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The Lower Permian Shanxi Formation in the Eastern Ordos Basin is a set of transitional
facies shale, and it is also a key target for shale gas exploration in China. Based on
lithofacies classification by X-ray diffraction and kerogen type identification, nanoscale
reservoir space, pore volume, pore size distribution, surface area, and fractal
characterization were studied using comprehensive methods including N2 and CO2

adsorption, mercury injection capillary pressure, field emission-scanning electron
microscopy (FE-SEM), and nuclear magnetic resonance. The results indicate that
Shanxi Formation shale can be subdivided into five types of lithofacies: clayey shale
(lithofacies I), siliceous clayey shale (lithofacies II), siliceous shale (lithofacies IV), calcareous
siliceous shale (lithofacies V), and siliceous calcareous shale (lithofacies VI). Lithofacies V
and lithofacies VI are the best lithofacies in terms of organic pore morphology, connectivity,
and development degree, followed by lithofacies II. Inorganic pores and microfractures are
well developed in all lithofacies. The majority of pores in lithofacies I comprise organic
mesopores, but pore volume is contributed by a few inorganic macropores. The pore
types and pore volume contributors of lithofacies II are organic macropores. The pore size
distribution of lithofacies IV is very similar to that of lithofacies I. The pore size distribution of
lithofacies V shows typical bimodal characteristics. It is suggested that the inorganic pores
of lithofacies V are mainly macropores, which have the greatest contribution to pore
volume, followed by organic mesopores. Total organic carbon (TOC) and thermal maturity
do not present obvious controls on pore structure. Vitrinite is the main kerogen type in
lithofacies II and IV, and this is associated with disfavored morphology, low connectivity,
and poor development degree of organic pores. In contrast, sapropelinite is observed in
other shale lithofacies, and it is suggested to be an effective kerogen type that contributes
to better development of organic pores.
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INTRODUCTION

Marine–continental transitional facies shale is an important field
of unconventional oil and gas exploration in China, which
accounts for 25% of shale gas resources in China (Kuang
et al., 2020). It has a wide distribution area and great resource
potential (Yang et al., 2017). However, the exploration,
development, and geological evaluation of marine–continental
transitional facies shale gas are still in the initial stage and require
further improvement (Zhang et al., 2018; Dong et al., 2021).
Although transitional facies shale including Shanxi Formation
shale is characterized by large cumulative thickness, high organic
matter abundance, and large exploration potential (Liang et al.,
2018), its changeable sedimentary environment, complex mineral
composition, and multiple sources of organic matter lead to more
complex nanoscale pore characteristics than marine shale. Many
study cases of marine shale suggested organic matter abundance
is the main factor controlling nanoscale pore structure (Huo et al.,
2020), while the mineral composition and diagenetic intensity are

indicated to play a secondarily important role in determining the
pore structure (Wang et al., 2019; Jia et al., 2020). Therefore, it is
of great significance for exploration evaluation and development
plan-making to clarify different shale lithofacies types and pore
structure characteristics. However, previous studies on
transitional facies shale focus on the characteristics of shale
gas reservoirs such as total organic carbon (TOC) content,
mineral composition, pore type, and gas content (Li et al.,
2019). Meanwhile, many studies have been carried out on the
sedimentary environment, sedimentary model, and high-quality
lithofacies types of transitional facies shale (Luo et al., 2018; Liu
et al., 2018), but systematic studies on pore structure of nanoscale
pore system is rare. Liu et al. (2020) proposed that there are about
20–30% organic pores in the shale of Shanxi Formation. The pore
diameter is generally less than 100 nm, mainly distributed in the
range of 2–50 nm. Wu et al. (2021) proposed that Type II2
kerogen is the key factor leading to better nanopore structure
of favorable lithofacies than other lithofacies in Shanxi Formation
transitional shale.

FIGURE 1 | (A) Location of study area, North China. (B) Distribution map showing the burial depth of Shanxi Formation. (C) Generalized stratigraphy of Eastern
Ordos Basin.
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On the basis of the above understanding, the purpose of this
work is to provide the nanoscale pore characteristics of different
lithofacies of the Lower Permian Shanxi Formation shale in
Eastern Ordos Basin. Qualitative evaluation of pore and
microfracture characteristics is obtained by field emission-
scanning electron microscopy (FE-SEM) and nuclear magnetic
resonance (NMR) analyses. Quantitative evaluation of pore
volume (PV), surface area (SA), and pore size distribution
(PSD) is obtained by N2 and CO2 gas adsorption and mercury
injection capillary pressure (MICP) analyses. Moreover, the
fractal dimensions of pores were calculated from nitrogen
adsorption data and interpreted to discuss the complexity and
heterogeneity of pore structure and assume controlling factors of
pore structure.

Geological Setting
The study area is located in the eastern Ordos Basin (Figures 1A,
B). As a part of Ordos Basin, the study area experienced multiple
episodes of regression event, accompanied by deposition of
marine, transitional, and continental sediments during the
Late Carboniferous to the Middle Permian (Chen et al., 2011).
The Lower Permian Shanxi Formation, as the target of this study,
is in conformable contact with both the underlying Taiyuan
Formation and the overlying Shihezi Formation (Figure 1C)
(Li et al., 2019). The top of the Taiyuan Formation is
suggested to be formed in the open platform sedimentary
environment of the shallow shelf facies (Kuang et al., 2020),
because it is lithologically dominated by the micritic bioclastic
limestone with normal-size fusulinid, echinoderms, and
brachiopods as the main bioclastic particles. During the
sedimentary period of Early Permian Shanxi Formation, the
study area is dominated by marine–continental transitional
sedimentary environment consisting of tide-dominated
estuarine bay facies and tide-dominated delta facies (Wu et al.,
2021). The bottom of Shihezi Formation is mainly medium
sandstone, indicating braided river systems (Li et al., 2018;
Kuang et al., 2020).

Sample and Method
A total of 175 core samples of Shanxi Formation shale were
collected from Wells A, B, and C for thin-section identification,
X-ray diffraction, and TOC measurement. The whole-rock and
clay mineral X-ray diffraction analysis was completed at the
PetroChina Research Institute of Petroleum Exploration and
Development on a Japan-made physical-science X-ray
diffractometer. TOC analysis was performed at the
Unconventional Experimental Center of CNOOC Energy
Development Co. Ltd using a CS744-MHPC carbon/sulfur
analyzer. Ten core-plug samples of different shale lithofacies
were implemented with NMR analysis in both dry and
saturated fluid states (including n-dodecane and brine) using a
c12-010 V low-field NMR device manufactured by the Suzhou
Newmai Company. Mercury intrusion was performed using a
Quantachrome Poremaster. Samples were prepared to have an
approximate size of 20 mm × 20 mm, weighed out to 10–20 g,
and then dried at 110°C for at least 24 h under vacuum in an oven.
The mercury injection pressure ranged from 0 to 215 MPa in this

experiment. The remaining samples were divided into three parts
for maceral identification after kerogen extraction, FE-SEM
identification, and N2 and CO2 adsorption experiments. N2

and CO2 adsorption experiments were carried out by crushing
the sample into 60–80 mesh, dried in an oven at 110°C for 12 h,
and then placed in the Autosorb-IQ3 specific surface and PSD
analyzer manufactured by the Cantor Company of the
United States. The pretreatment was completed by degassing
at 110°C for 12 h in the vacuum condition, and then nitrogen
carbon adsorption was carried out. After the experiment, the
Brunauer–Emmett–Teller (BET) model was used to calculate the
specific SA, and the Barrett–Joyner–Halenda (BJH) model was
employed to obtain the PSD and volume. The pore size was
divided into three categories according to the pore size
classification scheme (Loucks et al., 2012), namely, micropores
(<2 nm), mesopores (2–50 nm), and macropores (>50 nm).
Hysteresis loops were observed at the relative pressure (P/PO)
of approximately 0.5 in adsorption–desorption curves, which
indicates the presence of great differences in pore size and
pore morphology among shale samples that cause such
adsorption behaviors at this pressure. This relative pressure
was set as the threshold to divide the transitional facies shale
into two groups. The first group with P/PO = 0–0.5 is subjected to
the monolayer–multilayer adsorption process controlled by van
der Waals force, while the second group with P/PO = 0.5–1.0
experiences the capillary condensation adsorption process
controlled by surface tension (Wang M. et al., 2015; Sun et al.,
2015). In this paper, the Frenkel–Halsey–Hill (FHH) model is
used to calculate the fractal dimensions of these two groups of
samples separately, which are denoted as D2 and D1 for the first
and second groups, respectively.

RESULTS

Lithofacies Classification
Lithofacies refers to the mineral composition, color, grain size
distribution, and other characteristics of sedimentary rocks
(Wang and Carr 2012), which is importantly helpful for the

FIGURE 2 | Ternary plot for Shanxi Formation shale lithofacies
classification.
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reconstruction of depositional processes and environments
(Singh et al., 2009; Jiang et al., 2013). The lithofacies is
divided according to the following steps: 1) clay >75%, divided
into clayey shale (lithofacies I) using contents of clay, carbonate,
and siliceous (quartz + feldspar) minerals as three end members;
2) according to RQC (ratio of siliceous mineral/carbonate
mineral) (Jiang et al., 2016), the lithofacies with clay mineral
content <75% are divided into siliceous clayey shale (lithofacies
II), calcareous clayey shale (lithofacies III), siliceous shale
(lithofacies IV), calcareous siliceous shale (lithofacies V),
siliceous calcareous shale (lithofacies VI), and calcareous shale
(lithofacies VII), while the non-shale facies are siliceous rock
(lithofacies VIII) and carbonate rock (lithofacies IX). As shown in
Figure 2, Shanxi Formation shale of the study area comprises
lithofacies I, II, IV, V, and VI. There were no positive correlations
between the contents of siliceous minerals and TOC in all samples
(Figure 3A) and no negative correlations between the contents of
clay minerals and TOC (Figure 3B). Therefore, the main source
of siliceous materials in Shanxi Formation shale is not of biogenic
origin (Liu et al., 2017; Huo et al., 2020).

Qualitative Description of Reservoir Space
Morphology
Organic and Inorganic Pores
There are obvious differences in pore morphology and
development degree of organic pores among different shale
lithofacies. Very few organic pores are developed in the
lithofacies I, and they are mainly rounded small pores
(Figure 4A), with the pore size ranging from 20 to 50 nm
(Figure 4B). Organic pores in lithofacies II are more abundant
than those in lithofacies I (Figure 4C), and they are mostly
crescent-shaped, with a pore size range of 100–400 nm
(Figure 4D). The organic pores of lithofacies IV are rarely
developed (Figure 4E), and they are all rounded small pores
with a pore size of only 20–50 nm (Figure 4F). Organic pores in
lithofacies V and lithofacies VI are the most developed
(Figure 4G), with beaded organic pores of hundreds of
nanometers (Figure 4H).

Various types of inorganic pores can be observed in different
lithofacies, which can be divided into three types: 1) Intergranular
pores mainly refer to the residual space between mineral grains
after sedimentation or later diagenesis (Ji et al., 2016). They are
normally distributed among clay minerals, brittle minerals, and
organic matter (Figure 5A), with dominant triangular and
polygonal pore shapes under the influence of mineral
morphology as well as contact relationship and arrangement
(Figure 5B). The good connectivity between intergranular
pores can provide a good seepage channel for methane (Ji
et al., 2016). 2) Interlaminar pores are mainly formed in the
interior of minerals (Figure 5C), and most of them are relatively
regular in shape. Flocculent illite interlaminar pores and book-
leaf-like chlorite interlaminar pores (Figures 5C, D) are
dominant, and they usually occur together. These interlaminar
pores can provide large gas storage space, and they contribute
significantly to the specific SA and thus adsorption when they are
finer than 50 nm (Ji et al., 2012). 3) Intercrystalline pores mainly
refer to the pores between grains in mineral aggregates with a
diameter range of 5–300 μm (Figure 5F). Due to the widespread
development of pyrite, most of these pores appear as microsphere
and strawberry-like crystal clusters (Figure 5E). The interior of
these pores is composed of many pyrite grains, among which
some nanopores are not tightly packed in the process of crystal
growth. Moreover, the interior of these pores has certain
connectivity, especially in pyrite coarser than 10 μm
(Figure 5E). Different from intergranular pores of pyrite in
the marine shale (Wang et al., 2019), these in the transitional
shale in the study area are not filled with organic matter
(Figure 5F).

Microfracture
The formation ofmicrofractures in the Shanxi Formation transitional
facies shale is often related to the late diagenesis of clay minerals and
organic matter. Interlaminar microfractures are commonly
developed among clay minerals (Figure 5G), which are formed by
internal stress caused by water loss, uniform shrinkage, dry cracking,
and recrystallization of clay minerals under overlying formation
pressure during diagenesis. Their genesis is similar to that of

FIGURE 3 | (A) Correlations between siliceous mineral and TOC content. (B) Correlations between clay mineral and TOC content.
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interlaminar pores (Figure 5H). These interlaminar microfractures
normally have flat and smooth or slightly curved shapes and good
extensibility, with their length of more than 10 μm and width of less
than 200 nm (Figure 5G). In addition, a small number of
microfractures are produced by hydrocarbon generation in the
interior of organic particles, and contraction fractures are
developed at the mineral boundaries. In contrast, organic pores
are poorly developed (Figure 5I), which can be attributed to the
dominance of vitrinite in kerogen (Cao et al., 2018). The width of
these microfractures is relatively large, generally in the range of
500–1,000 nm, and the elongation is short, generally several

microns (Figure 5I). Microfractures are generally open and can
be connected with other types of pores to form complex three-
dimensional pore networks, which are conducive to both free gas
enrichment and shale gas seepage and migration, thereby playing a
key role in the exploitation and development of shale gas.

Development degree of organic pore, inorganic pore, and
microfracture.

Organic pores are generally lipophilic, while inorganic pores are
mostly hydrophilic (Li et al., 2016). Accordingly, NMR experiments
were carried out under water- and oil-saturated conditions,
respectively, to observe the signal characteristics on the transverse

FIGURE 4 | FE-SEM images of organic pores in Shanxi Formation transitional facies shale. (A),(B) Organic matter contained some rounded organic matter pores
with small sizes (20–50 nm size), and larger organic pores are about 200 nm, lithofacies I, Well C, 2,180.95 m. (C),(D) Crescent-shaped organic pores ranging from 100
to 400 nm, lithofacies II, Well A, 2,281.5 m. (E),(F) Rounded small pores ranging from 20 to 50 nm, lithofacies IV, Well C, 2,187.91 m. (G),(H) Beaded organic pores
ranging from 200 to 700 nm, lithofacies VI, Well A, 2,294.1 m.
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FIGURE 5 | FE-SEM images of inorganic pores and microfractures in Shanxi Formation transitional facies shale. (A),(B) Intergranular pores between brittle minerals
and clay minerals, Well C, 2,162.08 m. (C),(D) Large number of interlaminar pores in clay minerals, Well C, 2,161.23 m. (E),(F) A large number of intercrystalline pores in
pyrite, Well A, 2,281.5 m. (G),(H) Microfracturres in clay minerals, Well A, 2,281 m. (I) Microfracturres inside organic matter, Well A, 2,290.6 m.

FIGURE 6 | NMR T2 spectra under different states for Lithofacies I (A), Lithofacies II (B), Lithofacies IV (C) and Lithofacies V (D).
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relaxation time (T2) distribution spectra of two types of pores. The
presence of three peaks in the T2 spectra of lipophilic pores indicates
three types of organic pores, namely, volumetrically dominant small
pores with short T2, large pores with long T2, and microfracture
developed in organic matter (Figure 6). The development degree of
the three types of lipophilic pores varies significantly in different shale
lithofacies, with a higher degree seen in lithofacies V, lithofacies VI,
and lithofacies I.

The main peak at a T2 value of 0.5 ms in the water-saturated
condition represents the hydrophilic pores, while the secondary peak
stands for the microfractures with large pore sizes and small volumes
(Figure 6). The development degree of microfractures significantly
varies from one lithofacies to another (Figure 6). Specifically, the
development degree of inorganic microfractures is the lowest in
lithofacies IV and the highest in lithofacies II. The Image J software
was used to scan and identify different pore types in FE-SEM images,

and results show that organic pores are the most abundant in
lithofacies V and lithofacies VI, with an average proportion of
32.7%, while their proportions in other lithofacies range from
24.8% to 28.6%. Inorganic pores are the most developed in
lithofacies IV, accounting for 63.2% on average, while their
proportions in other lithofacies vary in the range of 46.3–57.7%
(Table 1).

Quantitative Analyses of Pore Volume and
Pore Size Distribution
N2 Adsorption–Desorption Isotherms and Pore
Geometry
Different shale lithofacies present various features in their
adsorption–desorption isotherms (Figure 7). Meanwhile, they
also share similarities since they all have a certain amount of

TABLE 1 | Main parameters of pore structure of Shanxi Formation transitional facies shale.

Sample
No.

Depth
(m)

Lithofacies TOC
(%)

Siliceous
mineral
(%)

Clay
mineral
(%)

SA
(m2/g)

PV
(cm3/kg)

OP
(%)

IP (%) MF
(%)

D1 D2

1 2,290.71 V 1.14 53 32 4.976 13 31.3 55.4 13.3 2.7038 2.5475
2 2,292.10 V 6.22 70 23 5.039 14 34.8 59.1 6.1 2.7049 2.3986
3 2,293.08 V 8.57 69 27 2.886 9 32.9 58.4 8.7 2.667 2.2362
4 2,294.89 VI 6.51 28 32 3.12 11 31.8 57.2 11 2.6853 2.2421
5 2,296.34 I 0.27 9 91 8.489 17 28.6 46.3 25.1 2.7517 2.6005
6 2,300.50 II 1.84 28 62 5.379 14 26.5 58.8 14.7 2.7143 2.5060
7 2,297.40 II 7.45 44 55 2.383 8 24.3 56.9 18.8 2.6685 2.4813
8 2,297.78 IV 6.01 61 37 0.677 3 24.8 63.2 12 2.5883 2.2091
9 2,299.00 II 2.02 46 49 3.896 13 26.4 57.5 16.1 2.6660 2.5378

SA, surface area; PV, pore volume; OP, organic pore; IP, inorganic pore; MF, microfracture.

FIGURE 7 | The N2 gas adsorption-desorption characteristics for Lithofacies IV (A), Lithofacies II (B), Lithofacies I (C) and Lithofacies V (D).
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macropores, which is indicated by the fact that no saturated
absorption is reached even when the vapor pressure is saturated
(Ji et al., 2016). The unobvious nitrogen adsorption–desorption
hysteresis loop of the lithofacies IV (Figure 7A) shows affinity to
the H4 type according to the International Union of Pure and
Applied Chemistry (IUPAC) classification scheme (Liu et al.,
2005). The adsorption and desorption curves of the lithofacies IV
are horizontal and parallel to each other in a wide pressure range,
indicating the dominance of ink bottle-like macropores with
narrow opening and poor connectivity (Chen et al., 2012). The
other shale lithofacies have more obvious hysteresis loops
(Figure 7), indicating the presence of more open surface pores
(Chen et al., 2012).

The hysteresis loop of the lithofacies II is similar to that of the
typical H3 type and also carries certain signatures of the H4 type
(Figure 7B), which indicates the presence of irregular
(amorphous) nanopores. The intergranular pores are featured
by their slit-like shapes with parallel walls, which are related to the
flaky structure of clay minerals (Han et al., 2007; Sun et al., 2008).

The hysteresis loop of the lithofacies I shows affinity to that of
the H3 type and also carries certain signatures of the H2 type
(Figure 7C). Various types of pores are found during the
scanning electron microscopy (SEM) observations, including
slit-like interlaminar pores of clay minerals as well as a certain
number of fracture-type and crescent-shaped organic pores
(Zhao et al., 2017).

The hysteresis loops of lithofacies V and lithofacies VI are
similar to those of both H1 and H3 types (Figure 7D), indicating
the presence of relatively developed interlaminar pores and
cylindrical organic pores with good opening.

Surface area and pore volume.
The fractal dimension of different lithofacies samples was

calculated by using the fractal FHH model, and the results are
shown in Table 1 and Figure 8.

According to the BET model, the specific SA of different shale
lithofacies samples were calculated (Table 1). The specific SA of

the lithofacies IV is as low as 0.68 m2/g, that of the lithofacies II is
2.38–5.38 m2/g (averaging 3.89 m2/g), that of the lithofacies V
and lithofacies VI, 2.89–5.04 m2/g (averaging 4.01 m2/g), and that
of the lithofacies I is 8.49–10.50 m2/g (averaging 9.07 m2/g). The
total PV of the transitional facies shale in the study area ranges
from 3 to 17 cm3/kg (averaging 13.2 cm3/kg), with that of the
lithofacies IV the lowest, while the others are all more than
10 cm3/kg (Table 1). The fractal characteristics indicate a strong
relationship between the specific SA and D1 as well as a moderate
relationship between the specific SA and D2 (Figure 9A). Similar
relationships are found between the total PV and the two fractal
dimensions (Figure 9B). Therefore, micropores and small pores
should have major contributions to the relative SA and the total
PV, while large pores and macropores play secondary roles.

Pore size distribution.
The PSD was characterized by MICP, CO2, and N2

adsorption. FE-SEM images show that the pores of lithofacies
I comprise organic mesopores ranging from 20 to 50 nm
(Figures 4A,B), but the PV is contributed by a few
macropores ranging from 100 to 800 nm based on PSD
(Figure 10A). Most of the macropores contributing PV of
lithofacies I are inorganic pores. Organic pores in lithofacies
II ranges from 100 to 400 nm (Figures 4C, D). Meanwhile, The
PV of lithofacies II is also contributed by the organic
macropores in this interval (Figure 10B). The PSD of
lithofacies IV is very similar to that of lithofacies I
(Figure 4E). Organic pores are micropores with pore sizes
ranging from 20 to 50 nm (Figure 4F), but the PV
contribution is mainly inorganic macropores (Figure 10C).
PSD of lithofacies V shows typical bimodal characteristics.
Pores with size ranges of 3–260 nm and >1,000 nm both
contribute significantly to the total PV in lithofacies V
(Figure 10D). Combined with FE-SEM observation (Figures
4G, H), it is suggested that the inorganic pores of lithofacies V
are mainly macropores, which have the greatest contribution to
PV, followed by organic mesopores (Figure 10D).

FIGURE 8 | Schematic diagram of fractal fitting for Lithofacies I (A), Lithofacies II (B), Lithofacies IV (C) and Lithofacies V (D).
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DISCUSSION

Organic-rich shale is featured by its complex pore structure that is
controlled by various geological factors, including diagenesis,
mineral composition, TOC content, and organic matter thermal
maturity. Among these factors, the influence of thermal maturity is
eliminated, since the thermal maturity of the Shanxi Formation
transitional shale has already reached 2.58–2.69%, which favors
organic pore development (Curtis et al., 2012).

TOC has been suggested in previous studies to be the main
factor controlling the pore structure of marine shale in the
Longmaxi formation. Specifically, organic matter contributes a
lot of micropores and mesopores to the total pores, while clay
minerals mainly control the development of mesopores and
macropores (Liang et al., 2012; Wang et al., 2019; Huo et al.,
2020; Jia et al., 2020). However, this argument is not supported
by our correlation analysis. In our analysis, TOC has a reverse
or insignificant correlation with the specific SA and total PV

(Figure 11A), no correlation with the total PV (Figure 11B), a
weak negative correlation with D1 (R

2 = 0.30, Figure 11C), and
an obvious reverse correlation with D2 (R

2 = 0.63, Figure 11C).
As shown in various studies on marine–continental
transitional shale (Loucks et al., 2012; Wang Z. et al., 2015;
Bao et al., 2016; Cao et al., 2018), the existence of vitrinite can
result in high TOC contents. However, organic pores are not
developed in the interior, even under the condition of suitable
maturity, with only some contraction microfractures
developed in the interior and at the margin. In lithofacies
IV and lithofacies II, vitrinite accounts for 80.5–85.7%, while
inertinite takes the remaining proportion, resulting in the fact
that TOC has no obvious control effect on the pore structure.
In lithofacies V and lithofacies VI as well as lithofacies I,
beaded organic pores are greatly developed within the
sapropelinite, presenting much better pore structures than
those in the other shale lithofacies. Therefore, sapropelinite
is speculated to favor the pore structure development.

FIGURE 9 | (A) Correlation between fractal dimension and surface area. (B) Correlation between fractal dimension and total pore volume.

FIGURE 10 | Pore size distribution with MICP, CO2, and N2 adsorption for Lithofacies I (A), Lithofacies II (B), Lithofacies IV (C) and Lithofacies V (D).
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In Shanxi Formation Transitional Facies
Shale
Compared with marine shale, the transitional facies shale has
higher clay mineral contents as well as more diverse and
developed inorganic pore types. The clay mineral content
presents a slightly positive correlation with the specific SA
(R2 = 0.37, Figure 11D), no significant correlation with the
total PV (Figure 11E), a positive correlation with D1

(R2 = 0.73, Figures 11A,F), and a weak positive correlation
with D2 (R2 = 0.42, Figure 11F). Therefore, the clay mineral
content has overall significant controls on the pore structure
of the Shan23 shale, especially on the development of
inorganic pores.

CONCLUSION

1) The Shanxi Formation transitional facies shale is featured
by a TOC content of 0.14–11.68%, a high clay mineral content,
and dominance of terrigenous quartz as the siliceous source.
The transitional facies shale of Shanxi Formation is divided

into five lithofacies according to the contents of siliceous
minerals, clay minerals, and carbonate minerals, namely,
lithofacies I (clayey shale), lithofacies II (siliceous clayey
shale), lithofacies IV (siliceous shale), lithofacies V
(calcareous siliceous shale), and lithofacies VI (siliceous
calcareous shale).

2) Lithofacies V and lithofacies VI are the best lithofacies in
terms of organic pore morphology, connectivity, and
development degree, followed by lithofacies II and lithofacies
IV in descending order. Inorganic pores and microfractures are
well developed in all lithofacies. The majority of pores in
lithofacies I comprise organic mesopores, but PV is
contributed by a few inorganic macropores. Pore types and
PV contributors of lithofacies II are organic macropores. The
PSD of lithofacies IV is very similar to that of lithofacies I. The
PSD of lithofacies V shows typical bimodal characteristics. It is
suggested that the inorganic pores of lithofacies V are mainly
macropores, which have the greatest contribution to PV, followed
by organic mesopores.

3) TOC and organic matter thermal maturity present no
obvious control effects on pore structure. Vitrinite is the main

FIGURE 11 | (A)Correlations between TOC and total surface area. (B)Correlations between TOC and total pore volume. (C)Correlations between TOC and fractal
dimension. (D) Correlations between clay and total surface area. (E) Correlations between clay and total pore volume. (F) Correlations between clay and fractal
dimension.
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organic maceral in siliceous and lithofacies II, and this is
associated with disfavored morphology, low connectivity, and
poor development degree of organic pores. In contrast,
sapropelinite is observed in other shale lithofacies, and it is
suggested to be an effective kerogen type that contributes to
the better development of organic pores.
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