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Pore-water pressure generation in the saturated carbonate fault zone plays a key role in the
initiation of the Daguangbao landslide, which is the largest landslide triggered by the 2008
Wenchuan earthquake in China. This paper examines the pore-water pressure behavior
and the influence of cyclic stress and initial stress state, and establishes a pore-water
pressure model of carbonate fault materials. A series of cyclic triaxial tests of saturated
carbonate fault materials were carried out, covering a broad range of frequencies, cyclic
shear stress ratios and confining pressures. The test results show that the pore-water
pressure in the materials increases rapidly under cyclic loading, revealing a significant
liquefaction potential. The generation of pore-water pressure is barely affected by
frequency. The higher cyclic shear stress ratio accelerates the generation of the pore-
water pressure, while the higher confining pressure increases liquefaction resistance.
Furthermore, an energy method is proposed to evaluate the development behavior of the
pore-water pressure. An energy-based pore-water pressure model that accounts for the
effects of frequency, cyclic shear stress ratio and confining pressure is established. The
generation of the pore-water pressure is attributed to the grain crushing in the special fault
materials with low-strength calcareous cementation. This work provides a novel model and
some innovative observations for better understanding the pore-water pressure behavior
of carbonate fault materials under seismic loading.
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HIGHLIGHTS

• The pore-water pressure behavior of the saturated carbonate fault materials was investigated.
• The influences of cyclic stress and initial stress state on the pore-water pressure generation and
dissipated energy were revealed.

• An energy-based pore-water pressure model was established.

INTRODUCTION

During the long-term tectonic activities, the bedding fault was formed and developed (Wang, 2009).
The strength of bedding fault materials is very low. The bedding fault is widely distributed in the
mountains, and the strength degradation of bedding faults often determine the slope stability. It has
been previously reported that some large landslides initiated along the bedding fault, such as the
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Chiu-fen-erh-shan landslide (Wang et al., 2003), Daguangbao
(DGB) landslide (Cui et al., 2018; Cui et al., 2020), and Qiyangou
landslide (Fan et al., 2019), etc. In addition, the generation of

pore-water pressure under seismic loading resulted in the
strength degradation in the sliding zone, which was the key
factor for the initiation and movement of landslide. Wang

FIGURE 1 | The location (A) and 3D topography (B) of the DGB landslide.
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et al. (2014) proposed that liquefaction of the runout path
material enhanced the mobility of the Donghekou landslide
through the ring shear test. Pei et al. (2017) reported that the

steady-state strength of the sliding zone was close to 0 due to the
generation of pore-water pressure, which was the reason for the
long-distance and fluidized movement of the Shibeiyuan landslide.

FIGURE 2 | The source area of the DGB landslide.

FIGURE 3 | Bedding fault characteristic (A), groundwater in the tunnel (B) and saturated carbonate fault materials (C).

FIGURE 4 | (A) Particle size distributions and (B) the XRD results of carbonate fault materials and residual soils on the sliding surface.
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Zhu et al. (2022) proposed that the sliding surface liquefaction
caused complex surface landforms and long-runout movement of
the LSB landslide. Therefore, it is crucial to investigate the pore-
water pressure behavior of the sliding zone and establish a pore-
water pressure model to evaluate the slope stability.

For a long time, the generation law of pore-water pressure and
the pore-water pressure model under cyclic loading have been
studied based on the results of field measurement and laboratory
tests. Seed et al. (1976) first proposed the pore-water pressure
development model of sand under cyclic loading based on
isobaric consolidation undrained test. Polito et al. (2013)
established an energy-based pore pressure generation model
for use in predicting in situ pore pressures in soils subjected
to nonsinusoidal loadings. Wang et al. (2013) proposed a formula
to characterize the relationship between the peak axial strain and
the peak pore-water pressure after 1,000 cycles. Chen et al. (2013)
effectively evaluated the field liquefaction potential during the
1999 Chi-Chi earthquake by means of hysteresis loop energy and
the proposed neural network. Liu et al. (2015) presented a fluid
coupled-DEM model to investigate the generation mechanism of
pore-water pressure. Azeiteiro et al. (2017) suggested that
standard cyclic triaxial tests using uniform loads could be used
for realistic energy-based assessment of in-situ liquefaction

TABLE 1 | Test scheme.

Sample No ρd (g/cm3) w (%) CSR f (Hz) σ3 (kPa) NL

S1 1.8 11.23 0.325 1 100 91
S2 1.8 11.31 0.325 2 100 198
S3 1.8 11.27 0.325 3 100 264
S4 1.8 11.29 0.238 1 100 257
S5 1.8 11.3 0.411 1 100 44
S6 1.8 11.31 0.325 1 150 70
S7 1.8 11.33 0.325 1 200 58

Note:ρd, dry density; w, water content; CSR, cyclic shear stress ratio; f, frequency; σ3,
consolidation pressure; NL, the number of loading cycles leading to sample failure.

FIGURE 5 | Test results of cyclic triaxial test: (A) time-series data of pore-water pressure, axial strain, confining pressure and deviator stress (B) stress-strain
hysteresis curve, and (C) effective stress path.
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potential. Javdanian et al. (2017) derived an NF-GMDH-based
model based on laboratory results that can be successfully used
for strain energy-based estimation of liquefaction potential. Amini
and Noorzad (2018) proposed an energy-based method to evaluate
the liquefaction potential of fiber-reinforced sands. Yang and Pan

(2018) investigated a unique relationship between the residual pore
pressure and dissipated energy for isotropic and anisotropic
consolidated sand with different densities and cyclic stress
amplitudes. Chen et al. (2019) proposed a new strain-based
model to assess the residual excess pore-water pressure generation
in fully saturated sands. Javdanian (2019) proposed a strain energy-
based method to accurately predict the energy required for
liquefaction of sandy soil and silty sand samples in cyclic triaxial
tests. Shan et al. (2020) reported that the dynamic strength of artificial
marine clays with different mineral compositions was illustrated by
VEDR cyclic strength from the perspective of energy dissipation. Ni
et al. (2020) evaluated the effects of the initial deviatoric stress and
cyclic stress amplitude on the liquefaction potential based on the
energy-based method. Pan and Yang (2020) proposed an energy
approach based on the energy density concept for liquefaction
assessment, which could better capture the effect of loading
randomness on sand liquefaction behavior. Zhang et al. (2020)
established a three-parameter pore-water pressure model of fiber-
reinforced sands that accounts for the effects of fiber content, fiber
length, relative density, cyclic stress ratio, and sand particle diameter.

The pore-water pressure generation law of different materials
under cyclic loading has been extensively investigated (Chang et al.,

FIGURE 6 | Relations between ud/σ3 and N under different frequencies
(A), cyclic shear stress ratios (B) and confining pressures (C).

FIGURE 7 | Energy calculation (A) and cumulative dissipated energy and
dissipated energy per cycle versus cycle of sample S1 (B).
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FIGURE 8 | Evolution characteristics of dissipated energy under different frequencies: (A) dissipated energy per cycle and (B) cumulative dissipated energy.

FIGURE 9 | Evolution characteristics of dissipated energy under different cyclic shear stress ratios: (A) dissipated energy per cycle and (B) cumulative dissipated
energy.

FIGURE 10 | Evolution characteristics of dissipated energy under different confining pressures: (A) dissipated energy per cycle and (B) cumulative dissipated
energy.
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1983; Mitchell and Dubin 1986; Charlie et al., 1989; Sitharam and
Govindaraju 2007; Polito et al., 2008; Hazirbaba and Rathje, 2009;
Wang et al., 2010; Pan and Yang 2018; Balreddy et al., 2019; Zhang

et al., 2020). However, energy is a scalar and can be directly iterated
to reflect the generation process of pore-water pressure under
complex stress paths, thus the energy-based pore-water pressure
model is more reliable than the other pore-water pressuremodels. In
addition, most studies only focus on some ideal materials, which is
quite different from the real site situation. In this paper, a detailed
field investigation and a series of saturated triaxial tests of carbonate
fault materials were carried out. The pore-water pressure behavior in
the materials was investigated. An energy-based pore-water pressure
model is established considering the effect of frequencies, cyclic
shear stress ratios, and confining pressures. The generation
mechanism of pore-water pressure was investigated. This study is
beneficial to evaluate the stability variability of the DGB landslide
during the 2008 Wenchuan earthquake.

CHARACTERISTICS OF CARBONATE
FAULT MATERIALS

Geological Background
The 2008 Wenchuan earthquake triggered 112 large landslides
with an area of more than 50,000 m2 (Xu et al., 2011), of which

FIGURE 11 | Relation between pore-water pressure ratio and cumulative dissipated energy under different frequencies (A), cyclic shear stress ratios (B) and
confining pressures (C).

FIGURE 12 | Relation between pore-water pressure ratio and
cumulative dissipated energy.
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the DGB landslide with a volume of about 1.2 × 109 m3 is located
in Gaochuan Township, Mianyang City, and it is the largest
landslide triggered by the 2008 Wenchuan earthquake
(Figure 1A). The maximum thickness of the landslide mass is
570 m (Huang et al., 2012). The source area of DGB landslide is
composed of a main scarp and two lateral flanks (Figure 2). A
sliding surface with a length of 1.8 km is exposed in the southern
flank. The exposed rocks in the sliding surface were highly
weathered and extensively fractured. A bedding fault was
found at the intersection of the main scarp and the sliding
surface in the southern flank (Figure 3A). To investigate its
formation mechanism, a tunnel was excavated along the sliding
surface at the back of the mountain (Figure 1B).

As shown in Figures 3A,B 3~5 m thick bedding fault was
found in the tunnel, indicating that the sliding surface was formed
within the pre-existing bedding fault. The zone is mainly
composed of carbonate fault materials. In addition, the
bedding fault is below the groundwater level (Pei et al., 2018;
Cui et al., 2021), and there is abundant groundwater in the tunnel.
Due to long-term tectonic compression and shear, the materials
in the bedding fault are seriously fragmented, similar to soil.
Moreover, the groundwater seepage on the section of the bedding
fault can be seen. The natural water content of the materials
reaches 11.94% (Figure 3C). The carbonate fault materials mainly
consisted of 5.68% breccia, 53.98% sand, 29.8% silt, and 10.54%
clay. The non-uniform coefficient and curvature coefficient were
57.34 and 1.92, respectively. The plastic limit and liquid limit
were 7.41 and 11.87, respectively. The plastic index and
permeation coefficient were 4.46 and 8.1 × 10−5, respectively.
The tested materials were obtained in the tunnel, and it is not
disturbed by the landslide movement. Therefore, it is appropriate
to investigate the generation law of pore-water pressure in the
bedding fault under seismic loading.

Test Sample and Scheme
A cylindrical sample with a diameter of 50 mm and a height of
100 mm is used in this test. Due to the limitation of test
conditions, particles larger than 5 mm are removed, and the
sample is mainly composed of sand particles (0.075–2 mm),
accounting for about 56% of the total mass. The content of
breccia (>5 mm) in the materials is less than 10%. According
to Kuenza et al. (2004), the mechanical behavior of the samples
was mainly controlled by the matrix material when the content of
particles larger than 5 mm in the material is less than 40%. The
pore-water pressure behavior may not be influenced by the
removed breccias. Therefore, this test result can reflect the
generation characteristic of pore-water pressure in the bedding
fault. Figure 4A shows the particle size distribution of the sample.
The composition of the carbonate fault materials is similar to the
residual soils on the sliding surface, which is mainly composed of
dolomite. This result further demonstrates that the DGB
landslide triggered along the bedding fault, which was mainly
composed of carbonate fault materials. Figure 4B illustrates the
X-ray diffraction (XRD) results.

The materials with an initial water content of 5% were allowed
to stand in a closed surroundings for 24 h. The initial density of
the sample with a diameter of 50 mm and a height of 100 mm is

1.8 kg/m3. The samples were saturated by de-aired water with the
assistance of carbon dioxide. The degree of saturation was
checked by BD, which is the ratio between the increment of
excess pore water pressure (Δu) and the increment of confining
pressure (Δσ3) under undrained conditions (BD = Δu/Δσ3)
(Skempton 1954; Tokimatsu et al., 1990). When this
parameter is greater than 0.95, the sample is considered to be
saturated. After saturation, consolidation pressures of 100, 150,
and 200 kPa were separately applied in both lateral and axial
directions. Due to the limitation of the cyclic triaxial test
apparatus, it is impossible to apply the real 2008 Wenchuan
earthquake loading, Cui et al. (2017) reported that the dominated
seismic wave frequencies during the Wenchuan earthquake were
2–3 Hz. The sinusoidal loadings with different frequencies of 1, 2
and 3 Hz and cyclic shear stress ratios of 0.238, 0.325, and 0.411
were separately implemented. The sample is failed when the axial
strain reaches 5%. The test scheme is shown in Table 1.

TEST RESULTS

Figure 5A shows the time-series records of the pore-water
pressure, axial strain, deviator stress under the confining
pressure of 100 kPa. it can be seen from Figure 5A that the
pore-water pressure increases rapidly at the initial stage, and
pore-water pressure reaches 20 kPa at ~20 s. Gradually, the
generation rate of pore-water pressure slows down slightly,
and the pore-water pressure is about 35 kPa at 40 s. The
generation rate of pore-water pressure gradually increases after
that and the pore-water pressure reaches 90 kPa at 80 s. Finally,
the pore-water pressure is approximately equal to confining
pressure when the axial strain reaches 5%. The axial strain
increases slowly at 0–70 s, only reaching 1.5%. After the pore-
water pressure ratio exceeded 0.7, the axial strain increases
rapidly and reaches 5% in a very short time. In addition, the
cyclic deviator stress is stable at 0–60 s, then decreases slightly.
The peak deviator stress decreases to only 40 kPa at 90 s. The
hysteresis curve widens gradually with increasing cycles, as
presented in Figure 5B. Figure 5C shows the effective stress
path. Effective average principal stress (p′ = 1/3(σ1+2σ3))
decreases continuously. The effective stress path reaches the
original point at the end of the test. As a result, the materials
show high liquefaction potential.

Figure 6A indicates the pore-water pressure ratio (ud/σ3)
versus cycles (N) curve under various frequencies. From
Figure 6A, the generation law of the ud/σ3 is similar under

TABLE 2 | Fitting results.

Sample No a R2

S1 4.5 0.9977
S2 3 0.9965
S3 3 0.9872
S4 3.1 0.9988
S5 3.3 0.9912
S6 3.4 0.9968
S7 3.1 0.9979
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different frequencies, and the ud/σ3 increases rapidly. Finally, the
ud/σ3 is approximately equal to 1 and liquefaction occurs. To
achieve 5% axial strain, 91, 198, and 264 cycles are required at
frequencies of 1, 2 and 3 Hz, respectively. It can be found that the
time required for liquefaction (~90 s) is almost the same,
indicating that the frequency has little impact on the
generation rate of the pore-water pressure. Figure 6B shows
the ud/σ3 versus N curves under a variety of cyclic shear stress
ratios (CSR = 0.238, 0.325, and 0.411). From Figure 6B, the pore-
water pressure increases rapidly under different cyclic shear stress
ratios. The ud/σ3 is greater than 0.95 when the axial strain reaches
5%. All samples exhibit the same pattern. However, the greater
cyclic shear stress ratio accelerates the generation of the pore-
water pressure, and fewer cycles are required for liquefaction. As
shown in Figure 6B, for the cyclic shear stress ratios of 0.238,
0.325, and 0.411, the number of cycles required to cause sample
liquefaction are correspondingly 257, 91, and 44, respectively.
This result reveals that the cyclic shear stress ratios change the
generation rate of pore-water pressure. In addition, the ud/σ3
versus N curves under different confining pressures (σ3 = 100,
150, and 200 kPa) are shown in Figure 6C. The ud/σ3 increases
rapidly in the initial stage, and then the ud/σ3 slows down slightly.
The generation rate of ud/σ3 gradually accelerates with increasing
cycles. The samples can be liquefied under different confining
pressures.

PORE-WATER PRESSURE GENERATION
MODEL

The applied cyclic loading causes the generation of pore-water
pressure in the sample, and an amount of energy is dissipated in
this process. It can be summarized as input energy (Ei), output
energy (E0) and dissipated energy (W) (He and Cao, 1990). The
formula is expressed as Ei � E0 +W. Saturated soil is composed
of soil particles and pore water. During the cyclic loading, the
dissipated energy is an important index to reveal the generation
process of pore-water pressure. Therefore, in this paper, an
energy analysis method is used to evaluate the generation of

pore-water pressure in carbonate fault materials, and an energy-
based pore-water pressure model is established.

Dissipated Energy
The area of the hysteresis curve can properly represent the
dissipated energy of single cycle. Most previous studies
simplified the hysteresis curve into an ellipse, and the
dissipated energy was obtained by calculating the area of the
ellipse. However, due to the hysteresis curve is not a standard
ellipse, this calculation method has significant shortcomings.
Therefore, a new method is proposed here to accurately
calculate the area of the hysteresis curve. The hysteresis curve
is divided into several tiny polygons by the stress and strain of
adjacent data. The sum of all polygon areas is the area of the
hysteretic curve (Figure 7A).

To precisely calculate the hysteresis curve area, 40 group stress-
strain data in a cycle are obtained. The calculation formula of
hysteresis curve area is as Wi � Si � ∑39

j�1 1
2 (σj + σj+1)(lj+1 − lj).

Where Wi is the dissipated energy of the ith cycle, Si is the
hysteresis curve area of the ith cycle, σj and lj are the axial
stress and axial strain of the jth cycle. Therefore, the cumulative
dissipated energy (Wpi) is the sum of the hysteresis curve area from
1st to ith cycles, and the cumulative dissipated energy is obtained
by Wpi � ∑i

1Wi. We introduce the average pore-water pressure
(u0), defined as the average of the maximum and minimum pore-
water pressures per cycle, to clearly illustrate the generation
behavior of pore-water pressure, and the formula is as
μ0,i � (μmax ,i + μmin ,i)/2. Where u0,i is the average pore-water
pressure of the ith cycle, umax,i and umin,i are the maximum
pore-water pressure and minimum pore-water pressure of the
ith cycle, respectively.

Figure 7B shows the cumulative dissipated energy (Wpi),
dissipated energy per cycle (Wi) versus cycle (N) of sample S1.
As shown in Figure 7B, the dissipated energy per cycle gradually
increases with growing cycles. However, it is noted that the
dissipated energy per cycle is basically the same (about 9.15 J/
m3) in the first 30 cycles. After that, the dissipated energy per
cycle increases, and the dissipated energy per cycle is basically
stable towards the end of the test, about 40.55 J/m3. The

FIGURE 13 | Carbonate fault materials with low-strength cementation from microscope. 2 × 10 (A), 4 × 10 (B).
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cumulative dissipated energy throughout the cyclic loading
process demonstrates an accelerated generation trend.

Figure 8 shows the dissipated energy per cycle and cumulative
dissipated energy versus cycle under different frequencies. From
Figure 8A, the dissipated energy per cycle is lower at higher
frequencies, and the increased rate of dissipated energy per cycle
with increasing cycles is faster at low frequencies. However, the
frequency has little effect on the total dissipated energy required
to trigger liquefaction, as shown in Figure 8B. Figure 9 shows the
dissipated energy per cycle and cumulative dissipated energy
versus cycle under different cyclic shear stress ratios. Under the
condition of a larger cyclic shear stress ratio, the cyclic loading
causes greater dissipated energy per cycle (Figure 9A). However,
the cumulative dissipated energy required to trigger liquefaction
is essentially the same for different cyclic shear stress ratios
(Figure 9B). Figure 10 shows the dissipated energy per cycle
and cumulative dissipated energy versus cycle under different
confining pressures. The dissipated energy per cycle is great at
large confining pressure (Figure 10A). The increase of the
confining pressure leads to a rise in the cumulative dissipated
energy required to liquefy (Figure 10B). Based on the above test
results, it is noted that the dissipated energy per cycle increases
with increasing cycles for all samples, with the maximum
dissipated energy per cycle near the time of sample
liquefaction, after which it remains stable or decreases slightly.
In addition, frequency and cyclic shear stress ratio have little
effect on the total dissipated energy required to trigger
liquefaction, while the confining pressure has a significant effect.

Relationship Between Pore-water Pressure
Ratio and Cumulative Dissipated Energy
The pore-water pressure ratio versus cumulative dissipated energy
curves under different frequencies and cyclic shear stress ratios show
the same development characteristic, as shown in Figures 11A,B.
The pore-water pressure ratio increases with increasing cumulative
dissipated energy. According to the generation characteristics of
pore-water pressure, the curve can be divided into two stages. Before
the pore-water pressure ratio is 0.9, the pore-water pressure ratio
and cumulative dissipated energy increase rapidly, and the slope of

the curve is large. After that, the cumulative dissipated energy
continuously increases while the pore-water pressure ratio
remains stable. Figure 11C shows the pore-water pressure ratio
versus cumulative dissipated energy curves under different
confining pressures. It can be seen that the pore-water pressure
ratio shows the same development characteristic. The pore-water
pressure increases rapidly in the initial stage, and then tends to be
stable. However, the contribution of cumulative dissipated energy to
pore-water pressure generation is significantly influenced by the
confining pressure, and the greater dissipated energy is required to
trigger liquefaction in the higher confining pressure.

Normalized Model of Pore-water Pressure
Ratio and Cumulative Dissipated Energy
To establish an energy-based pore-water pressure model
considering the effect of frequency, cyclic shear stress ratio
and confining pressure. The cumulative dissipated energy and
cycles are normalized. The normalization results are shown in
Figure 12. From Figure 12, the pore-water pressure ratio versus
cumulative dissipated energy ratio (Wp/Wpf) are properly fitted
by the exponential function,

log(μd/σ3) � 1 − e(1−a
(Wp/Wpf )) (1)

where Wpf is the cumulative dissipated energy trigger sample
liquefaction, a is the test parameter. The fitting results are shown
in Table. 2.

DISCUSSION

Previous studies have attributed the soils liquefaction to the
movement and rearrangement of grains (Lade and Yamamuro,
1997; Ovando-Shelley and Perez, 1997; Yamamuro and Covert,
2001). Afterwards, it is recognized that for loose sandy soils, the
generation of pore-water pressure is mainly caused by the
movement and rearrangement of grains, while in medium to
dense sandy soils, and the generation of pore-water pressure is
mainly due to grain crushing (Wang and Sassa, 2000; Wang and

FIGURE 14 | Schematic diagram of liquefaction mechanism.
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Sassa, 2002; Fukuoka et al., 2007). In addition, grain crushing
susceptibility varies significantly for different materials. Under
shear loading, siliceous sands exhibit shear dilatancy behavior due
to low grain crushing susceptibility. Weathered granite sand with
short transport distance exhibits a high susceptibility to grain
crushing. Thus weathered dense granite sand properties under
shear loading undergo three stages, 1) initial negative dilatancy
due to grain movement and rearrangement, 2) dilatancy, and 3)
negative dilatancy due to grain crushing (Wang and Sassa, 2000).
The bedding fault of the DGB landslide is composed of special
geological materials, which is formed by dolomite subjected to
long-term tectonic shear and compression, so its structure is poor
(Cui et al., 2021). In addition, the material grains are filled with a
large amount of calcareous and argillaceous cementations, and
the strength of these cementations is lower than the dolomite
(Zhu et al., 2019) (Figures 13A,B). Therefore, for these special
materials, it is noted that a special liquefaction mechanism of the
bedding fault materials under cyclic loading, that is, liquefaction
caused by cementation breakage. Under cyclic loading, when the
cyclic loading exceeds the strength of the cementation, the grain
crushing occurs, resulting in a reduction of the volume, so that the
load originally borne by the particle skeleton is borne by the pore
water, resulting in a rise in the pore-water pressure, and as
illustrated in Figure 14. The low-strength calcareous and
argillaceous cementations are easily broken by cyclic loading,
thus this special material is more prone to occur in grain crushing
than conventional soil. The pore-water pressure rise in the
bedding fault caused by grain crushing plays a major role due
to the high grain crushing susceptibility.

CONCLUSION

The tests on bedding fault material shows that the pore-water
pressure increases rapidly during cyclic loading, and the

carbonate fault materials have a high liquefaction potential.
Frequency has little effect on the generation of the pore-water
pressure. The higher cyclic shear stress ratio accelerates the
generation of the pore-water pressure, while the higher
confining pressure increases liquefaction resistance. Frequency
and cyclic shear stress ratio have little effect on the total dissipated
energy required to trigger liquefaction, while the confining
pressure has a significant effect. We establish an energy-based
pore-water pressure model of carbonate fault materials
considering the effect of frequency, cyclic shear stress ratio
and confining pressure.
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