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Considering engineering problems such as complicated stress and the difficulty in
controlling large deformation while a tunnel passes through a soft rock stratum, a
theoretical prediction model of convergence deformation of tunnel-surrounding rock is
proposed. Based on the longitudinal displacement profile curve reflecting the “space
effect” of the excavation surface, the Hoek formula with better applicability was introduced
to analyze and theoretically deduct the “time–space effect comprehensively.”By taking the
influence of the “time effect” coefficient into account, an improved Nishihara model was
established to derive the analytical equation of the viscoelastic–viscoplastic convergence
of surrounding rock. Taking the Dingxi Tunnel of Wujing Expressway in Hunan Province,
the physical and mechanical parameters of surrounding rock in the tunnel were firstly
determined then they were used to calculate and predict the vault down of three typical
sections with the scoping equation of surrounding rock deformation. Based on the
calculation results, the causes of the differences between the measured and
theoretical values were analyzed; moreover, it is indicated that the minimum root-
mean-square error is 1.68, the minimum average error is 1.3%, and the correlation
coefficient is 0.99. The comparison shows that the theoretical prediction results agree
well with the corresponding field test results. The improved Nishihara model can accurately
predict the final deformation of the surrounding rock. Simultaneously, it is also proved that
the relevant parameters and the hypothesis and correlation of the nonlinear viscosity
coefficient equation are reasonable, with particular effectiveness and applicability in
practical engineering. This study is significant for further studying the tunnel-
surrounding rock’s stability and accumulating theoretical and practical experience to
develop rheological theory.
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1 INTRODUCTION

In China, the center of tunnel construction is gradually shifting to
the southwest and northwest. The construction difficulties are
also shifting to high-stress areas with complex geology. Among
them, carbonaceous shale is widely distributed in the strata of
Southwest China. Because carbonaceous shale has the
characteristics of obvious bedding development, low strength,
and soft and easy disintegration, it has prominent rheological
characteristics under a high-stress environment. Rheology is one
of the important mechanical properties of rock, which is closely
related to the long-term stability of rock mass engineering. Soft
rock has distinct rheological properties. When tunnels cross such
a layer, engineering problems, such as the complicated force and
difficulty to control large deformation, are usually accompanied,
severely restricting the construction and affecting the support’s
long-term stability (Sun, 2007; Li et al., 2018). Therefore,
scientific evaluation and prediction of surrounding rock
deformation and stability according to the rheological
characteristics of tunnel-surrounding rock are essential to
guide on-site construction and feedback design and a
necessary condition to ensure tunnel construction safety. At
present, the rock rheological constitutive models used to
describe the tunnel rock mass under excavation conditions
mainly include (Song et al., 2018) the Kelvin, Bingham,
Maxwell, Burgers, and Nishihara models. Among them, the
Nishihara model can consider the viscoelastic characteristics of
surrounding rock and the important characteristic of viscoplastic
deformation. Therefore, the Nishihara model can describe the
deformation of rock masses in tunnel engineering, such as
sandstone, limestone, sandy shale, clay shale, and
carbonaceous shale. To sum up, it is important to conduct
further research on the deformation the mechanism of tunnel-
surrounding rock under complex geological conditions, explore
new methods for surrounding rock stability analysis, and
establish a scientific prediction model, which can facilitate
predictions of tunnel-surrounding rock deformation.

Some scholars have established constitutive creep models
considering various effects by introducing different variables
based on the Nishihara model (Shen et al., 2014; Li et al.,
2014; Zhang et al., 2015; Li Z. Q. et al., 2017; Zhang J. X.
et al., 2019). However, these models only consider the
influence of a single variable and ignore the impact of time.
At the same time, an improved Nishihara model was established
based on the Nishihara model by considering different
influencing factors, and it was also verified through the
application. In the above aspects, a lot of important research
work has been done to put forward many modified models for
specific rock strata (Liu et al., 2017; Cao et al., 2017; Wang et al.,
2018; Zhu et al., 2019; Jin et al., 2019; Wang et al., 2019; Li et al.,
2020; Zhang L. et al., 2020). However, their general applicability is
limited to a certain extent. In addition, based on the traditional
Nishihara model, some scholars use a nonlinear viscoplastic body
or clay tank to replace clay tank and viscoplastic body or use the
series element method to establish the improved Nishihara model
(Xu et al., 2015; Zhang et al., 2016; Ou and fang, 2017; Li Y. G.
et al., 2017; Pu et al., 2017; Zhang Z. et al., 2020; Lin et al., 2020).

Nonlinear improvements have been made to the existing models,
but no research has been conducted on the time effects under
nonlinear conditions. Considering the influence of time and
stress on creep, some scholars established a nonlinear creep
damage model and the corresponding constitutive equation
(Feng et al., 2020; Liu W. et al., 2020; Yan et al., 2020; Liu Y.
et al., 2020). However, they did not study the influence of this
model on the damage and deformation of surrounding rocks.

Some scholars use the Nishihara model to study tunnel-
surrounding rock deformation and deduce the analytical
expression of tunnel-surrounding rock deformation based on
the improved Nishihara model (Zhang, 2016; Xiao et al., 2017;
Yu, X.Y. et al., 2018; Yu et al., 2019; Zhang B. et al., 2019, Zhang J.-
Z. et al., 2019; Yu et al., 2020; Yu et al., 2019). In recent years, the
prevalent artificial intelligence method (Huang et al., 2017; Zhou
et al., 2017; Chen et al., 2019; Huang et al., 2020; Zhang K. et al.,
2020; Zhu et al., 2020) provides a more potential development
direction for tunnel construction deformation prediction.
Combined with the application of deep learning algorithms
and nonlinear theory, research on the multi-factor tunnel
excavation system in complex geological environments shows
excellent advantages (Melis et al., 2002; Huang et al., 2021; Huang
et al., 2022). However, it is necessary to further combine the
constitutive rock mass model and the viscoelastic plastic
mechanics theory to give full play to this advantage.

In summary, previous scientific research achievements have
made significant contributions to the optimization and
improvement of the Nishihara model and the development of
the prediction theory of tunnel-surrounding rock deformation,
but there are still some shortcomings. In tunnel excavation, the
surrounding rock will carry out stress redistribution from two
dimensions of time and space. The time–space effect is an
essential factor that must be considered in tunnel-surrounding
rock deformation prediction. Therefore, based on the advantages
of previous prediction methods, combined with the LDP curve
reflecting the “spatial effect” of the excavation face, this study
introduces the Hoek formula (Hoek, 2001) with better
applicability to comprehensively analyze and theoretically
deduce the “time–space effect”. Considering the time-space
effect of the plastic viscosity coefficient, an improved
Nishihara model is established to study the deformation
process of surrounding rock in the process of tunnel
excavation and support. The theoretical model is then
established by rheological theory, and the convergence
calculation formula of surrounding rock deformation is
deduced. Finally, a comparative study is carried out combined
with engineering cases to provide theoretical support and
technical reference for the design and construction of tunnel
engineering.

2 VISCOELASTIC–VISCOPLASTIC MODEL

According to the previous engineering projects and indoor
experimental research, the weak rheological properties
surrounding rock with dissolution crack development, weak
interlayer, gob, fault, and fracture zone are significant.
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Rheological properties of the weak surrounding rock are more
susceptible to external forces, exhibiting nonlinear characteristics.
The influence of viscous coefficients is not negligible, and it is
closely related to the stress-strain state of surrounding rock. This
study derived the analytical equation of the
viscoelastic–viscoplastic convergence of surrounding rock
based on the improved Nishihara model with the Matlab
software.

2.1 Improved Nishihara Model
The traditional Nishihara model (Nishihara, 1957; Zhou et al.,
2010) is composed of a Hooke body, Kelvin body, and Bingham
body, as shown in Figure 1.

The viscosity coefficient η2 in the traditional Nishihara model
is replaced by the nonlinear viscoplastic coefficient η(t) related to
time, so the model becomes an unsteady Nishihara model. This
study divides the model into two parts: the generalized Kelvin
model and the nonlinear Bingham model. The viscoelastic and
viscoplastic regions of the surrounding rock are analyzed. The
improved Nishihara model is shown in Figure 2:where η1, η2, and
η(t) represent the coefficients of viscosity. E1 and E2 indicate the
elastic modulus. σs stands for the ultimate frictional resistance of
St. Venant’s body.

2.2 Basic Assumption
In this study, the calculation model assumes that the
surrounding rock is a continuous isotropic rock mass
mechanics model and does not consider the action of
groundwater, and when the lateral pressure coefficient is
λ(t), the viscoelastic plastic problem of stress and
deformation of surrounding rock of a circular tunnel is
assumed, and the original rock stress field is axisymmetric
along the vertical direction. The viscoelastic–plastic
surrounding rock mechanical model is shown in Figure 3.
The radius of excavated tunnels is R1, R1-R2, and R2-R3,
representing ranges of the crack zone and plastic zone,
while the elastic deformation zone should be from R3 to
infinity in theory.

In addition, many scholars have made theoretical
assumptions and derivations based on experiments for the
research on the expression of the nonlinear viscosity
coefficient (Xiong et al., 2010; Yan et al., 2010). However,
the results do not have universal adaptability. According to the
nonlinear viscosity coefficient characteristics, this experiment
is firstly expressed as Eq. 1: (whether it is a reasonable
hypothesis, rationality will be verified in the sixth part of
this study.)

FIGURE 1 | Nishihara model.

FIGURE 2 | Improved Nishihara model.

Frontiers in Earth Science | www.frontiersin.org February 2022 | Volume 10 | Article 8435453

Hu et al. Deformation Prediction of Tunnel-Surrounding Rock

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


η(t) � t

A + e− t
B

(1)

where A and B are constants related to the surrounding rock
properties, which can be obtained from experimental data.

3 VISCOELASTIC DEFORMATION
ANALYSIS
3.1 Generalized Kelvin Constitutive
Equation
Based on the derivation method of the tunnel lining displacement
in the Zhao et al. (2016), the theory and the relationship between
“spatial effects” were improved by combining LDP curves, in
which Hoek’s formula (Nishihara, 1957) was also introduced to
conduct a comprehensive analysis and theoretical derivation of
“space-time effects.”

The generalized Kelvin body analyzes the viscoelastic
deformation. Considering that the shape changes only when
the geometry undergoes elastoplastic deformation, it can be
calculated because the volume deformation is almost negligible.
According to the elastic mechanics, in the cylindrical coordinate
system (r, θ, z), due to the axial symmetry of the tunnel
calculation model, all stress components are independent of
the coordinate θ, and the stress-strain is only a function of r, u.
Therefore, the relationship between strain and displacement
along the (r, θ) plane is as follows:

εr � zu

zr
, εθ � u

r
(2)

εθ + εr � u

r
+ zu

zr
� 0 (3)

then,

u � A(t)
r

(4)

where A(t) is a function of time, and substituting Eq. 4 into Eq. 2
yields:

εr � zu

zr
� −A(t)

r
, εθ � u

r
� A(t)

r2
(5)

The generalized Kelvin constitutive equation is transformed
into a stress bias form, and the boundary condition, σr � σθ �
p, �σ � p when r → ∞, is considered, and the axisymmetric
condition can be expressed as follows:

z

zt
(σr − p) + E1 + E2

η1
(σr − p) � −E1zA(t)

r2zt
− E1E2A(t)

r2η1
(6)

where σr, σθ , �σ—radial, circumferential, average stress;

εr, εθ—radial strain and circumferential strain;
E1, E2, η1—instantaneous, viscous elastic modulus, and
viscosity coefficient.

For the periphery of the tunnel, the “equivalent initial geo-
stress” p(x) corresponding to the displacement was introduced
and substituted into Eq. 6 in the form of p(x) � p0λ(t).
Considering the boundary condition of r � r0, σ � 0, the
following relationship can be obtained:

p0
dλ(t)
dt

+ E1 + E2

η1
p0λ(t) � E1dA(t)

r20dt
− E1E2A(t)

r20η1
(7)

where p0 is geo-stress.

3.2 Space Effect
To facilitate the study of the “space effects” of the working
surface, we first consider the effects of elastic media. The
“space effect” of the excavation surface is directly reflected
in the radial displacement of the tunnel along the tunneling
direction. This distribution curve is the longitudinal
deformation profile curve, which is regarded as the LDP
curve. At present, many scholars have made in-depth
studies on LDP curves within the scope of “space effect.”
Panet (1995) summarized the following approximate
expressions by applying the finite-element analysis method
of elasticity theory and combining the relationship between the
measured radial displacement around the tunnel and the
distance between the driving faces:

um

um∞
� 0.25 + 0.75[1 − ( 0.75

0.75 + x/R
)2] (8)

where R is the radius of the tunnel cave and x is the distance
between the calculation section and the excavation face.

Hoek (1999) analyzed and fitted the field monitoring data of
the Mingtam underground cavern project and summarized the

FIGURE 3 | Viscoelastic-plastic surrounding rock mechanic model.
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following empirical expressions by using the related theory
analysis method:

um

um∞
� [1 + e

(− x
1.1R)]−1.7 (9)

For the applicability of the above two formulas, Sun (2007)
thinks that the Panet method overestimates the radial
displacement of the tunnel, making it is easy to
underestimate the supporting load in practical engineering
and inducing the design unsafety. The result of the Hoek
method agrees with the numerical analysis in the tunnel

vault, waist, sidewall, and other parts, which shows that
Hoek’s formula has stronger applicability and can better
describe the “space effect” of the tunnel excavation surface.
The radial displacement described by Hoek’s formula varies
with the excavation surface, as shown in Figure 4.

Therefore, this study transformed Hoek’s empirical formula:
Let χ � 10x/ ln[ 1+e− x

1.1R

[(1+e− x
1.1R)1.7−1]10], substitution Eq. 9:

The relationship between the radial displacement um
measured around the tunnel and the cross-section distance x
measured at a distance from the working face is as follows:

um � um∞(1 + e
−x
χ ) (10)

FIGURE 4 | Diagram of radial displacement described by Hoek formula changing with face excavation.

FIGURE 5 | Radial displacement changes with the advancement of the tunneling surface.
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There is a relationship between um∞ and constants χ as shown
in Figure 5 below:

Since the radial free displacement u0 of surrounding rock had
been generated before the excavation entry surface reached the
cross-section of the survey point, the total displacement should be
calculated as follows:

u � um∞ + u0 � (u∞ − u0)(1 + e
−x
χ ) + u0 (11)

If the equivalent initial geo-stress is p(x), the relationship
between displacement and equivalent initial geo-stress can be
expressed as follows:

u � 1
Kg

p(x) (12)

Therefore, the above displacement should be proportional to
the initial geo-stress, and Eq. 12 should be rewritten as follows:

u � 1
Kg

p0λ(x), p0λ(x) � p0(x) (13)

where T is a constant relating to the characteristics of
surrounding rock and the radius of the tunnel; Y is dimensionless.

Because u∞ � p0

Kg
, then u � u∞λ(x), after substituting Eq. 13

into Eq. 11:

λ(x) � (1 − u0

u∞
)(1 + e

−x
χ ) + u0

u∞
(14)

Let λ0 � u0
u∞
, as shown by Eq. 9, when x/R � 0, then

λ0 � 0.3078. Then Eq. 14 can be simplified as:

λ(x) � (1 − λ0)(1 + e
−x
χ ) + λ0 (15)

According to Hoek’s empirical formula, the value of λ0 is
0.3078. According to the symmetry and continuity of Figure 5,
we can see that:

λ(x) � λ0e
−x
χ1 , χ1 �

λ0
1 − λ0

χ (16)

3.3 Time Effect
Considering the influence of rock rheology, which has been
neglected before, the Hoek formula is used to
comprehensively analyze the “space effect” caused by the
working face’s excavation and the “time effect” caused by
the viscous effect of the surrounding rock. Assuming that the
tunnel is driven forward at a continuous and uniform speed,
and the driving speed is υ, the simultaneous Eqs 15, 16 show
that:

λe(t) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 + (1 − λ0)e−t
Ta , t> 0

λ0e
−t
Ta1 , t≤ 0

Ta � χ

υ
, Ta1 � χ1

υ
,

(17)

When t> 0, the above λe(t) expression is introduced into Eq. 7
to solve differential equations.

A(t) � −E2p0r
2
0Taλ0 + E2p0r

2
0Ta − p0r

2
0λ0η1 + p0r

2
0η1

E1(TaE2 − η1) e−
t
Ta

−p0r
2
0Taλ0 + p0r

2
0Ta

E2Ta − η1
e−

t
Ta + p0r

2
0

E1
+ p0r

2
0

E2
+ Ce−

E2
η1

t

(18)

From the above formula, it can be seen that the displacement
around the tunnel is ue � A(t)

r ; by taking into account r � r0, Eq.
18 can be transformed into:

ue � A(t)
r0

� −E2p0r0Taλ0 + E2p0r0Ta − p0r0λ0η1 + p0r0η1
E1(TaE2 − η1) e−

t
Ta

−p0r0Taλ0 + p0r0Ta

E2Ta − η1
e−

t
Ta + p0r0

E1
+ p0r0

E2
+ C

r0
e−

E2
η1

t (19)

According to Eq. 19, when t → + ∞, the limit displacement
around the tunnel is ue∞ � (E1+E2)p0r0

E1E2
by calculating the upper

limit. During the tunnel’s excavation, the surrounding rock in
front of the working face is affected by the construction
disturbance, promoting the redistribution of the stress in the
surrounding rock, thus causing the initial displacement u0 of the
surrounding rock ahead.

To study the initial displacement, we should first discuss the
case when t≤ 0.

Equation 17 shows that when t≤ 0, λe(t) � λ0e
−t
Ta1 ; when

t → −∞, A(t) � 0, so we can obtain:

A(t) � ue
(1−λ0)t
Taλ0 (20)

Because u � [η1+(E1+E2)Ta1]
E1(E2Ta1+η1) p0λ0r20, when t = 0, there is:

u0 � u

r0
� [η1 + (E1 + E2)Ta1]

E1(E2Ta1 + η1) p0λ0r0 (21)

Equation 21 shows that excavation speed directly affects the
initial displacement u0. If the tunneling speed is plodding, the
viscous stress and strain of the surrounding rock will have enough
time to be fully released. So, it can be concluded that as υ → 0,

Ta1 � χ
υ → ∞. Then transform Eq. 21, then u0 �

η
Ta1

+E1+E2

E1E2+E1η
Ta1

p0λ0r0,
When Ta1 → ∞, u0 → E1+E2

E1E2
p0λ0r0.

On the contrary, if the tunneling face is speedy, it is
instantaneously annoying from infinity to the study’s
monitoring section. The viscous stress-strain of the
surrounding rock does not have sufficient time to release
completely, and only the elastic deformation is emancipated.
At this point, let us say: υ → ∞, then Ta1 � χ

υ → 0, so there is
u0 → p0λ0r0

E1
. According to the above analysis, the initial

displacement u0 of the surrounding rock expressed by Eq. 20
is between the two extremes, namely:

p0λ0r0
E1

< u0 <
E1 + E2

E1E2
p0λ0r0 (22)

Let E∞ � E1E2
E1+E2

, the upper form is transformed into:

p0λ0r0
E1

< u0 <
p0λ0r0
E∞

(23)
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Therefore, the viscoelastic deformation of the tunnel is Se �
2(ue − u0).

4 VISCOELASTIC–VISCOPLASTIC
DEFORMATION ANALYSIS

4.1 Viscoplastic Deformation Analysis
In the process of tunnel excavation, besides the instantaneous
elastic deformation released from the working face, the
secondary stress generated by the stress redistribution of
surrounding rock exceeds the yielding stress of the rock
mass at that point, which results in the viscoplastic state
that the deformation of surrounding rock increases with
time. The “time effect” of rock rheology is related to
viscoplastic flow in surrounding rock mass (Sun, 2007).
This kind of viscous flow usually occurs in the weak
surrounding rock with high stress, especially for the
surrounding rock with well-developed joints and fissures
and dissolution. It is also found that the nonlinear Bingham
model is suitable for the rheological study of this kind of
surrounding rock.

Considering that only when geo-materials undergo plastic
deformation and volume deformation, the change of shape can
be neglected, it is assumed that the volume of the plastic zone is
constant, that is, the volume strain is zero. Then there are:

εθ + εr � up

r
+ dup

dr
� 0 (24)

thus,

up � Ap(t)
r

(25)

So the Bingham viscoplastic constitutive equation can be
rewritten into the form of stress deviation. Furthermore, the
boundary conditions are considered when r → ∞, σr � σθ �
p, �σ � p and the axisymmetric state can be expressed as follows:

when σ < σs,

{ σr − �σ � −E(εr − ε)
σθ − �σ � −E(εθ − ε) (26)

Because there is no creep and stress relaxation in this case, we
only analyze the second case

When σ > σs,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z(εr − �ε)
zt

� z(σr − �σ)
Ezt

+ (σr − �σ) − σs
η(t)

z(εθ − �ε)
zt

� z(σθ − �σ)
Ezt

+ (σθ − �σ) − σs
η(t)

(27)

When r � r0, the σr � 0, �σ � p, εr � −Ap(t)
r20

, εθ � Ap(t)
r20

and
axisymmetric conditions are substituted into Eq. 27, so p is
calculated in the form of p � p(x) � p0λ

p(t):
dAp(t)
r20dt

� p0dλ
p(t)

Edt
+ p0λ

p(t) − σs

η(t) (28)

When t< 0, the tunnel has not been excavated to the monitoring
section, and the viscoplastic deformation of the surrounding rock of
the section is minimal, which can be almost ignored. Therefore, it is
only necessary to study the deformation after excavation. when t> 0,
λ(t) � 1 + (1 − λ0)e−t

Ta is substituted into Eq. 28 to get:

dAp(t)
r20dt

+ p0(1 − λ0)e− t
Ta

ETa
− p0[1 + (1 − λ0)e− t

Ta] + σs

η(t) � 0 (29)

The above Eq. 29 is solved to obtain the expression Ap(t) as
follows:

Ap(t) � p0Taλ0r20e
− t
Ta

η(t) − p0λ0r20e
− t
Ta

E
− p0Tar20e

− t
Ta

η(t) + p0r20e
− t
Ta

E

+r
2
0(p0 + σs)
η(t) t (30)

η(t) � t

A+e− t
B
is substituted into Eq. 30 can be obtained:

up � p0Taλ0r0e
− t
Ta

t
(A + e−

t
B) − p0λ0r0e

− t
Ta

E
− p0Tar0e

− t
Ta

t
(A

+e− t
B) + p0r0e

− t
Ta

E
+ r0(p0 + σs)(A + e−

t
B) (31)

When t → +∞, up∞ � Ap(t)/r0 � r0(p0+σs)
η(t) t � Ar0(p0 + σs).

Therefore, the viscoplastic deformation of the tunnel is Sp � 2up.

4.2 Viscoelastic–Viscoplastic Deformation
Analysis
The viscoelastic theoretical solution of surrounding rock
deformation mentioned above can be considered as the stress
redistribution of surrounding rock after tunnel excavation is
completed instantaneously with the elastic or elastic-plastic
wave’s propagation velocity. The viscoelastic convergence
expression of surrounding rock is Se � 2(ue + u0), and the
viscoplastic convergence expression is Sp � 2up. Therefore, the
analytical formula of viscoelastic–viscoplastic convergence of
surrounding rock is developed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S � 2(ue + up + u0)
ue � −E2p0r0Taλ0 + E2p0r0Ta − p0r0λ0η1 + p0r0η1

E1(TaE2 − η1) e−
t
Ta

−p0r0Taλ0 + p0r0Ta

E2Ta − η1
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E1E2
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up � p0Taλ0r0e
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− p0Tar0e
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Ta
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(A + e−
t
B) + p0r0e
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+ r0(p0 + σs)(A + e−

t
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ue
∞ � (E1 + E2)p0r0

E1E2
, up

∞ � Ar0(p0 + σs), p0λ0r0
E1

< u0 <
p0λ0r0
E∞

(32)
where σs is the yield stress; E∞ � E1E2

E1+E2
; η1 is the viscosity

coefficients; A and B are constants relating to the properties of
the surrounding rock, and C is a constant.
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In Eq. 32, excavation speed υ cannot approach infinity in
tunnel engineering; the elastic deformation cannot be
completed instantaneously in actual engineering, and the
initial deformation u0 can hardly be measured. Therefore, in
order to make the calculated value more in line with the
field monitored data, the above expression is simplified as
Ss � 2(ue + up) for calculation.

5 CASE ANALYSIS

According to the above analysis, if the initial stress state and
mechanical parameters of surrounding rock before tunneling are
given out, the deformation of the surrounding rock can be
calculated according to the theoretical formula. This study
verifies the rationality of theoretical derivation through the
example of the Dingxi tunnel monitoring project of Wujing
Expressway in Hunan Province and predicts the final
deformation of surrounding rock.

5.1 Project Overview
The Dingxi tunnel of the Wujing Expressway in Hunan Province
is located in Huaihua City. The tunnel area is in a low
mountainous landform with large terrain fluctuations, where
the midline elevation is 510–648 m and the maximum height
difference is about 148 m, as shown in Figure 6. The starting pile
number of the left tunnel is ZK66 + 940-ZK68 + 066, with a

length of 1,126 m, while the right tunnel is K66 + 926-K67 + 999
with a length of 1,073 m.

In this case, three typical sections of ZK67 + 220 (Grade V),
ZK67 + 500 (Grade VI), and ZK67 + 900 (Grade V) on the left line
of the Dingxi tunnel are selected for research. The detailed
geological evaluation is as follows:

(1) ZK67 + 220 section: the surrounding rock is the intensely
weathered sandy slate, with a small amount of moderately
weathered sandy slate. The joints and fissures of the rock
mass are well developed, and the rock mass is broken.

(2) ZK67 + 500 section: the surrounding rock is the intensely
weathered sandy slate, with developed joints and fissures,
hard rock, and fragmented rock mass.

(3) ZK67 + 900 section: the wall rocks are primarily distributed
in the fault fracture zone, and they were intensely weathered
sandy slates.

5.2 Field Monitoring Test Scheme
The Layout of Measuring Points
According to the type of surrounding rock, the tunnel’s depth,
and the excavation method, measuring points were arranged in
the tunnel wall along the longitudinal direction. The arrangement
of measuring points and baselines was adjusted according to the
specific construction scheme, and the distribution of measuring
points should be set in the section where surrounding rock grades
generally change.

FIGURE 6 | Geological profile of the left line of Dingxi tunnel. (A) Import side. (B) Exit side
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The spacing distance between measuring points is 5–10 m.
The layout of measuring points is shown in Figure 7.

Measurement Frequency
The monitoring frequency in the experiment is to measure the
data once a day.

Instruments and Equipment
The measuring base point is buried in the area outside the tunnel
excavation longitudinal and transverse (3–5) times of tunnel
diameter. According to the standard benchmark embedding
method, two base points are buried for the mutual check.
Therefore, the base point should be connected with the nearby
benchmark to obtain the original elevation. A high-precision level
observes the arch crown’s settlement, and the “four fixed
principles” must be observed. In other words, it is necessary to
refer to the following requirements: fixed construction personnel,
fixed station position, fixed measurement duration, and fixed
construction sequence, to ensure that the measurement accuracy
meets the specification requirements. When the measuring points
of the convergence measurement section are buried, the distance
between the measuring points and the excavation surface should
be less than 2 m. The first measurement should be carried out
within 24 h after the last blasting. According to the relevant
measurement frequency requirements, considering the influence
of the ambient temperature, the data is read three times to ensure
accuracy. The testing instruments and equipment are shown in
Table 1.

5.3 Mechanical Parameters
Because the hydraulic fracturing method is simple and easy to
operate in the testing process without needing to drill rock core

samples or using exact electronic instruments, the testing depth
can reach more than 5,000 m. Therefore, this study applies it to
the initial in situ stress test of tunnel-surrounding rock.

The principle of the hydraulic fracturing method is to make
the excellent wall break by increasing the water pressure based on
the designed measurement depth of the hydraulic pump, then to
determine the pressure and fracture direction of the characteristic
point in the fracturing process, and calculate the initial stress state
of the rock mass at the measurement point. Hydraulic fracturing
is a two-dimensional testing method that can determine the
maximum principal stress’s magnitude and direction and the
minimum principal stress perpendicular from the borehole plane.
Figure 8 illustrates hydraulic fracturing test device.

According to the geological engineering report of the Dingxi
tunnel, the in situ stress of three representative sections, ZK67 +
220, ZK67 + 500, and ZK67 + 900 on the left line, was measured
with the hydraulic fracturing method. The self-weight stress value
was calculated according to the designed thickness of overlying
strata (σv � ρgh, rock bulk density ρ � 2.7g/cm3). The test results
are shown in Table 2.

Because the surrounding rock in this study area is intensely
weathered sandy slate, it is suitable for the
viscoelastic–viscoplastic rheological model. The mechanical
parameters of the surrounding rock of the Dingxi tunnel are
shown in Table 3. The model parameters in Table 3 were derived
from the creep data under the corresponding stress by the

formula E1 � σ0
εc(∞ ), E2 � 1

εc(∞ )+εcir(∞ )
σ − 1

E1

and η � E1t

ln(1−E1εc(t)
σ0

).

Because the design of the Dingxi tunnel is a three-center
circular section, in order to ensure the accuracy of a theoretical
calculation, it is necessary to convert the circular radius of the
tunnel used in theoretical calculation into the equivalent circle
radius using Eq. 33.

FIGURE 7 | Arrangement of measuring points for vault subsidence.
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FIGURE 8 | Schematic diagram of testing device for hydraulic fracturing method. 1-recorder, 2-high pressure pump, 3-flowmeter, 4-pressure gauge, 5-high
pressure hose, 7-pressure gauge, 8-pump, 9-packer, 10-fracturing section.

TABLE 1 | Testing instruments and equipment.

Serial number Equipment name Equipment type Testing accuracy

1 Precision Level DSZ3 0.01 mm
2 Digital convergence gauge JSS-30A 0.06 mm
3 Steel tape 5 m, 30 m /
4 Tower ruler 5 m, 7 m /
5 Indium steel ruler 2 m /

TABLE 2 | Measured values of initial in situ stress in Dingxi Tunnel.

Section
mileage

Depth/
m

Surrounding rock
grade

Maximum horizontal principal
stress σH/MPa

Minimum horizontal principal
stress σh/MPa

Self-weight
stress σv/MPa

ZK67 + 220 93.97 V 8.37 5.12 2.49
ZK67 + 500 130.79 IV 11.24 5.89 3.46
ZK67 + 900 37.24 V 3.16 2.01 0.99
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r0 �
(b2)2 +H2

2H
(33)

The equivalent radius of the Dingxi tunnel section is
r0 � 7.03 m, which was calculated by substituting b = 12.68 m
and H = 10.08 m for the upper formula.

5.4 Calculation and Analysis
The vault settlement of ZK67 + 220, ZK67 + 500, and ZK67 + 900
sections was calculated by the analytic equation
group Ss � 2(ue + up) and compared with the measured results.

The simultaneous Eq. 32 was used to calculate all the parameters
into the equation group Ss � 2(ue + up), and the displacement
expressions Ss and ultimate displacement expressions S∞ of
surrounding rock deformation can be obtained as follows:

Ss � 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(34)

S∞ � 2(ue
∞ + up

∞) � 2(E1 + E2)p0r0
E1E2

+ 2Ar0(p0 + σs) (35)

TABLE 3 | Rheological mechanics parameters of surrounding rock of Dingxi Tunnel.

Section mileage Surrounding rock
grade

E1/MPa E2/MPa η1/MPa · d σs/MPa

ZK67 + 220 V 148.5 58.6 215 8.63
ZK67 + 500 IV 153.4 78.3 218 5.89
ZK67 + 900 V 145.3 55.8 209 9.74

FIGURE 9 | Comparison of the measured and theoretical values for section ZK67 + 220.
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The Section of ZK67 + 220
The surrounding rock grade in this section is V, taking
A � 0.19, B � 0.58, and the movement speed of the working
face was υ � 1.2m/d. Monitoring can be started only when the
driving distance of the working face exceeds 2 m of the cross-

section of the measuring point. Therefore, when Ta � 3.5d, it
can be calculated using the formula Ta � χ/υ (when
x � 2, χ � 4.2). The theoretical final settlement calculated
by Eq. 35 is S∞ � 49.30 mm. However, due to the secondary
lining of the section when t � 20d, the final actual settlement

FIGURE 10 | Comparison of the measured and theoretical values for section ZK67 + 500.

FIGURE 11 | Comparison of the measured and theoretical values for section ZK67 + 900.
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measured in the field was S � 48.97 mm. The comparison
between the measured and theoretical values of the ZK67 +
220 section is shown in Figure 9.

The Section of ZK67 + 500
The surrounding rock grade for this section is IV, taking
A � 0.14, B � 0.28, and the movement speed of the working
face is υ � 2.4m/d. Monitoring can be started only when the
driving distance of the working face exceeds 2 m of the cross-
section of the measuring point. Therefore, when Ta � 1.75d, it
can be calculated using the Ta � χ/υ (when x � 2, χ � 4.2). The
theoretical final settlement value calculated by Eq. 35 was
S∞ � 36.77 mm. However, due to the secondary lining of the
section when t � 20d, the final actual settlement measured in
the field was S � 36.69 mm. The comparison between the
measured and theoretical values of the ZK67 + 220 section is
shown in Figure 10.

The Section of ZK67 + 900
The surrounding rock grade for this section is V, taking
A � 0.29, B � 0.49, and the movement speed of the working
face is υ � 1.2m/d. Monitoring can be started only when the
driving distance of the working face exceeds 2 m of the cross-
section of the measuring point. Therefore, when Ta � 3.5d, it
can be calculated using the formula Ta � χ/υ (when
x � 2, χ � 4.2). The theoretical final settlement value
calculated using Eq. 35 was S∞ � 53.70 mm. However, due
to the secondary lining of the section when t � 20d, the final
actual settlement measured in the field was S � 53.31 mm.
The comparison between the measured and theoretical values
of the ZK67 + 220 section is shown in Figure 11.

6 DISCUSSION

In practical tunnel engineering, the instability and failure of
surrounding rocks are closely related to the rheological
properties of the rock mass, and the reasonable constitutive
model is the key to studying the rheological properties. A new
and improved Nishihara rheological model was presented,
based on which the convergence formula of tunnel
deformation was derived (Eq. 34) to be applied to the
actual tunnel engineering. In this study, based on the
residual calculation results, the RMSE and the Mean Error
(RE) were calculated using the residual formula to evaluate the
consistency of theoretical calculation results with real results
and its calculation accuracy. The smaller the test standard
value is, the more accurate the prediction result is, and the
closer the theoretical calculation value is to the measured
value. If the average error tends to “0,” the estimation is
considered unbiased. The closer the correlation coefficient R2

is to “1,” the higher the linear correlation between the
theoretical and measured curves.

The following results are remarkable according to the
comparative analysis of relevant parameters in Table 4
and Table 5. As shown in Table 4, the three sections’ final
theoretical calculated values were all larger than the
measured values, with a difference smaller than 0.73%,
which can be considered very consistent. It can be seen
from Table 5 that the root-mean-square error of the
dislocation-time curves of the three sections was 7.26 mm,
the maximum mean error was 5.01%, and the minimum
correlation coefficient was 0.86. It was analyzed that firstly,
in the field monitoring process, the secondary lining was
applied on all three sections when T = 20 d, so the residual
surrounding rock deformation cannot be effectively
measured. The final measured settlement value was less
than the final settlement value calculated by theory.
Secondly, it was assumed that the surrounding rock’s
elastic deformation is completed immediately after
excavating the surrounding rock in the theoretical
derivation of the model. However, due to the “time effect,”
the viscoplastic deformation occurred slowly. “time effect” is
also the fundamental reason for the massive difference in the
settlement values at 12 d in Figures 10, 11. Thirdly, the faster
driving speed of the section in Figure 9 and the shallower
buried depth of the section in Figure 11 are also important
reasons for the massive difference. Fourth, the existence of
groundwater is significant to the stability of surrounding
rock. The theoretical model in this paper does not

TABLE 4 | Comparison between the measured and theoretical values.

Section mileage The theoretical limit
value of vault
subsidence

The measured final
cumulative settlement value

of vault

ZK67 + 220 49.30 48.97
ZK67 + 500 36.77 36.69
ZK67 + 900 53.70 53.31

TABLE 5 | Precision evaluation.

Section mileage Root-mean-square error/RMSE Correlation coefficient/R2 Average error/RE/%

ZK67 + 220 1.68 0.99 1.30
ZK67 + 500 6.23 0.86 4.44
ZK67 + 900 7.26 0.98 5.01
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consider the effect of groundwater, but there is gushing water
in the tunnel during tunnel excavation. Fifth, the local
variation of the excavation method and the uncertainty of
construction disturbance are also factors that can not be
ignored. In conclusion, the above accuracy evaluation
indicates that the improved rheological model proposed in
this study can provide a reference and theoretical basis for
analyzing the stability of surrounding rock under similar
conditions in other places.

However, there are some limitations in this study to be
further discussed. Firstly, due to the limited testing time and
the number of test samples, this model’s validation was
performed only by testing the deformation of the Dingxi
tunnel. Therefore, some creep tests should be carried out
on the rock mass of different tunnels in subsequent studies
to verify the proposed improved rheological model. Secondly,
rock mass fractures, groundwater, blasting, and other related
factors were not considered in calculating the selected tunnel
section. Considering these factors to make the improved
rheological theory possible, it is a subject worthy of further
study. Thirdly, the theoretical calculation results can only
have particular reference significance in the tunnel’s
surrounding rock with relatively single lithology, stable
rock structure, and good integrity. However, in engineering
practice, the deformation, instability, and failure of
surrounding rock are complex processes controlled by
several interrelated factors. To evaluate and predict the
qualitative risk of the stable surrounding rock, the
improved Nishihara model should further consider the
coupling effect of many factors, such as joints and fractures
in the rock mass, groundwater, lithologic differences, blasting,
and lousy geology.

7 CONCLUSION

Based on the monitorization and measurement of the Dingxi
Tunnel on Wujing Highway in Hunan Province, this study
establishes an improved Nishihara model to forecast the
surrounding rock deformation of the Dingxi Tunnel. The
conclusions are as follows:

(1) Model establishment and theoretical derivation. By
simultaneously considering the “time effect” of plastic
viscosity coefficient and the “time-space effect” of the
Hoek formula, an improved Nishihara model was
established, and the viscoelastic–viscoplastic

convergence analytical equation of surrounding rocks
was derived.

(2) Application of the model. The comparison and verification
show that the improved Nishihara model can accurately
predict the final deformation of surrounding rock and
further validate the assumptions and correlations of
nonlinear viscosity coefficient equations. The correctness
of the parameters indicates that this theoretical model has
absolute validity and applicability in practical engineering.

(3) Limitations and prospecting of the model. The model is
affected by excavation speed and buried depth under
different geological conditions, and the forecast accuracy
has certain limitations. Therefore, the critical point of
research in the future is to deeply excavate and improve
the model by combining in-depth learning and other
methods.
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