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Determining the characteristic stress intensity according to the rock stress-

strain curve is significant significance for rock engineering. Nowadays, there are

relatively mature methods for determining peak stress and damage stress.

However, the crack volume strain method, axial strain method, and strain

response method are more subjective to determine rock’s closure stress and

initiation stress. The closure rock stress and crack initiation stress refined value

method are proposed based on these methods, which are based on the

discreteness of the rock stress and strain point. Through optimizing the

stress characteristics by an objective function (variance function), the

subjectivity of artificial observation is avoided; Based on the trend of rock

stress-strain curve, an empiricalmethod for determining rock closure stress and

crack initiation stress is proposed. The test results indicate that the two

proposed methods that calculate closure rock stress and crack initiation

stress can obtain reasonable results. These methods can be used as a

supplement to the characteristics of the rock stress determination method

and can be used in actual engineering.
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Introduction

It is considered of great significance to study the deformation and strength

characteristics of rock under compression for guiding practical rock engineering

(Martin and Chandler, 1994; Eberhardt et al., 1998; Nicksiar and Martin, 2012) The

stress-strain curve of rock is obtained by uniaxial or triaxial compression tests. By

analyzing the deformation characteristics of the rock stress-strain curve, and the

characteristic stress intensity is calculated to guide the field practice engineering. In

the study of stress-strain curve characteristics, the determination of characteristic stress

intensity has been considered a fundamental topic in rock mechanics (Everitt and Lajtai,

2004; Cieślik, 2014).

Generally, the pre-peak process of fractured rock is divided failure into four stages

(i.e., crack closure stage, elastic stage, stable crack expansion stage and crack
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accelerated expansion stage) (Brace et al., 1966; Bieniaweski,

1967; Brown, 1981; Cai et al., 2004; Peng et al., 2015) The

characteristic stress intensity corresponding to each stage is

closure stress intensity, crack initiation stress intensity,

damage stress intensity, and peak stress intensity,

respectively. The division of the above deformation stages is

an important basis for determining the evolution stage of rock

mass or geological body and predicting the development

trend. For the determination of characteristic stress

intensity, it is usually considered that the determination

of peak stress is the easiest, which can be directly

calibrated by the peak point of the stress-strain curve.

Moreover, the determination of damage stress can

obtain by interpreting the inflection point of the volumetric

strain curve (Yang, 2016). By contrast, it is much more

difficult to determine the closure stress and crack initiation

stress.

For determining the rock closure stress and crack

initiation stress, domestic and foreign scholars have also

put forward some methods from various angles. The crack

volume strain-axial strain curve has a horizontal section where

the crack volume strain is zero, which was found by Martin

and Chandler, 1994. The crack volume strain method was

proposed by them to determine the crack initiation stress and

closure stress of fractured rock through its characteristic

points. The stress-axial strain curve of rock crack in the

closure process was nonlinearly found by Eberhardt et al.

(1998), and its axial stiffness increased with the increase of

stress. Therefore, the axial stiffness method was proposed to

determine the closure stress of rock. Nicksiar andMartin, 2012

conducted a statistical analysis of the initiation stress in

different rock failure processes, and proposed a method to

identify the initiation stress through transverse strain

parameters. Same as the transverse strain method Nicksiar

and Martin, 2012, the method of determining the closure

stress based on the axial strain response was proposed by

Peng et al. (2015). However, the above methods are susceptible

to subjective factors, resulting in large errors in the results. In

addition, the acoustic emission method is also a common

method to study the mechanical characteristics of rock.

However, the acoustic emission method is susceptible to

rock structure, composition, and external noise. In other

words, the characteristic stress intensity of rock is brutal

to determine because of the randomness of the acoustic

emission method (Cieślik, 2014). Therefore, the

commonly used determination method is still based on the

strain method.

The stress-strain data obtained from uniaxial

compression tests or triaxial compression tests are

discrete and subject to various factors that may cause

these data to deviate from the actual values. Therefore,

how to deal with these discrete data is the key to

determine the characteristic stress intensity of rock. In

fact, including axial strain method, the axial stiffness

method, and the crack volume strain method are all based

on the existence of an approximate linear stage in the

process of rock failure when determining the closure

stress and initiation stress (Wen et al., 2018; Tang et al.,

2021; Zhang et al., 2021). Therefore, the determination of

closure stress and crack initiation stress can be attributed to

determining the linear change stage in the rock stress-strain

curve.

Given the subjectivity of the closure and initiation stress

values in the appeal method, from the perspective of the

discreteness of rock stress and strain points, the difference

formula is used to process the original data, namely the

variance function, to avoid the subjectivity of artificial

observation. At the same time, to meet the actual needs of

some projects, an empirical value method is proposed based

on the rock stress-axial strain standard curve trend. Finally,

the proposed methods are verified and discussed.

Pre-peak stage division of fractured
rock

Some scholars have carried out extensive discussions on

the stage division of the whole process stress-strain curve of

fractured rock and divided the pre-peak period into four stages

(Brace et al., 1966; Bieniaweski, 1967; Brown, 1981; Cai et al.,

2004; Peng et al., 2015). The crack closure stage, the elastic

deformation stage, the crack stable expansion stage, and the

accelerated crack propagation stage (Figure 1). In the crack

closure stage, the original internal pores of the rock are

continuously compressed, and the axial stress-strain curve

of the rock shows an upward concave shape from the trend

(Muller, 1982; Xu and Yang, 2017). In the linear elastic stage,

the microcracks inside the rock continue to be compressed.

However, due to the low-stress level, it will not lead to new

cracks or the expansion of the original crack. The stress-axial

strain curve of rock shows an approximate linear growth in the

trend. The trend characteristics of this stage are the basis for

determining the strength of crack closure stress and crack

initiation stress. In the stage of stable crack propagation, when

the stress level of rock reaches the threshold required for

crack propagation, the internal crack rock begins to

propagate. However, the rock stress-axial strain curve began

to deviate from the straight line due to the low expansion rate.

During the accelerated crack propagation stage, the cracks

accelerate to propagate, and the cracks are dense, overlapped,

and connected inside the specimen to form macro

cracks. These cracks further develop into crack zones

with intense strain concentration and extend to the end

of the specimen until the specimen is broken. Therefore,

the rock stress-strain curve at this stage is geometrically

concave.
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Nowadays, the determination methods of rock peak stress

intensity and damage stress intensity have been relatively

mature, but there is no unified method closure stress and

crack initiation stress. Therefore, the determination methods

of rock closure stress and crack initiation stress intensity are

discussed below.

Determination method of closure or
initiation stress of fractured rock

Axial strain method

Many rock mechanics tests have shown that the stress-axial

strain curve of rock has an approximately linear change stage.

Therefore, the crack closure stress can be determined directly

from the rock stress-axial strain curve. As shown in Figure 2, the

crack closure stress intensity corresponds to the turning point of

the stress-axial strain curve from nonlinearity to linearity; the

crack initiation stress corresponds to the turning point of axial

stress-axial strain curve from nonlinear to linear. The advantage

of this method is that the idea is simple, and the physical meaning

is clear, but the deficiency is that it is greatly affected by human

factors. For example, the accurate determination of the turning

point strongly depends on the subjective judgment of engineers.

Crack volume strain method

According to the stress-lateral strain and stress-axial strain

test data obtained from the rock compression test, the volumetric

strain under a certain level of stress can be calculated:

εv � ε1 + 2ε3 (1)

FIGURE 1
Schematic diagram of the division stage before rock peak damage (Brace et al., 1966; Cai et al., 2004).

FIGURE 2
Schematic diagram of axial strain method.
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Where, the axial strain (ε1) and lateral strain (ε3) are under the

same level of stress.

Rock volume strain (εv) includes elastic volume strain (εev)

and crack volume strain (εcv). According to the elastic theory, the

elastic volumetric strain (εev) of the specimen can be calculated as

follows (Cieślik, 2014):

εev � 1 − 2]
E

(σ1 + σ2 + σ3) (2)

Where, σ1, σ2, and σ3 are the axial stress and confining pressure; v

and E are the Poisson’s ratio and elastic modulus of the rock.

Then the crack volume strain can be calculated by the following

equation:

εcv � εv − 1 − 2]
E

(σ1 + σ2 + σ3) (3)

Under uniaxial conditions, Eq. 3 can be simplified as:

εcv � εv − 1 − 2]
E

σ1 (4)

The crack volume strain method is based on the relationship

between the crack volume strain and the loading stress σ1, σ2 and σ3
established according to Eq. 3. The strain value that the crack

volume strain first tends to zero as the closing stress intensity, and

the axial strain value at the point where it deviates from zero again

is taken as the crack initiation stress intensity. The solution

diagram of this method is shown in Figure 3. Compared with

the axial strain method, this method reduces the subjectivity of

artificial estimation to a certain extent, and the solution results are

relatively objective. However, the method has the disadvantage of

over-reliance on the elastic parameters v and E, and the insufficient

accuracy of the parameters may easily lead to errors in the solution

results.

Strain response method

The strain response method is a method proposed by

Nicksiar and Martin, 2012 to identify crack initiation stress

by transverse strain parameters. The idea of this method is as

follows: First, determine the damage stress point A

according to the stress-volume strain curve (Figure 4), the

corresponding point B in the lateral strain curve is

determined, and OB is connected as the reference line.

Then, under the same axial stress, the strain value

corresponding to the transverse strain curve and the

reference line is taken, and the difference between the

two is the transverse strain difference. Finally, polynomial

fitting is performed on the data points, and the peak point C

of the fitting curve is the crack initiation stress intensity. To

further simplify the solution process, it is not necessary to fit

the transverse strain difference curve, and the stress

corresponding to the maximum value of the transverse

strain difference is directly taken as the initiation stress

intensity. The advantage of this method is that the value

standard is objective and unique, which is convenient for

programming. However, the deficiency is the lack of

theoretical basis, so it can consider that the method is an

empirical method, which is based on the trend of the stress-

lateral strain curve trend.

Similar to the transverse strain method proposed by

Nicksiar and Martin, 2012, the method of determining

the closure stress based on the axial strain response was

proposed by Peng et al. (2015). The idea is as follows:

Firstly, the damage stress point A is determined

according to the stress-volume strain curve, and its

projection point on the axial strain curve is determined

as B, and OB is connected as the reference line. Then, under

the same axial stress condition, the strain values

corresponding to the axial strain curve and the reference

curve are solved. The difference between the two is used as

the axial strain difference. Finally, polynomial fitting is

performed on the data points, and the peak point C of

the fitted curve is the closure stress, or the maximum value

of the axial strain difference is directly calculated. The

solution principle is shown in Figure 5. The advantages

and disadvantages of this method are the same as the

transverse strain response method. Similarly, the method

is an empirical method of taking based on of rock stress-

axial strain curve trend.

Refined value method

As mentioned above, the results of the axial stress-

transverse strain and the axial stress-axial strain obtained

from the rock compression test are all discrete point data.

According to many rocks’mechanical compression tests, the

FIGURE 3
Schematic diagram of crack volume strain method (Cieślik,
2014)
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rock axial stress-strain curve presents an approximately

linear characteristic in the elastic stage. The slope of the

stress-strain curve is approximately unchanged at this stage.

Based on this, the elastic stage can be determined by

changing the first derivative of the stress-axial strain

curve (i.e., the slope, which can be interpreted as stiffness

in physical terms).

According to the knowledge of computational

mathematics: The first-order derivative of the discrete

points can be approximated by the difference method (Xue

FIGURE 4
Schematic diagram of transverse strain response method (Nicksiar and Martin, 2012)

FIGURE 5
Schematic diagram of axial strain response method (Peng et al., 2015)
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and Chen, 2004; Behforooz, 2006). The commonly used

difference methods include forward difference equation,

center difference equation, five-point difference equation, etc.

The forward difference equation (Xue and Chen, 2004) is

defined as:

k1 � σ i+1 − σ i
εi+1 − εi

(5)

Where, σi and εi are the axial stress and strain of the discrete point

at position i. σi+1, and εi+1 are the axial stress and strain of the

discrete point at position i+1.

The center difference equation (Xue and Chen, 2004) is

defined as:

k2 � σ i+1 − σ i−1
εi+1 − εi−1

(6)

Where, σi-1 and εi−1 are the axial stress and strain of the discrete

point at position i-1.

The five-point difference equation (Xue and Chen, 2004) is

defined as:

k3 � −σ i+2 + 8σ i+1 − 8σ i−1 + σ i−2
12((εi+2 − εi−2)/4) (7)

Where, σi+2 and εi+2 are the axial stress and strain of the discrete

point at position i+2. σi-2 and εi−2 is the axial stress and strain of

the discrete point at position i-2.

Theoretically, the accuracy of the derivative calculated by

Eq. 7 is relatively higher than that of Eq. 6–5. However, due to

the higher degree of nonlinearity of the stress-strain curve, the

derivative obtained by several methods may have a larger

deviation. To intuitively show the response of several

FIGURE 6
Different difference methods to calculate the derivative of the stress-strain curve.
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methods to the slope, take the same set of discrete curve data

and calculate the slope characteristics determined by various

methods, as shown in Figure 6. The coordinates of the x-axis

and y-axis in Figure 6 are all dimensionless.

It can be seen from Figure 6 that the slopes calculated by

the three equations are quite different. Using volatility to

measure the slope obtained by the appeal method, the

volatility of Eq. 7 is smaller than that of Eq. 6–5. But the

derivatives calculated by the three equations all reflect the

characteristics of the true slope.

The determination of rock closure stress and crack

initiation stress is based on the linear and nonlinear

changes of rock stress–axial strain, but the stress–strain

data obtained by uniaxial compression test or triaxial

compression test are discrete. The over-subjective

determination of closure stress and crack initiation stress

obtained directly from rock stress–axial strain curve may

lead to the deviation of these data from the actual

value. Therefore, using the difference formula to process

the original data and combining it with statistical

knowledge (Aslam et al., 2021) to determine the

rock closure stress and crack initiation stress can

reduce the influence of human subjective factors so

that the results are more realistic. The specific ideas are as

follows:

1) The closure stress and crack initiation stress of rock

determined by n (n > 2) existing methods (such as axial

FIGURE 7
Flow chart of empirical value method.
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strain method, crack volume strain method, strain response

method, etc.);

2) The closure stress and crack initiation stress are used as the

upper and lower limits to determine the optimal closure and

crack initiation stress, respectively and then the original data

are processed by the difference formula.

3) Finally, statistical knowledge is used to optimize the value. In

this paper, the variance function is used as the objective

function. The point that minimizes the value of the

objective function is searched in the search range to

determine the closure stress and crack initiation stress.

The calculation of closure and initiation stress intensity of

fractured rock is transformed into an optimization problem by

the new method proposed in this paper. Determining the

values of the two through the optimal idea is a fine value

method (or called the optimal value method), which has good

universality.

Empirical value method

Through the similar ideas of Nicksiar and Martin, 2012

and Peng et al. (2015), an empirical method to determine the

closure stress and crack initiation stress through the

volumetric strain curve and the stress-axial strain curve was

proposed in this paper. The idea and principles of this method

are as follows (Figures 7, 8):

It should be noted that the proposed empirical method is

obtained from the intuitive observation of the trend of the rock

stress-axial strain standard curve (Figure 1). Since it is an

empirical value method, it may have a greater impact in some

cases-error cases: such as rocks with insignificant deformation

characteristics at various stages. Compared with the refine value

method, the empirical value method has the advantage of being

simple to implement. Compared with the axial strain method, the

empirical value method has more objective results. However, due

to the complex deformation laws of rock and many factors

affecting its mechanical properties, the characteristics of its

stress-strain curve are not as evident as the standard strain

curve, which limits the application of this empirical value

method.

Preliminary verification of the
method

Calculation results

In this paper, the the uniaxial compressive stress-strain data

of five rock samples are used as examples to verify the proposed

methods (Eberhardt et al., 1998; Zhao et al., 2013; Zhao et al.,

2015).

Taking sample BS06 as an example, the closing stress and

crack initiation stress calculated by the crack volume strain

method are 30 MPa and 70 MPa, respectively; the closing

stress and crack initiation stress determined by the axial strain

method are 40 MPa and 90 MPa, respectively. The search

interval for closing stress is determined to be [30, 40] MPa, and

the search interval for crack initiation stress is [70, 90] MPa.

Through the fine value method, the optimization is carried

out, and the final two characteristic stress values are 34.67 MPa

FIGURE 8
Schematic diagram of empirical value method.
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and 86.07 MPa, respectively. Similarly, the closing stress and

crack initiation stress via the empirical value method are about

35.90 MPa and 85.54 MPa. It can be seen that the empirical

value method can also obtain relatively accurate value results,

which can be used as a supplement to the refine value method.

The calculation results of all cases are summarized in Table 1,

and the reliability of the method proposed in this paper is verified

by the variance (<10 MPa) indicating the dispersion.

Discussion

The determination of rock closure stress and initiation

stress intensity is attributed to determining the linear change

of rock stress-axial strain, which is based on many rock

mechanical deformation tests. However, these data may

deviate from the true value because it is too subjective to

obtain the closure stress and crack initiation stress directly

from the rock stress-axial strain curve. Therefore, how to deal

with these discrete data is the key to determining the

characteristic stress intensity of the rock. Nowadays, some

scholars (Brace et al., 1966; Bieniawski, 1967; Brown, 1981;

Eberhardt et al., 1998; Cai et al., 2004; Everitt and Lajtai, 2004;

Cieślik, 2014; Peng et al., 2015; Yang, 2016) have determined

the closure stress and crack initiation stress by the slope of the

stress vs. strain curve (calculated by the forward difference

equation). However, the existing methods still depends on

subjective observation in determining the stable stage of the

slope curve. The optimization value method proposed in this

paper can avoid the subjectivity of artificially

determining the stationary phase of the strain slope curve

and can effectively improve the accuracy of the value. The

following improvements can be made to the optimization

method:

1) In addition to variance function, other functions such as

information entropy can be tried to select objective function

(Shi et al., 2012; Aslam et al., 2021).

2) When the original curve is used to optimize the value, the

objective function can be optimized to improve the accuracy of

the value. At this time, the objective function can be taken as the

correlation coefficient and mean square error, etc. When the

first derivative of the original curve is used optimization, the

objective function can use variance; the second-order derivative

of the original curve is used for optimization. The objective

function can be the L1 norm when the stage of overall

approximation is identified as zero.

In this paper, the first-order derivative of the original curve is

selected for optimization. Compared with the original curve, this

method refines the variation characteristics of the original curve

and simplifies the calculation amount compared with the second-

order derivative. According to the given optimization method

framework (Figure 9), more methods for determining rock

closure and crack initiation stress can be obtained, which will

not be repeated here.

The empirical value method proposed in this paper is based

on the law summarized by many rock compression deformation

tests. However, due to the different compositions and structures

of different rocks, not all rocks can be divided into four

deformation stages before the peak. Therefore, the curve

characteristics should be observed before determining the

characteristic stress intensity of rock. For rocks with no

obvious characteristics in the deformation stage, the fine value

method is still applicable; For the rock with obvious deformation

characteristics, the empirical value method and the fine value

method have obtained reasonable results.

In this paper, the study on the determination methods of

closure stress and crack initiation stress of fractured rock focuses

on the mathematical value method or geometric meaning.

However, the detailed physical meaning of the value method

is not introduced in-depth, which is a deficiency of this paper. On

FIGURE 9
The frame diagram of the optimization method.
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the one hand, the author believes that rock mechanics have a

great experience, and it is difficult to quickly obtain many

physical rates in physical. However, most empirical rates are

summarized, which can be widely accepted. The research method

of this paper is to solve the closure stress and crack initiation

stress problem of fractured rock employing a little mathematical

value method based on empirical rate; On the other hand, not all

rocks can be divided into four deformation stages before the

peak. The author believes that all the deformation stages before

the peak still need to be considered (Zhong et al., 2017). The

initiation stress of fractured rock mass is closely related to the

fracture toughness of rock considered by some scholars (Zhao

et al., 2020a; Zhao et al., 2020b; Zhao et al., 2016; Lin et al., 2019).

For example, Zhao et al. (2020a) found that rock fracture

toughness is related to rock stress by rock crack rheology,

fracture toughness, and subcritical crack propagation test.

Hang Lin et al. (2019) studied the tip stress field and crack

initiation angle of open defects under uniaxial compression. The

above research shows that rock fracture mechanics can

determine the crack initiation stress of fractured rock.

Therefore, when the four deformation stages before the peak

cannot be divided in the following study, the method of rock

fracture mechanics is considered to determine the initiation

stress.

Conclusion

Combined with practical engineering needs, the rock closure

stress and crack initiation stress are studied from two aspects of

fine value and fast value. The conclusions are as follows:

1) The variance function in the statistical index function is used

as the objective function. The upper and lower limits of the

optimized values are determined by the results obtained by

the more accurate closure stress and crack initiation stress

values method, and the closure stress and crack initiation

stress are obtained by the optimization method. This method

can avoid the subjectivity of human interpretation and can be

used as a fine value for closure stress and crack initiation

stress.

2) Combined with the characteristics of the stress-strain curve of

standard rock, the empirical value method of rock closure stress

and crack initiation stress is given. The results of this method are

reasonable and can meet the engineering requirements.

3) Determination of rock closure and cracking stress values by

citing (Eberhardt et al., 1998; Zhao et al., 2013; Zhao et al.,

2015) the stress-strain data of fractured rocks in the paper

preliminarily proves the effectiveness of the method proposed

in this paper. The main work of this paper is to apply the

optimization method to the determination of the stress

eigenvalue and propose a framework for the optimization

method, which may have some significance for improving

and developing the related research on the stress eigenvalue

problem of fractured rock.
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TABLE 1 The results.

Specimen The value Crack volume
strain
method (MPa)

Axial
strain
method
(MPa)

Refine
value
method
(MPa)

Empirical
value
method (MPa)

Mean (MPa) Standard
deviation
(MPa)
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