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A clear understanding of the uplift history of the Tibetan Plateau is the key for correctly
understanding its uplift mechanisms and impacts on the Asian environment. However,
consensus has not been reached regarding the uplift history of the Tibetan Plateau,
especially because of lack of well-calibrated paleoaltimetry proxies and lack of knowledge
of how to correctly apply them to the past. Branched glycerol dialkyl glycerol tetraethers
(brGDGTs) are a promising paleoaltimetry proxy because these largemolecules tend to get
preserved in sediments, and this proxy has a clear relationship with mean annual air
temperature (MAAT), circumventing convoluted impact of precipitation or isotope
variations on isotope-based paleoaltimetry proxies. As a result, many calibrations have
been carried out linking brGDGTs with paleoelevation. Qilian Shan of the northeastern
Tibetan Plateau is a key place testing previous models regarding the uplift model of the
Tibetan Plateau. However, no modern calibration equation linking brGDGTs with MAAT is
available. Here, we presented the first calibration equation between brGDGTs and
MAAT from the eastern Qilian Shan with an elevation ranging from 2,055 to 3,300m
[MAAT = −15.50 + 49.55 × MBT′5ME (R

2 = 0.89, p < 0.001, RMSE = 1.07°C)]. We further
established the calibration between MBT′5ME-derived MAAT and elevation. This dataset
lays the foundation to understand the uplift history and environmental variations of the
northeastern Tibetan Plateau area.
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INTRODUCTION

The Tibetan Plateau is the largest orogenic belt, known as “the Roof of the World” (Fielding, 1996;
Yin and Harrison, 2000; Royden et al., 2008). The uplift of the Tibetan Plateau over the Cenozoic is
considered a key forcing for regional and global climate (An et al., 2001; Molnar et al., 2010), but its
uplift history is hotly debated (Harrison et al., 1992; Raymo and Ruddiman, 1992; Molnar et al.,
1993; Liu and Yin, 2002; Chung et al., 2005; Lu et al., 2005; Liu et al., 2016). Different models have
been proposed regarding the uplift of the Tibetan Plateau, and the northeastern Tibetan Plateau is
a key location to test these models because they predicted different uplift timing of this part of the
plateau (Harrison et al., 1992; Kristen Clark and Handy Royden, 2000; Tapponnier et al., 2001).
For example, stepwise uplift models emphasizing large-scale strike-slipping faulting in establishing
the plateau predicted Pliocene–Pleistocene uplift of the Qilian Shan (Tapponnier et al., 1982,
2001). By contrast, models emphasizing asthenosphere detachment predicted a synchronous Late
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Miocene uplift across the plateau (England and Houseman,
1988; Harrison et al., 1992; Molnar et al., 1993).

Progress has been made regarding the timing of the
northeastern Tibetan Plateau, but direct evidence restoring
paleoaltimetry of this part of the plateau is scarce. This is
mainly because commonly used stable isotope-based
paleoaltimetry proxies suffer from the water recycling issue in
this region, which prevents a straightforward application of the
calibration equation (Tian et al., 2007; Bershaw et al., 2012; Li and
Garzione, 2017). In order to get a clear understanding of the uplift
history of the northeastern Tibetan Plateau, other approaches are
needed (Deng and Ding, 2015; Jiang et al., 2015; Li and Garzione,
2017; Wang and Liu, 2021).

Bacterial-branched glycerol dialkyl glycerol tetraethers
(brGDGTs) hold great promise in deriving paleoelevation in
this part of the Tibetan Plateau because it links elevation with
mean annual air temperature (MAAT) (Sinninghe Damsté et al.,
2008; Peterse et al., 2009; Liu et al., 2013; Bai et al., 2018; Guo
et al., 2018; Zhuang et al., 2019; Wang and Liu, 2021). However,
there is no MAAT–brGDGTs transfer function available for the
Qilian Shan area, the major highland of the northeastern Tibetan
Plateau, hindering quantitative reconstruction of the elevation
history. Here, we report the first MAAT–brGDGTs transfer
equation using soils from an elevation transect of the eastern
Qilian Shan.

MATERIALS AND METHODS

Study Site and Sampling
The eastern part of the Qilian Shan is located in the confluence
zone of the high cold region of the Tibetan Plateau, the northwest
inland arid region and the eastern monsoon region (Li and Feng,
1988). The characteristics of the vertical climate zone are obvious.
In this region, precipitation increases with altitude, and
temperature decreases with altitude (Yang and Liu, 2012; Wu
et al., 2014; Wang et al., 2017). Precipitation is mainly
concentrated in summer. According to previous studies (Wu
et al., 2014; Wang et al., 2017; Ma, 2020), the basins below
2,200 m above the sea level have typical climatic characteristics
of the semiarid steppe, with the annual average temperature of
7.4–9.6°C and the annual average precipitation of 230–260 mm;
in the foothills, at an altitude of 2,400–2,600 m, the annual
average temperature is between 3.4 and 5°C, and the annual
average precipitation is between 250 and 500 mm; the region with
an altitude of 2,800–3,000 m has a semi-humid forest-steppe
climate, with the annual average temperature of 0–3°C and the
annual average precipitation of 500–600 mm. The subalpine and
alpine regions above 3,000 m above the sea level have an alpine
climate, with the annual average temperature below -5°C and the
annual average precipitation of ~800 mm. Due to the complex
topography and geomorphology, the vegetation also shows the
characteristics of diversity and vertical variation (Wu et al., 2014;
Ma, 2020).

A total of nine soil samples ranging from 2,055 to 3,300 m of
the eastern Qilian Shan were collected. The study area has a small
horizontal span and a large elevation gradient, so it is a good area

to study the relationship between brGDGTs and altitude. The
collected area is covered by natural vegetation. Tomake sure fresh
soils were collected, we removed the top 10 cm soils before taking
the samples. Immediately after the samples were collected, we
packed them in sealed bags.

A total of three instruments were set up to monitor
temperature and precipitation variations from 2,060 to
3,070 m over the year 2005–2020, and one instrument was
set up at 3,600 m over the year 2016–2020 (Figure 1). The
temperature decreases and precipitation increases while
moving up to higher elevation in the Qilian Shan
(Supplementary Table S1). We obtained the temperature
and precipitation data from each sampling location based
on interpolation of data from these. The results showed that
as the altitude rises from 2,055 to 3,300 m, the MAAT drops
from 7.7 to −0.8°C, and the mean annual precipitation (MAP)
rises from 241.4 to 549.8 mm.

GDGTs Pretreatment and Analysis
Plant roots and gravels were picked out from the nine samples,
and then we screened them using a 60-mesh sieve. Freeze-dried
samples weighing 10–15 g were ultrasonically agitated in
dichloromethane:methanol (9:1, v/v) four times, and the total
lipid extract was concentrated under N2 gas and then saponified
for 12 h with 6% KOH/methanol solution. The total lipid extract
was separated over a silica gel using hexane, dichloromethane,
and methanol as eluents to isolate the apolar and polar fractions
(containing GDGTs). The polar fractions of these samples were
redissolved and filtered through a 0.22 μm PTFE filter prior to
analysis.

The determination of GDGTs compounds was carried out at
the Key Laboratory of Western China’s Environmental Systems
(Ministry of Education), Lanzhou University. The GDGTs
analyses were performed using an Agilent 1290 series ultra-
performance liquid chromatography–atmospheric pressure
chemical ionization–6465B triple quadrupole mass
spectrometry (UPLC-APCI-MS) system. When the flow rate
was 0.2 ml/min, an aliquot of 15 μL was injected and separated
on three Hypersil GOLD Silica columns in sequence (each
100 mm × 2.1 mm, 1.9 μm, Thermo Fisher Scientific;
United States), maintained at 40°C. GDGTs were eluted
isocratically with 84% A and 16% B for first 5 min, where A
= n-hexane and B = EtOA, followed by a linear gradient change
to 82% A and 18% B from 5 to 65 min and then changed to
100% B for 15 min, and then back to 84% A and 16% B to
equilibrate the pressure. Analyses were performed using the
selective ion monitoring (SIM) mode to track m/z 1302, 1300,
1298, 1296, 1292, 1050, 1048, 1046, 1036, 1034, 1032, 1022,
1020, and 1018, and the GDGTs compounds were identified as
GDGT-0, GDGT-1, GDGT-2, GDGT-3, Cren (Cren’), Ⅲa
(Ⅲa’), Ⅲb (Ⅲb’), Ⅲc (Ⅲc’), Ⅱa (Ⅱa’), Ⅱb (Ⅱb’), Ⅱc (Ⅱc’), Ⅰa,
Ⅰb, and Ⅰc.

We measured the pH values of soils according to the method
described by Weijers et al. (2007a). First, samples were ground to
powder and then mixed with ultrapure water, using the ratio of
soil to water of 1:2.5 mg/L. Then, samples were centrifuged for
5 min at 3,000 revolutions, followed bymeasuring the pH value of
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the upper supernatant using a pH meter. Each sample was
measured three times, and the average values were reported.

BrGDGTs-Based Temperature Indices
Using brGDGTs to derive temperature relies on the following
indices: methylation of branched tetraethers (MBT),
MBT′5ME (5-methyl), MBT′6ME (6-methyl), Index 1, and MBT5/

6 (Weijers et al., 2007b; De Jonge et al., 2014a; Ding et al.,
2015), where

MBT � ([Ia] + [Ib] + [Ic])/([Ia] + [Ib] + [Ic] + [IIa] + [IIa’]

+ [IIb] + [IIb’] + [IIc] + [IIc’] + [IIIa] + [IIIa’]

+ [IIIb] + [IIIb’] + [IIIc] + [IIIc’]);
(1)

MBT5/6 � ([Ia] + [Ib] + [Ic] + [IIa’])/([Ia] + [Ib] + [Ic] + [IIc]
+ [IIb] + [IIa] + [IIIa] + [IIIa’]);

(2)
MBT’

5ME � ([Ia] + [Ib] + [Ic])/([Ia] + [Ib] + [Ic] + [IIa] + [IIb]
+ [IIc] + [IIIa]);

(3)
MBT’

6ME � ([Ia] + [Ib] + [Ic])/([Ia] + [Ib] + [Ic] + [IIa’]

+ [IIb’] + [IIc’] + [IIIa’] + [IIIb’] + [IIIc’]); (4)
Index 1�10 log(([Ia] + [Ib] + [Ic] + [IIa’] + [IIIa’])/([Ic]

+ [IIa] + [IIc] + [IIIa] + [IIIa’])).
(5)

In the aforementioned formulas, the Roman numbers and
letters with the sign [] represent the relative abundance of a single
brGDGT compound.

The pH-based brGDGTs substitution metrics used in this
article include cyclization of branched tetraethers (CBTs)
(Weijers et al., 2007b)

FIGURE 1 | Topographic map of the Qilian Shan and sampling sites (green dots). The red triangles indicate the locations of the four meteorological meters. Revised
from Gao et al. (2021). The base map is from Google Image.

FIGURE 2 |Relative abundance of tetramethylene, pentamethylene, and
hexamethylene in branched glycerol dialkyl glycerol tetraethers (brGDGTs).
The green circles correspond to soils used in this article. The purple triangles
correspond to soils from the northeastern Tibetan Plateau reported by
Wang and Liu, 2021, and the pink solid diamonds correspond to soils from the
northeastern Tibetan Plateau reported by Chen et al. (2019). The solid white
circles correspond to global soils reported by De Jonge et al. (2014a).
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CBT � −10 log([Ib] + [IIb] + [IIb’])/([Ia] + [IIa] + [IIa’]).
(6)

To convert brGDGTs to temperature, four ways have been
proposed:

MAAT � −8.57 + 31.45 × MBT’
5ME (De Jonge et al., 2014a);

(7)
MAAT � 5.05 + 14.86 × Index 1 (De Jonge et al., 2014a); (8)
MAAT � −20.14 + 39.51 × MBT5/6 (Ding et al., 2015); (9)

MAAT �(MBT − 0.122 − 0.187 × CBT)
/0.02 (Weijers et al., 2007b).

(10)

Equations 7, 8 are based on soils of a widely distributed area,
Eq. 9 is based on Tibetan Plateau soils, and Eq. 10 is also based on
global soils.FIGURE 3 | Correlation between CBT and pH.

FIGURE 4 |Correlation diagrams between brGDGTs index and temperature. (A)Correlation betweenMBT′5ME and temperature; (B) correlation betweenMBT′6ME

and temperature; (C) correlation between MBT5/6 and temperature; and (D) correlation between MBT and temperature.
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RESULTS

BrGDGTs were detected in all samples (Supplementary Table
S2). Figure 2 shows that the relative abundance of
pentamethylation, hexamethylation, and tetramethylation is
the highest (50.2 ± 7.6%) with the former and the lowest
(12.1 ± 5.9%) with the latter. The relative abundance of Ⅲc
and Ⅲc’ detected in each sample is low. In comparison with
previous results (De Jonge et al., 2014b; Chen et al., 2019; Wang
and Liu, 2021), the Qilian Shan surface soils are located at the end
of low tetramethylation.

Figure 3 shows a significant positive correlation between pH
and CBT (R2 = 0.74, RMSE = 0.005). Figure 4 shows the
correlation between the temperature and MBT′5ME, MBT5/6,
MBT, or MBT′6ME, with the strongest correlation with
MBT′5ME and lack of correlation with the latter two. We thus
estimate theMAAT based on the equation betweenMBT′5ME and
temperature (Figure 5). Figure 6 shows the correlation between
observed and estimated MAAT based on Equations 7–10. It is
clear that the results based on Eq. 7 and our own equation have
high correlation, but the results based on our own calibration
have smaller intercept than that of Eq. 7.

Figure 7 shows the correlation between the estimated MAAT
based on our own calibration equation and elevation. A

FIGURE 5 | Reconstructed Qilian Shan soil temperatures based on
MBT′5ME.

FIGURE 6 | Correlation between reconstructed temperature and observed temperature.
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significant linear negative correlation is observed between them
(R2 = 0.85, p < 0.001, RMSE = 1.29°C).

DISCUSSION

Weijers et al. (2007b) found a negative correlation between CBT
and pH based on soils from 90 globally distributed locations,
and this pattern has been confirmed by many groups using soils
from Lake Qinghai of the northeastern Tibetan Plateau and
global soils (Peterse et al., 2012; Wang et al., 2012). Similarly,
our work found a significant correlation between CBT and pH
(R2 = 0.74, RMSE = 0.005). But unlike the previous results of
others, there is a positive correlation between CBT and pH
rather than a negative correlation (Figure 3). After repeated
experiments, we found that the results of many experiments
were highly consistent. Through the study of modern Chinese
soils, some scholars have found that when pH > 7.5 and MAP
<600 mm, there is a positive correlation between CBT and pH
(Xie et al., 2012). Our results fully support this claim because the
pH values of our samples are greater than 7.5, and the
precipitation varies from 241.4 to 549.8 mm. Our work
reveals that the traditional CBT-derived pH correction
equation may not be suitable for alkaline soils in arid
climate, and it is important to evaluate these two factors
before applying established pH calibration equations based
on CBT.

We found a significant correlation between MBT′5ME index
excluding 6-methyl brGDGTs and MAAT (R2 = 0.89, p < 0.001,
RMSE = 1.07°C) for the Qilian Shan transect samples (Figure 4).

This pattern is consistent with the results based on a much
broader soil database by De Jonge et al., 2014a, De Jonge
et al., 2014b (n = 222, R2 = 0.66, RMSE = 4.8°C). Therefore,
this proxy is a more promising one for paleotemperature and
paleoaltimetry reconstruction than MBT and MBT′ in the
study area.

The analysis of the environmental factors of the relative
distribution of brGDGTs isomers shows that the change in
MBT seems to be determined by both pH and MAAT,
whereas CBT is mainly determined by pH (Weijers et al.,
2006; Weijers et al., 2007b). Therefore, temperature can be
reconstructed by combining MBT and CBT (Weijers et al.,
2007a; Weijers et al., 2007b). However, the correlation
between reconstructed temperature and combined using MBT
and CBT still exhibits some problems in some areas. For example,
in Siberia, Serbia, and East Africa, temperature estimates based on
MBT/CBT for MIS 5 are higher than those for MIS 2, and this has
been proposed to be caused by the growth depth effect of GDGTs
(Zech et al., 2012). When using the MBT′/CBT correction
formula based on global soil samples in arid and semiarid
areas, workers found that the calculated temperatures are
lower than the measured values, which may be because rainfall
is the main controlling factor affecting the climatic environment
in arid and semiarid areas (Peterse et al., 2011a; Wang et al.,
2013). Previous studies have elaborated the underlying reason
why MBT and MBT′ have weaker correlation with temperature,
and the mechanism is associated with 6-methyl brGDGTs (Li
et al., 2017). It has been suggested that the soil pH indirectly
affects the correlation between MBT or MBT′ and MAAT by
affecting the content of 6-methyl brGDGTs in soils (Yang et al.,
2015; Chen et al., 2021). Therefore, both pH and temperature
control MBT or MBT′. In addition to pH, some propose that
MBT andMBT′ indices in arid–semiarid areas are also affected by
soil moisture (Loomis et al., 2011; Menges et al., 2014; Yang et al.,
2014; Dang et al., 2016), further weakening its correlation with
temperature (Naafs et al., 2017). The reconstructed MAAT based
on MBT′5ME has the best correlation with observed MAAT
(Figure 6), providing further confirmation of the usefulness of
MBT′5ME in paleoelevation and paleotemperature
reconstructions.

Figure 6 shows that the calibration between MBT′5ME and
temperature based on global soils also has high correlation with
the result based on Qilian Shan soils. However, we argue that the
local calibration equation is better than that based on global soils.
First, the slope between estimated and observed MAAT is closer
to 1 using the local calibration equation. Second, the local
equation has smaller intercept than the one based on global
soils. The better match with the observed MAAT using the Qilian
Shan soils may be because the Qilian Shan soils have higher 6-
methyl brGDGTs. Some scholars pointed out that the 6-methyl
brGDGTs in the surface soils of the Tibetan Plateau account for
about 53% of brGDGTs, which is significantly higher than the
global average of 24% (Ding et al., 2015). In our work, the 6-
methyl brGDGTs are 37.7 ± 13.1%, clearly different from that of
global soils.

Some studies on soil datasets in China have pointed out that in
relatively cold areas (observed MAAT <6°C), the temperature

FIGURE 7 | Correlation between brGDGTs-derived temperature
estimation and altitude of the Qilian Shan samples.
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reconstructed based on MATmr may greatly overestimate
observation temperature (Wang et al., 2020), such as the Laji
Mountains in the northeastern Tibetan Plateau (Wang and Liu,
2021). This is consistent with our research results. Also, our work
found that the deviation between MATmr and the observed
temperature increases with altitude (Supplementary Figure
S1). The reason for this deviation may be because that the
microorganisms that produce GDGTs are more suitable for
growing in warm and humid conditions, so the estimated
temperature may be more biased toward the growing season
temperature of GDGTs (Peterse et al., 2011b; Peterse et al., 2014;
Zeng and Yang, 2019). Another possibility is that the microbes
living in the soils may reflect relatively high soil temperatures
rather than relatively cold atmospheric temperatures (Gao et al.,
2012; Wang et al., 2016). There is a great difference between soil
temperature and atmospheric temperature in cold areas. These
results suggest that there are limitations when using MATmr to
estimate paleotemperature and paleoaltitude in relatively cold
areas (observed MAAT <8°C). It may underestimate the height of
uplift.

Many studies have shown that the calibration equation
between brGDGTs index and temperature varies in different
regions and soil types (Sinninghe Damsté et al., 2008; Bendle
et al., 2010; Yang et al., 2015). Therefore, it is inappropriate to
use the conversion equation in other areas to infer
paleotemperature and paleoelevation variation in an area
with different temperature and precipitation ranges and
seasonality and vegetation (Sinninghe Damsté et al., 2008;
Bendle et al., 2010). We recommend using MBT′5ME to
reflect the temperature change in the Qilian Shan area and
establish the conversion equation between MBT′5ME and
MAAT as follows (Figure 5):

MAAT � −15.50 + 49.55 × MBT’
5ME(R

2 � 0.89, p< 0.001,RMSE

� 1.07+C);
(11)

We further establish the calibration between MBT′5ME-
derived MAAT and altitude as follows:

MAAT � 18.7946 − 0.0060 × altitude(R2

� 0.85, p< 0.001,RMSE � 1.29+C); (12)
The best applicable condition for the correction equation we

established is the alkaline soil in the arid and semiarid regions of
the northeastern Tibetan Plateau.

We note that the MAAT reconstructed using Equations 11,
12 showed an obvious linear negative correlation with altitude,
which decreased from 6.93°C at 2,055 m to −0.54°C at 3,300 m
(Figure 7). The lapse rate associated with the reconstructed
temperature based on our equations is −0.60°C/100 m, similar
to that based on observed temperatures from the
meteorological meters that we set (−0.67°C/100 m). This
lapse rate is also similar to reported lapse rates from the
northern slope of the Qilian Shan (−0.58°C/100 m) (Zhang
et al., 2001) and the neighboring Laji Mountain (−0.65°C/
100 m) (Wang and Liu, 2021). However, one study reported

a lower lapse rate from the south slope of Lenglongling in the
Qilian Shan (−0.51°C /100 m) from higher elevations (elevation
3,200–4,300 m) and higher precipitation ranges (Wang et al.,
2009). We speculate that this difference is due to the obvious
effect of air humidity on the temperature lapse rate. Some
studies have shown that the increase of air humidity will lead to
the decrease of the temperature lapse rate (Guo et al., 2016). In
addition, higher elevations have different vegetation conditions
which may also affect temperature reconstruction due to
potential 6-methyl brGDGTs content variations (Liang et al.,
2019; Lu et al., 2019).

CONCLUSION

To test the accuracy and applicability of brGDGTs as a paleo-
altimeter in the Qilian Shan area, we analyzed the brGDGTs
distribution from soil in Lenglongling in the east of Qilian Shan
with elevation ranges of 2,055–3,300 m. We demonstrate that
MBT′5ME has a good correlation with temperature and altitude
in this area and establish a conversion equation between
MBT′5ME and MAAT (elevation). This transfer equation is
superior to the ones based on global soils, and we
recommend using our equations to reconstruct elevation and
temperature history in the Qilian Shan and areas with similar
climate.
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