfall forecast in each of the districts (Jha et al., 2018; Singhal
and Jha, 2021b; Singh et al., 2021). The area-weighted average
method involves three steps:

(a) Estimating the area (Ai) based on the portion of the rainfall
forecast grid that overlaps with the sub-district,

(b) Multiplying the area (Ai) with the rainfall forecast value (Ri)
on that grid,

(c) Divide the result of area*precipitation (Σ(Ai*Ri)) by the value
of total area (A = Σ(Ai)).

FIGURE 2 | The methodological framework applied to generate IBFs and warning matrices in the study.
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The above steps are demonstrated in Supplementary Figure
S1A which shows the estimated area based on the portion of the
rainfall forecast grid for all the districts in the study area. An
expanded view of one of the districts is presented in
Supplementary Figure S1B, in which many rainfall grids
overlap. We select five grids to demonstrate the working of
area-weighted average. Let us suppose that the area of overlap
is estimated as A1, A2, . . . A5 and the rainfall forecast for each of
those areas as R1, R2, R3, . . . R5. In that case, the area-weighted
rainfall for the district would be calculated using Eq. 1.

District rainfall � (P*
1A1+P*

2A2+P*
3A3+P*

4A4+P*
5A5)/

× (A1+A2+A3+A4+A5) (1)
Next, the obtained rainfall time-series is used to identify

extreme rainfall forecasts (ERFs) for each district based on two
predefined thresholds of 70 and 100 mm (Goswami et al., 2006b;
Salio et al., 2015; Panda et al., 2016). The idea is to select
precipitation thresholds that can cause a significant impact in
the region (or any region). Generally, a rainfall of more than 70
and 100 mm per day usually will cause serious impacts in most
districts of India. We select two thresholds different in magnitude
to take into account the possible diversity in results. Moreover,
ERFs at the three lead-times (LT_1, LT_3 and LT_5) are obtained
at each of the two percentile thresholds.

Obtaining results using three lead times will allow to
understand how the likelihood of probable impacts and their
severity may change with an increase (or decrease) in the
lead times.

3.2 Analysis and Identification of Vulnerable
Districts
In this step, we plot spatial maps of the ERFs at various lead-times
showing their spatial distribution in the study area (shown in
Supplementary Figure S2). We also plot the spatial maps
corresponding to the various socio-economic indicators
(shown in Supplementary Figure S3). The idea here is to
visually analyze the extent of possible impacts that could occur
in a district based on the integrated effects of the magnitude of
ERF and the prevalent socio-economic conditions at the ground.
The combined effect determines the likelihood and severity of the
impact for each district. For instance, if a district with high
population density is forecasted to face extreme rainfall, the
likelihood and the severity of the impact (mortality, injuries or
displacement) could be much higher than that of a district with
low population density. Similarly, a district having an airport
facility is likely to be impacted in case of extreme rainfall more
severely than a district with no airport. Subsequently, the
vulnerable districts are identified to generate the warning
matrices and the impact-based forecasts.

3.3 Generation of Warning Matrices and
Impact-Based Forecasts
After the vulnerable districts are identified, a color-coded
warning matrix is issued as an advisory for the potential

impacts much before the extreme rainfall has taken place, as
shown in Supplementary Figure S4. The advantage of such
warning matrices is that they can be updated depending
upon the change in risk and likelihood of impact. For
instance, the 5-day lead time (LT_5; 5 days before an
extreme rainfall) could advise for a “low” likelihood but
“high” severity of the impact of extreme rainfall
(Supplementary Figure S4A). In this case, the target
group must be informed about the impending extreme
rainfall. Subsequently, both the likelihood and impact may
change for the 3-day lead time (LT_3) to “medium”
(Supplementary Figure S4B). Then, the target group
must be given appropriate warnings regarding the
potential impacts. Furthermore, for the 1-day lead time
(LT_1), the likelihood and impact may change to “high,”
meaning there is a greater possibility of the occurrence of
extreme rainfall leading to severe impacts (Supplementary
Figure S4C). Finally, an integrated warning matrix must be
issued, which takes into account the warnings of all the
individual matrices as shown in Supplementary Figure
S4D. At this stage, meaningful dos and don’ts must be
conveyed to the local stakeholders. Finally, impact-based
forecasts must be issued in the form of a warning message for
each sector which informs about the extent of the impact, its
severity and possible mitigation measures.

4 RESULTS

In this section, we use the QPF from NCMRWF to determine
the districts that have received the maximum ERFs (with
various lead-times) during the years 2017–2020 (Section
4.1). Then, we evaluate the potential vulnerability of the
districts using the corresponding socio-economic data of
the districts (Section 4.2). Further, we select three days
when the magnitude of forecasted rainfall in the district was
highest. For each of the three days, one district is selected
(belonging to different categories of impact) to generate the
warning matrix and IBFs (Section 4.3). For brevity, we
present the results using three lead times (lead times 1, 3
and 5).

4.1 Analysis of the Extreme Rainfall
Forecasts
In this section, we analyze the spatial distribution of ERFs to
identify the districts which have been forecasted to face the
maximum number of extreme rainfall during 2017–2020
(see Supplementary Figure S2). Supplementary Figures
S2A–F depicts the spatial distribution of ERFs greater than
100 and 70 mm for the LT_1, LT_3 and LT_5, respectively.
Results from both the forecast thresholds show that the
distribution of ERFs is quite heterogeneous over the region;
however, the frequency in a few districts is higher. Using the
results, we identify the districts which show a higher
number of ERFs. To this end, we put a threshold on the
number of ERFs issued; for instance, at least five ERFs must

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 8461135

Singhal et al. Impact-Based Forecasting in Northern India

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


be issued above the threshold of 100 mm, and ten ERFs
above the 70 mm threshold. We observe that the district
Shravasti has received the maximum ERFs in the past four

years, followed by Kushinagar and Maharajganj. A total of
nine districts are identified whose names are listed in
Table 1.

TABLE 1 | Districts observed to receive frequent ERFs during 2017–2020.

District LT_1 (100 mm) LT_3 (100 mm) LT_5 (100 mm) LT_1 (70 mm) LT_3 (70 mm) LT_5 (70 mm)

Balrampur 4 6 3 8 12 10
Deoria 4 7 7 16 13 10
Gorakhpur 0 2 6 6 9 11
Kaushambi 2 7 7 8 10 8
Kushinagar 7 13 10 20 25 20
Maharajganj 4 10 9 15 22 20
Pratapgarh 0 7 6 2 9 9
Sant Ravidas Nagar 1 5 6 4 7 12
Shravasti 16 19 18 20 29 31

FIGURE 3 | A bivariate choropleth map showing the combined effect of the number of ERFs with the total population density (Panels (A1–A3)), female population
density (Panels (B1–B3)) and children population density (Panels (C1–C3)) at three lead times and 100 mm threshold.
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4.2 Identification and Analysis of Vulnerable
Districts
In this section, we perform a combined analysis of the spatial
distribution of ERFs (during 2017–2020) and the socio-economic
conditions to identify the broader reasons and potential impacts
over the districts in case of extreme rainfall.

4.2.1 Based on Impacts on Population

Figure 3 shows the bivariate choropleth map representing the
total population density (Figures 3A1–A3), female population
density (Figures 3B1–B3), and children population density
(Figures 3C1–C3) with the number of ERFs at the 100 mm
threshold for the three lead times. The aim here is to

FIGURE 4 | A bivariate choropleth map showing the combined effect of the number of ERFs with the poor population (Panels (A1–A3)) and homeless population
(Panels (B1–B3)) across the districts at three lead times and 100 mm threshold.
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understand the combined influence of the socio-economic
characteristics and the occurrence of the ERFs on the
potential impacts of respective districts. Higher population
density along with a larger number of ERFs in a district would
mean that a larger percentage of the population is vulnerable to
adverse impacts and vice-versa. Results from LT_1
(Figure 3A1) shows that there exists a belt of districts from
Kushinagar to Prayagraj which may face adverse impacts of
extreme rainfall due to the combined effect of large population
density and a large number of ERFs. Moreover, Figures
3B1–B3 shows the spatial distribution of the adverse
impacts faced by the female population among the districts.
Results show that the spatial distribution is quite similar to
that observed for the impacts on the total population. Further,
in the case of impacts over children population (see
Figure 3C1), the number of districts showing a high
probability of impacts become less in number and are
relatively scattered in distribution. Further, the results have
generally been similar across all three lead times, with minor
variations among the districts. The results obtained using
70 mm rainfall as the threshold is presented in
Supplementary Figure S5. We observe that the patterns are
similar to those obtained using 100 mm as the threshold.
Highly vulnerable districts are located in clusters, while
those which are less vulnerable are relatively scattered.

4.2.2 Based on Impacts on Marginalized Groups
Figure 4 shows the bivariate choropleth map representing the
combined influence of the percentage of population below the
poverty line (Figures 4A1–A3) and the percentage of the
homeless population (Figures 4B1–B3) of each district
along with the frequency of ERFs at the 100 mm rainfall
threshold. Figure 4A1 represents the spatial distribution of
the districts where the poor population may face adverse
consequences due to the extreme rainfall events for LT_1.
Results from LT_1 show that a large proportion of the poor
population in the northern side of the districts (district Sitapur
to Maharajganj) may face adverse impacts. Moreover, we
notice that a few districts in the southern part (Sonbhadra
and Kaushambi) may also face negative consequences. Further,
in the case of impacts over the homeless population (see
Figures 4B1–B3), we observe a significantly larger number
of vulnerable districts. Results show that the homeless
population living towards the western side of the region
(district Sitapur to Prayagraj) may face larger impacts in
case of extreme rainfall events. However, with the increase
in lead times, we find that the probability of impact in a few
districts is low. Further, the results obtained using 70 mm
rainfall as the threshold is presented in Supplementary
Figure S6.

4.2.3 Based on Impacts on Agriculture and Economy
Figure 5 shows the bivariate choropleth map representing the
combined influence of the net sown area (Figures 5A1–A3)
and the amount of GDP contribution (Figures 5B1–B3) of
each district along with the frequency of ERFs at the 100 mm
rainfall threshold. Results from Figure 5A1 show that there

are multiple districts scattered across the region having
relatively large net sown areas with a high probability of
facing the adverse impacts of extreme rainfall for LT_1.
Among them, districts such as Sitapur, Gonda and
Barabanki show a high probability of impact across all
three lead times. Further, in the case of GDP contribution,
we find that the prominent districts which generally have a
greater contribution of GDP in the region face a larger
probability of impacts. For instance, Figure 5B1 shows that
the important economic centers in the region such as
Faizabad, Prayagraj and Kushinagar have a larger
probability of facing adverse impacts. However, the district
of Lucknow (capital of the state of Uttar Pradesh) is expected
to face considerably less impact. The results obtained using
70 mm rainfall as the threshold is presented in
Supplementary Figure S7. In addition, six districts of the
study area (Sultanpur, Prayagraj, Gorakhpur, Lucknow,
Varanasi and Kushinagar) have the facility of airports. Of
these districts, we observe that Gorakhpur and Kushinagar
have frequently faced ERFs in the past years. Hence, any
warning or forecast must include information about the likely
delay/cancellation of flights so that the passengers may
accordingly modify their travel.

4.3 Generation of Impact-Based Warnings
and Forecasts
In this section, we select three days when extreme rainfall was
forecasted over the majority of the districts of the study area.
Figure 6 shows the distribution of rainfall for three selected
days (13th July 2019; 24th September 2020 and 25th
September 2020). For each of the three days, one district is
selected (belonging to a different category of impact). The
selected districts are Shravasti (category-high), Gorakhpur
(category-medium) and Jaunpur (category-low). More
details about the three selected dates, along with the
forecasted magnitude of rainfall, are presented in Table 2.
Consequently, we generate the impact-based forecasts and the
color-coded warning matrices for the districts along with
appropriate actions to mitigate the potential adverse
consequences.

4.3.1 Sample Impact-Based Forecast for “High”
Category Impact
Table 3 shows a sample of the IBF generated for the district
Shravasti under the “high” category of impact based on the
magnitude of forecasted rainfall. The district is forecasted to
receive extreme rainfall (with high magnitude), which puts it
into the “high” category of impact. Moreover, results suggest
that the income of a large percentage of the population in the
district lies below the poverty line and could be highly
vulnerable to an extreme rainfall event. Along with the
general impacts that could occur (water-logging on streets,
flooding in low-lying areas), the impacts of extreme rainfall on
poor populations are also considered in the IBF. Alongside,
possible responses are suggested based on the expected degree
of impact.
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4.3.2 Sample Impact-Based Forecasting for “Medium”

Category Impact
A sample IBF is generated for the district of Gorakhpur under the
“medium” category of impact for the date 24th September 2020,
as presented in Table 4. A larger number of poor socio-economic
parameters in the district make it more vulnerable (compared to

district Shravasti) in case extreme rainfall occurs. However, in the
present case, the magnitude of rainfall forecast is not as high (as in
the case of Shravasti); hence the impacts are not expected to be
too severe. Along with the general impacts that are expected
during extreme rainfall, a large proportion of homeless people in
the district are expected to be adversely impacted. Moreover, a

FIGURE 5 | A bivariate choropleth map showing the combined effect of the number of ERFs with net sown area (Panels (A1–A3)) and total GDP contribution
(Panels (B1–B3)) across the districts at three lead times and 100 mm threshold.
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large percentage of the net sown area means that standing and/or
harvested crops could face damage, while the facility of an airport
suggests that a number of flights might get delayed during the

time of heavy downpour. Possible responses/mitigation measures
are suggested in Table 4 to minimize the overall impact of the
hazard.

FIGURE 6 |Maps showing the spatial distribution of rainfall for three selected days. Panels (A–C) shows the distribution on 13th July 2019, Panels (D–F) on 24th
September 2020 and Panels (G–I) on 25th September 2020 for each of the three lead times, respectively.

TABLE 2 | Details about the three dates of extreme rainfall forecast, districts selected and category of expected impact.

Date District selected Lead time
1 (mm)

Lead time
3 (mm)

Lead time
5 (mm)

Range of
forecasts (mm)

Category of
impact

13th July 2019 Shravasti 309.78 420.34 288.4 288.4–420.34 High
24th September 2020 Gorakhpur 90 91 178 90–178 Medium
25th September 2020 Jaunpur 29 62 69 29–69 Low
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4.3.3 Sample Impact-Based Forecasting for “Low”

Category Impact
A sample IBF is generated for the district of Jaunpur under the
“low” category of impact for the date 25th September 2020, as
shown in Table 5. The district has a significant population that is
homeless. Also, the net sown area in the district is comparatively
higher. Since the magnitude of forecasted rainfall is not high
(29–62mm), minor impacts such as water-logging and
inundation of crops are expected on the day. The suggested
responses against the expected impacts may mitigate any
adverse consequences due to the extreme rainfall.

4.3.4 Sample Warning Matrix for the Selected Districts
The corresponding sample warning matrices for the selected
districts are shown in Figure 7. Here, the magnitude of ERF
determines the severity of impact while the likelihood of
occurrence increases with each lead time (given that the
magnitude does not sharply decrease). In the case of the
district Shravasti (Figure 7A), we observe that the ERF in
each of the three lead-times is consistently high in magnitude
(see Table 2). The high magnitude of ERF means that the impacts
could also be ‘high’ in severity. Moreover, results show that the

magnitude of ERF does not decrease across the three lead-times
(in fact, it increases in LT_1 as compared to LT_5); hence the
likelihood of the extreme rainfall is expected to increase with the
lead-times. In the case of Gorakhpur (Figure 7B), we observe that
there is a sharp decrease in the magnitude of ERF in the lead-
times that follow LT_5 (see Table 2). This suggests that the
severity of impact could be low on the actual date of the extreme
rainfall, and hence, the category of impact falls to “medium”
(LT_1and LT_5) from “high” (LT_5). Moreover, the likelihood of
occurrence increases from “low” to “high” as the forecasts in the
lead-times approach the actual day of extreme rainfall. In the case
of Jaunpur, we observe that the magnitude of ERF is the lowest
among the three selected districts. Also, results show that there is a
sharp decrease in the magnitude in LT_5 (compared to the other
two lead-times). The likelihood of the occurrence of extreme
rainfall is more in LT_5 (as compared to LT_3); however, due
to the sharp decrease in the magnitude, the likelihood reduces to
“low” in LT_1.

4.4 Verification of the Forecast Data
In this section, we verify the occurrences of the extreme rainfall
event as represented by the QPF from NCMRWF using the

TABLE 3 | A sample IBF generated for the district Shravasti.

Date of extreme rainfall 13th July 2019
Name of the district Shravasti

Category of impact High

Major socio-economic challenge High percentage of population below the poverty line
Sample Forecast Extreme rainfall accumulations between 288 to 420 mm are expected in the district on 13th July 2019 resulting in flooding of

streets and houses in the low-lying areas
Impacts expected • Low-lying areas of the district may face flash floods

• Trees may get uprooted and fall on roads
• Local colonies and unpaved roads may be flooded
• Water-logging on major roads may lead to traffic congestion
• High percentage of poor population in the district may face damage to kutcha (temporary) houses
• Stagnant water around homes may lead to unhygienic living conditions (outbreak of mosquito-borne diseases)

Response suggested • People must avoid unnecessary movement at least for the next 2 days
• Unfamiliar roads must not be taken as there could be uncovered sinkholes and/or potholes
• People having kutcha homes should be relocated to shelter homes (or permanent homes)

Color codes Very low: no severe hazard expected Low: be aware Medium: be prepared High: take action

TABLE 4 | A sample IBF generated for the district Gorakhpur.

Date of extreme rainfall 24th September 2020
Name of the district Gorkhpur

Category of impact Medium

Major socio-economic challenge Significant part of population is homeless; consist of high net sown area; has the facility of airport
Sample Forecast Extreme rainfall accumulation between 90–178 mm is expected in the district on 24th September, 2020 resulting in damage to

standing/harvested crops and flooding of roads in some (low-lying) areas
Impacts expected • Bad weather may cause flights to be delayed

• High risk of mortality or injury to homeless people
• Standing crops may be inundated; harvested crops may get spoilt
• Water-logging on major roads may lead to traffic congestions
• Stagnant water around homes may lead to unhygienic living conditions (outbreak of mosquito-borne diseases)

Response suggested • People must avoid unnecessary movement on the day
• Homeless population must take shelter under some permanent structures
• Arrangements to remove excess water from the crop fields must be kept ready; harvested crops must not be kept in open

Color codes Very low: no severe hazard expected Low: be aware Medium: be prepared High: take action
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Integrated Multi-Satellite Retrievals for GPM (IMERG) data.
IMERG is a widely used satellite-derived rainfall product used
as the observation data to validate ground truth (Prakash et al.,
2018; Das et al., 2022). To this end, we randomly selected four
districts from the study area and plotted the time-series (by
using a temporal window) of both the forecast from NCMRWF
and the IMERG rainfall for a particular extreme rainfall event,
as shown in Supplementary Figure S8. From the Figure, we
observe that the ERF for the district Kushinagar coincides
reasonably with the corresponding IMERG data for the first
lead time (Supplementary Figure S8A). However, it does not
coincide well with the other two lead times. Moreover, for the
district, Unnao, the forecast and the observation lines match
well for all the three lead times, while for the district Jaunpur,
they do not match in either of the three lead times. Again, for
the district Gorakhpur, the curves match well in LT_1 but fail
in the other two lead times. Overall, results suggest that while
the forecast data offered moderate accuracy in the study, it is
still inadequate to be used by the end-users in its raw form. We
suggest that post-processing methods could be applied to

improve the accuracy of the forecast data before using it for
operational purposes such as IBF.

5 DISCUSSION

The study focuses on an approach to generate sample warning
matrices as well as IBFs for the districts of eastern Uttar Pradesh
based on rainfall forecasts and socio-economic conditions.
Analysis of the frequency of ERFs in the past four years
(2017–2020) show that the districts located in the eastern
margin (such as Shravasti, Maharajganj, Kushinagar, Deoria
etc.) have been more vulnerable to events of extreme rainfall.
These districts are weak in infrastructure, have poor drainage
systems and consist of relatively higher population density which
makes a larger population vulnerable to mortality, injuries and
displacement in the case of extreme rainfall.

Specifically, we observe that Gorakhpur has a high proportion
of the female population in the study area, and it has also received
frequent ERFs with high magnitude. This suggests that the female

TABLE 5 | A sample IBF generated for the district Jaunpur.

Date of extreme rainfall 25th September 2020
Name of the district Jaunpur

Category of impact Low

Major socio-economic challenge Significant part of the population is homeless; consist of high net sown area
Sample Forecast Extreme rainfall accumulation of 29–62 mm is expected in the district on 25th September, 2020 resulting in water-logging of

streets and low-lying houses
Impacts expected • Water-logging in some minor streets leading to increased travel times

• Standing crops may be inundated; harvested crops may get spoilt
• Stagnant water around homes may lead to unhygienic living conditions (outbreak of mosquito-borne diseases)

Response suggested • Vehicles must be driven carefully without rush
• Homeless population must take shelter under some permanent structures
• Arrangements to remove excess water from the crop fields must be kept ready; harvested crops must not be kept in open

Color codes Very low: no severe hazard expected Low: be aware Medium: be prepared High: take action

FIGURE 7 | Sample warning matrices for the selected days and the selected districts based on the rainfall magnitude of the three lead times. (A) shows the sample
warning matrix for the district Shravasti, (B) shows for the district Gorakhpur while (C) shows it for the district Jaunpur
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population of the district are highly exposed to extreme rainfall.
In case of exposure to children population, we observe that the
districts which have high children density have not been issued
regular ERFs. This indicates that the children population in the
region are less exposed to events of extreme rainfall in
comparison to the female population. Furthermore, we find
that the poor population among the districts have been highly
exposed to ERFs. Population in districts such as Bahraich,
Shravasti and Kaushambi are poor, and results show that these
districts have been highly prone to ERFs in the past years. The
concerned authorities must take into account the vulnerability of
the poor population while issuing the warnings and IBFs,
specifically for these districts.

In terms of impacts on agriculture and the economy, we
observe that ERFs of high magnitude have been significantly
issued in districts where the net sown area is large. For instance, in
some districts where the severity of impact is expected to be
“medium” (district Gorakhpur) or “low” (district Jaunpur),
several ERFs have been issued in the past. Farmers and other
stakeholders must be warned about the possible losses in case of
extreme rainfall, and mitigation measures must be advised. Our
results show that the GDP is high in the district of Kushinagar
which is observed to be highly vulnerable to ERFs. Kushinagar is
known to be a major Buddhist tourist spot and a hub of the sugar
industry in Uttar Pradesh. Weather warnings and IBFs must
include the possible impacts that tourists may face along with
appropriate travel advisories before and during extreme rainfall
occurs. Moreover, sugarcane farmers could be notified and
warned of the incoming rainstorm so that their crops
(standing or harvested) do not get damaged. Suitable
communication must be made to industry owners and staff
regarding the expected timing and duration of the extreme
rainfall so that they can adjust their working hours.
Furthermore, we selected three days when the ERF was
highest in the study area, and one district is selected for each
of those days to generate the IBF and warning matrix. The
districts are purposely selected in such a way that they show
varied categories of impact due to the extreme rainfall. For
instance, the district Shravasti is expected to have a “high”
category of impact on 13th July 2019; district Gorakhpur is
expected to have a “medium” category of impact on 24th

September 2020; and the district Jaunpur is expected to have
“low” category of impact on 25th September 2020. Since the
expected impact on the district Shravasti is “high,” it means that
the forecasted extreme rainfall may cause large destruction in the
district. The corresponding IBFs includes all the possible
implications by taking into account the socio-economic
conditions of the district. Appropriate responses to all the
impacted stakeholders must be conveyed. Moreover, the
district Gorakhpur is under the ‘medium’ category, which
means that the approaching extreme rainfall can cause serious
impacts flooding, especially in the low-lying regions. Improper
communication of mitigation responses can lead to mortalities
and injuries. Furthermore, the “low” category of impact (such as
in Jaunpur) is not expected to cause widespread damage. Such
forecast means that the traffic (especially during the rush hour)
may get congested due to waterlogging on roads. Overall, the

study deals with the identification of expected impacts and
appropriate communication of mitigation responses to the
affected population, which is crucial to reduce the widespread
destruction that may be caused by the increased events of extreme
rainfall in the region.

6 CONCLUSION

The study demonstrates, for the first time, the integration of
the NWP forecast and the socio-economic data to forecast the
possible impacts over a region in case of an extreme rainfall
event. Results show that the population in some districts, such
as Shravasti and Kaushambi, are relatively poor, and the
districts have been highly vulnerable to ERFs in the past
years. Warnings and IBFs for these districts must include
the possible impacts and responses in order to mitigate the
severity of the impact. Moreover, we selected three days (with
three lead-times) when the magnitude of ERF was highest in
the region. For each of the three days, one district is selected to
generate a sample of an IBF and warning matrix. The IBF
informs about the category of impact expected on the day
(either very low, low, medium or high) along with the expected
impacts based on the category of impact. The magnitude of the
forecast and the socio-economic condition of the district
determines the extent of possible impacts. Precautionary
actions are suggested to the relevant stakeholders to
mitigate the adversity of the impact. Furthermore, a
warning matrix is issued, which provides information
regarding the “likelihood” of occurrence of the extreme
rainfall and the expected severity of impact. The warning
matrix is formed on the basis of estimations of rainfall in
the various lead-times. Generally, the likelihood increases as
the day of extreme rainfall approaches and the severity of
impact are determined by the consistency in magnitude of lead
time forecasts. Overall, the study provides a novel approach to
generate impact-based forecasts along with warning matrices
which can benefit the meteorological agencies and emergency
service providers significantly to communicate crucial weather
information to the local population in order to mitigate
adverse impacts.

6.1 Limitations and Future Challenges
The present work aims to generate IBFs and warning matrices at
the district level. Future studies may perform impact-based
forecasting at more local levels such as sub-districts, following
the work of Reddy et al. (2021) to provide a better understanding
to policymakers and district administrators. Moreover, fine-
resolution forecast datasets can be used to understand the
probability and severity of impacts at the local levels. Different
forecast datasets available from various NWP models and
Weather Research and Forecasting (WRF) models can also be
used to substantiate the findings and consequently provide
reliable probabilities of impacts. Furthermore, statistical
weighting methods can be used to assign weights to the socio-
economic variables which may differ with each district. Several
other socio-economic variables (such as the percentage of elderly
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people, the road network density etc.) can also be used to broaden
the scope of the study. Furthermore, post-processing of the
forecast data may be explored to improve the accuracy of the
forecast data (and reduce the false-alarm rate) before using it to
generate IBFs.
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