
Assessing the Joint Impact of Climatic
Variables on Meteorological Drought
Using Machine Learning
Yuexin Zheng, Xuan Zhang, Jingshan Yu*, Yang Xu, Qianyang Wang, Chong Li and
Xiaolei Yao

College of Water Sciences, Beijing Normal University, Beijing, China

With the intensification of climate change, the coupling effect between climate variables
plays an important role in meteorological drought identification. However, little is known
about the contribution of climate variables to drought development. This study constructed
four scenarios using the random forest model during 1981–2016 in the Luanhe River Basin
(LRB) and quantitatively revealed the contribution of climate variables (precipitation;
temperature; wind speed; solar radiation; relative humidity; and evaporative demand)
to drought indices and drought characteristics, that is, the Standard Precipitation
Evapotranspiration Index (SPEI), Standard Precipitation Index (SPI), and Evaporative
Demand Drought Index (EDDI). The result showed that the R2 of the model is above
0.88, and the performance of the model is good. The coupling between climate variables
can not only amplify drought characteristics but also lead to the SPEI, SPI, and EDDI
showing different drought states when identifying drought. With the decrease in timescale,
the drought intensity of the three drought indices became stronger and the drought
duration shortened, but the drought frequency increased. For short-term drought (1 mon),
four scenarios displayed that the SPEI and SPI can identify more drought events. On the
contrary, compared with the SPEI and SPI, the EDDI can identify long and serious drought
events. This is mainly due to the coupling of evaporative demand, solar radiation, and wind
speed. Evaporation demand also contributed to the SPEI, but the contribution (6–13%)
was much less than the EDDI (45–85%). For SPEI-1, SPEI-3, and SPEI-6, the effect of
temperature cannot be ignored. These results are helpful to understand and describe
drought events for drought risk management under the condition of global warming.
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INTRODUCTION

Drought is one of the most serious natural disasters affecting the development of human society (Deb
et al., 2019). Droughts are generally classified into meteorological droughts, agricultural droughts,
hydrological droughts, and socioeconomic droughts (Wilhite and Glantz, 1985; Esfahanian et al.,
2017). Meteorological drought, in general, precedes other droughts and is defined according to the
degree of the lack of precipitation in an area over some time. One of the most prominent and
widespread concerns is regional drought caused by climate warming and precipitation change, which
has caused serious disasters worldwide (Zhai et al., 2010). For example, in 2014, California
experienced a serious drought event that was mainly caused by an extreme lack of precipitation
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and high temperature and was a record-breaking event in the last
century (Griffin and Anchukaitis, 2014). In 2011, high
temperatures and low soil moisture in Texas aggravated
drought events, and rainfall was extremely scarce (Karl et al.,
2012). It is estimated that drought in California and Texas caused
economic losses of $2.7 billion and $7.7 billion, respectively
(Shukla et al., 2015). Therefore, a better understanding of
drought characteristics and their physical variable is significant
for monitoring and forecasting drought.

The drought indices are the basis of the quantitative analysis of
drought (Richard and Heim, 2002). In different regions, the
different meteorological, hydrological, and underlying surface
conditions lead to the complexity of drought formation (Ojha
et al., 2013; Wang et al., 2013; Kousari et al., 2014). This is due to
different drought indices having different physical meanings. For
example, the Standard Precipitation Index (SPI) is characterized
by multiple timescales, but it only considers the impact of
precipitation deficit on drought (Yerdelen et al., 2021). The
Palmer drought severity index (PDSI) is a representative
drought index based on the principle of water balance (Zhang
et al., 2019). However, the indices mainly reflect the
comprehensive changes in precipitation and temperature and
do not fully reflect the evaporation response under the
background of climate change, which may lead to deviation of
drought assessment results. Vicente-Serrano et al. (2010) further
proposed the Standard Precipitation Evapotranspiration Index
(SPEI) and introduced the potential evapotranspiration term,
based on the advantages and disadvantages of the PDSI and SPI
(Yang et al., 2020). This index not only has the characteristics of
the SPI index with multiple timescales but also considers the
effect of temperature change on drought. In recent decades, it has
been a widespread tradition to monitor and understand drought
using factors driven by precipitation and temperature only (Gocic
and Trajkovic, 2013; Li et al., 2019). Among the available indices,
the SPEI and SPI are two of the most widely used ones (He et al.,
2011).

Many studies have found that most drought indices are driven
by precipitation alone or affected by both precipitation and
evaporation (Farahmand and AghaKouchak, 2015; Wen et al.,
2020). Additionally, many researchers considered that the
alterability of precipitation was even more obvious than that
of other variables (McEvoy et al., 2012; Vicente–Serrano et al.,
2014; Wang et al., 2015). However, under climate variation, this
supposition is challenged because of the increasing demand for
temperature and evaporation (Sheffield and Wood, 2008; Milly
and Dunne, 2016). Meanwhile, the research focus in the field of
drought monitoring is turning to the demand of water imbalance.
The most typical work is the evaporative demand drought index
(EDDI) proposed by Hobbins et al. (2012), which considers the
radiative forcing term and the advection forcing term in the
evaporation process (Blonquist et al., 2010). This index can
provide near real-time information about the occurrence or
persistence of abnormal evaporative demand in an area and
can ignore the influence of underlying surface types in
drought monitoring and assessment (Mo and Lettenmaier,
2015). Therefore, many people are committed to assessing the
occurrence of drought from the perspective of insufficient

precipitation and increased evaporation (Liu et al., 2017;
Rehana and Monish, 2021).

On the whole, most studies only emphasize the impact of
precipitation on drought change or consider the flash drought
caused by evaporation anomalies affected by temperature, wind
speed, and radiation (Wang et al., 2016; Chen et al., 2019; Wang
et al., 2020). The reduction of sunshine hours and wind speed is
the main reason for the evaporation reduction; especially,
evaporation plays an important role in soil water balance
(Abramopoulos et al., 1988). The increase in temperature and
the limited decrease in precipitation may aggravate the drought
occurrence (Sheffield et al., 2012; Sun and Ma, 2015; Song et al.,
2019). It is necessary to consider the coupling effect of multiple
climate variables on drought, such as precipitation; evaporative
demand; wind speed; temperature; solar radiation; and relative
humidity, which may reduce uncertainty to the process of
drought analysis and accurate prediction (Sun et al., 2017).
Nevertheless, so far, due to the different responses of different
drought indices to climate variables, there are still challenges in
quantifying the impact of climate variables on drought. Most
studies used multiple regression, canonical correlation, and
principal component analysis to analyze the driving factors of
climate change (Luedeling et al., 2013; Kaiwei Li et al., 2020).
These methods are mainly analyzed from a qualitative point of
view, but cannot quantitatively evaluate the importance of each
factor. In recent years, with the progress of artificial intelligence,
machine learning technology has been widely used in the
assessment of climate change (Leroux et al., 2017; Masroor
et al., 2021). Random forest (RF) algorithm is an integrated
learning algorithm based on the decision tree proposed. The
learning effect of this integration method is often greater than the
sum of its parts (JiangyuWang et al., 2019). The RF does not need
to consider the multicollinearity problem faced by general
regression analysis (Wang et al., 2018). At the same time, it
can calculate the nonlinear interaction between variables and
reflect the interaction between variables and is not sensitive to
outliers. In the existing algorithms, the RF can evaluate the
importance of each feature in classification.

With these considerations, this study focuses on quantifying
the response of drought change to climate variables. Specifically,
the study aims to 1) analyze the temporal distinctions of the SPI,
SPEI, and EDDI with 1-, 3-, 6-, and 12-month timescales of the
Luanhe River Basin (LRB); 2) reveal the characteristics of the
drought intensity, drought duration, and drought frequency of
the SPI, SPEI, and EDDI at different timescales; and 3) quantify
the contribution of climate variables to drought indices and
drought characteristics at different timescales by setting
different scenarios based on the RF model. The findings from
this study can provide a reference for the development of drought
early warning systems in arid and semiarid areas.

STUDY AREA

This study assessed changes in drought indices in the LRB,
northern part of the North China Plain (Figure 1). The LRB
comprises a large portion of the Haihe River Basin. The
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latitude ranges from 39.04°N to 42.73°N, and the longitude
ranges from 115.56°E to 119.84°E. The Luanhe River, with a
length of 888 km and a drainage area of 44,750 km2, derives
from Bayanguertu Mountain and flows into the Bohai Bay
(Yang et al., 2019; Wu et al., 2020). The basin topography rises
obviously from southeast to northwest. The LRB is in a
semiarid area with a temperate continental monsoon
climate. The annual temperature decreases from 11 to 1°C
from southeast to northwest (Xu et al., 2019). The region has
an average annual precipitation of 560 mm, approximately
80% of which occurs from July to August. The uneven spatial
and temporal distribution leads to the occurrence of drought.
The elevation of the basin reaches 2,159 m, with the terrain
decreasing from northwest to southeast.

The LRB is one of the most important ecological barriers of
Beijing, Tianjin, and Hebei and is also a water source and
water retention area in Tianjin and Tangshan. Saihanba
Forest Plain, a famous afforestation project worldwide, is
located in this region (Wu et al., 2020). In recent decades,
runoff and meteorological conditions have been altered,
resulting in water resource shortages and severe drought
events. Due to the increasing impact of global climate
change, drought in the LRB occurs frequently, especially
after 2000. It not only caused large-scale disasters in the
basin but also caused serious losses. Furthermore, from
1981 to 2016, there was no significant change in

precipitation, while evaporative demand showed a
significant decreasing trend (p < 0.01) and the temperature
increased significantly (p < 0.01). The effect of climate change
caused by evaporative demand and temperature on drought
should not be ignored.

MATERIALS AND METHODS

Data Collection
This study focuses on a comparative analysis of drought
indices in the LRB. The daily observation meteorological
records of nine stations for 1981–2016 were collected from
the National Meteorological Information Center (http://data.
cma.cn/) with strict quality control, including precipitation;
maximum, average, and minimum temperatures; wind speed;
solar radiation; relative humidity; and pan evaporation. The
time coverage of weather data can be as high as 99.6%. The
missing data were interpolated using the arithmetic mean of
adjacent days. The data quality and credibility were cross
validated using nonparametric tests, involving the
Mann–Whitney homogeneity tests and Kendall
autocorrelation test (Heim, 2002; Yao et al., 2018). The
results showed that the stability and randomness of
weather data are fixed in the critical range of the data, and
the statistical significance level was 5%.

FIGURE 1 | Topography of the study domain and spatial distribution of meteorological stations.
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Computation of Drought Indices
This study considered three drought indices including the SPI,
SPEI, and EDDI. The SPI utilized the Gamma distribution to fit
the cumulative monthly precipitation time series to quantify the
meteorological drought (Vicente–Serrano et al., 2010). For the
SPI value, when the timescale is k months, the water surplus/
deficit accumulation of a month is the sum of the water surplus/
deficit of the previous k−1 month and the current month.
Compared with the SPI, the SPEI, the calculation of which
was similar to that of the SPI, considered the influence of
evaporative demand. Among them, evaporative demand is the
ability to control the evaporation process of various surfaces
underlying the atmosphere. This study used the
Penman–Monteith formula to approximately estimate
evaporative demand, which was provided by the Food and
Agricultural Organization (FAO) in 1965 (Frank et al., 2017).
The calculation formula is as follows:

E0 � 0.408Δ(Rn + Ln − G)
Δ + γ(1 + 0.34U)

86400
106

+ γ 900
Tair

Δ + γ(1 + 0.34U)
U(esat − ea)

103
(1)

where E0 is the evaporative demand in mm day−1; Δ is the slope of
saturated vapor pressure for 2 m in Pa K−1; γ represents the
psychrometric constant in Pa K−1; Rn and Ln represent the solar
radiation and short-wave radiation, respectively, in Wm−2; G is
the downward ground heat flux inWm−2;U is the wind speed for
2 m in m s−1; Tair is the average of Tmax and Tmin in °C; and esat
and ea represent the saturated and actual vapor pressures,
respectively, in Pa.

The relationship between evaporative demand and pan
evaporation in the LRB from 1981 to 2016 was analyzed by
using the existing meteorological data, and the correlation
coefficient was 0.906 (see Supplementary Materials;
Supplementary Figure. S1), which illustrated that the
calculation results of evaporative demand can represent the
average E0 of the study area. The SPEI used the cumulative
change between the monthly precipitation and evaporative
demand to replace the variation in precipitation. The
cumulative change meant the surplus and deficit of climatic
water. The inverse standard normal distribution is used to
convert the cumulative probability density functions to the
value of the SPEI and SPI.

The EDDI uses a nonparametric method that is different
from the SPEI and SPI (Hobbins et al., 2016). The EDDI is
obtained by sorting the accumulated value of evaporative
demand every day within a set timescale to construct the
distribution probability of E0 and normalize it. This
probability-based method permits more comparisons of
consistency between the EDDI and the SPEI, SPI, and
other standard indices (Farahmand and AghaKouchak,
2015; Hobbins et al., 2016).

The EDDI is multi-scale in space and time. This index can be
estimated at a point (or pixel) by applying the spatial average
evaporative demand of a region. The aggregation periods might
differ from 1 day to 1 month or more. The cumulative

distribution probability of evaporative demand on a research
timescale is calculated as follows:

P (E0i) � i − 0.33
n + 0.33

(2)

where P (E0i) is the empirical probability of E0i; i is 1 for
maximum E0, which represents the rank of accumulated E0 in
the study period; and n is the number of observations in the series
being ranked. Based on the reverse normal distribution described
by Vicente–Serrano et al. (2010), the EDDI is calculated as
follows:

EDDI � W − C0 + C1W + C2W

1 + d1W + d2W2 + d3W3
(3)

The constants in the formula are defined as follows: C0 =
2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 =
0.189269, and d3 = 0.001308. When P (E0i) ≤ 0.5,
W � �����������−2ln[P(E0i)]

√
, and when P (E0i) > 0.5, W ���������������−2ln[1 − P(E0i)]

√
, and the sign of the EDDI needs to be

reversed.
We divided the drought indices into five grades, which were

based on the classification system to define drought or wet
intensities (McEvoy et al., 2016; Yao et al., 2018) (Table 1).
The positive or negative SPI and SPEI values represented wet or
dry conditions, respectively. The value of −0.5 was used as the
division standard, while for the EDDI, it was reversed. The
negative EDDI value (less than 0.5) indicated that it was
wetter than normal, and a positive value (more than 0.5)
indicated that it was more arid than normal. Drought intensity
increased with increasing EDDI value.

Definition of Drought Characteristics
We first compared the variation characteristics of the SPI, SPEI,
and EDDI on 1-, 3-, 6-, 12-month scales from 1981 to 2016.
Second, this study used drought duration, drought intensity, and
drought frequency to identify and assess the underlying drought
characteristics of the SPEI, SPI, and EDDI at 1-, 3-, 6-, and 12-
month scales. Generally, the run theory is used to identify and
describe drought events (Yevjevich, 1967). The run is defined as a
part of the time series Xt, in which all values are lower or higher
than the selected threshold X0 (Supplementary Figure S2). The
run theory is used to express the drought duration and drought
intensity (Montaseri and Amirataee, 2017). When the drought
index value is less than −0.5, it is considered that the month is the
beginning of the drought event. However, the drought event is
considered over until the value of the drought index is greater

TABLE 1 | Drought level based on the EDDI, SPEI, and SPI.

Drought level EDDI SPEI SPI

Normal (0–0.5] (-0.5–0] (-0.5–0]
Light drought (0.5–1] (-1, -0.5] (-1, -0.5]
Moderate drought (1.0–1.5] (-1.5, -1] (-1.5, -1]
Severe drought (1.5–2] (-2, -1.5] (-2, -1.5]
Extreme drought ≥2 ≤-2 ≤-2
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than −0.5. Drought duration is defined as the sum of consecutive
months of all drought events. Drought intensity refers to the
average of the indices’ values from the beginning to the end of the
drought. The drought intensity is used to assess the severity of the
drought. The drought frequency is the mean number of drought
events per year.

Quantitative Evaluation Based on the RF
Model
To reveal the response of drought change to climate variables, the
RF model is applied to quantify the contribution of each climate
variable (precipitation; evaporative demand; wind speed;
temperature; solar radiation; and relative humidity) to the
SPEI, SPI, and EDDI. The RF is an integrated model which
can achieve classification or regression goals. On the whole, in the
training set, the RF is not responsive to the noise, which makes it
more beneficial to obtaining a robust model and avoiding
overfitting conditions (Prasad et al., 2019). The RF is widely
used in hydrometeorology to extract relative features (Amiri et al.,
2019). For more information about the RF, see the work of Chen
et al. (2020) and Kursa and Rudnicki (2010).

Construction of RF Model Under Different Scenarios
In this study, we set up 4 scenarios and 12 schemes to
quantitatively evaluate the influence degree between drought
change and climate variables based on the RF model from
1981 to 2016. Considering that the SPI is not affected by
evaporative demand, only the contribution of precipitation;
wind speed; temperature; solar radiation; and relative humidity
to the SPI is explored. The SPEI considered these six variables. At

the same time, the EDDI ignored the impact of precipitation. The
number of samples obtained was randomly assigned according to
the ratio of 7:3 into the training set and the testing set. The
maximum depth of decision trees is 10, and the number of
decision trees is 2000. The specific scenario information is
shown in Table 2.

Verification of the RF Model
The R2 and mean absolute error (MSE) coefficients were used to
evaluate the results of the model (Guo et al., 2021). Among them,
MAE evaluated the deviation between the real value and the
predicted value, that is, the actual size of the prediction error. The

TABLE 2 | Information of the four scenarios for the contribution of drought change.

Scenarios Schemes Variable Impact indicators Drought
indices

Sample
points

Scenario 1 a Precipitation (P); evaporative demand (E0); wind speed (Ws); temperature (T);
relative humidity (Rh); solar radiation (Sr)

E0; Ws; T; Rh; Sr for 1-month
scale

EDDI-1 432

b P; Ws; T; Rh; Sr for 1-month
scale

SPI-1 432

c P; E0; Ws; T; Rh; Sr for 1-
month scale

SPEI-1 432

Scenario 2 d E0; Ws; T; Rh; Sr for 3-month
scale

EDDI-3 430

e P; Ws; T; Rh; Sr for 3-month
scale

SPI-3 430

f P; E0; Ws; T; Rh; Sr for 3-
month scale

SPEI-3 430

Scenario 3 g E0; Ws; T; Rh; Sr for 6-month
scale

EDDI-6 427

h P; Ws; T; Rh; Sr for 6-month
scale

SPI-6 427

i P; E0; Ws; T; Rh; Sr for 6-
month scale

SPEI-6 427

Scenario 4 j E0; Ws; T; Rh; Sr for 12-
month scale

EDDI-12 421

k P;Ws; T; Rh; Sr for 12-month
scale

SPI-12 421

l P; E0; Ws; T; Rh; Sr for 12-
month scale

SPEI-12 421

TABLE 3 | The performance evaluation of the RF model.

Scenarios Schemes Training Validation

R2 MSE R2 MSE

Scenario 1 a 0.98 0.02 0.90 0.04
b 0.97 0.03 0.89 0.03
c 0.97 0.02 0.88 0.03

Scenario 2 d 0.95 0.01 0.94 0.08
e 0.97 0.05 0.91 0.09
f 0.91 0.01 0.90 0.04

Scenario 3 g 0.96 0.03 0.95 0.10
h 0.96 0.06 0.91 0.08
i 0.96 0.01 0.88 0.03

Scenario 4 j 0.97 0.05 0.88 0.05
k 0.98 0.01 0.96 0.04
l 0.98 0.04 0.97 0.07
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FIGURE 2 | Temporal evolution of the SPI, SPEI, and EDDI for 1-month (A), 3-month (B), 6-month (C), and 12-month (D) timescales. It is noted that the shaded
area represents the range of the extreme drought conditions (SPEI, SPI, and EDDI ≤ -2); the black dotted lines represent the dividing line between wet and drought states
(the value is −0.5); the grey shaded areas highlight when the three indices have opposite states; and the red wireframe indicates when the three indices identify different
drought levels.

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 8351426

Zheng et al. Coupling Contribution of Climate Variables

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


smaller the MAE value, the better the model quality and the more
accurate the prediction. Table 3 shows the performances of the
RF model. The results showed that the R2 of the training set is
between 0.91–0.98. In addition, the validation set is above 0.88.
The value of the MAE is below 0.1, indicating that the model can
calculate the contribution of climate variables better.

RESULTS

Temporal Variation in Drought Indices
Figure 2 presents the evolution characteristics of the SPI, SPEI,
and EDDI at the 1-, 3-, 6-, and 12-month timescales over the LRB
from 1981–2016. The three drought indices showed similarities
and differences with the different timescales. For the convenience
of comparison, we took the value of the EDDI as the opposite
number, and less than −0.5 in the figure represented drought. The
shaded area identified extreme drought states of the SPEI, SPI,
and EDDI (Figure 2A). We found that extreme drought events
occurred in 1981, 1983, 1989, 1991, 1994, 1997, 2001, and 2016, as
in Figure 2A, which was similar to the historical drought years in
the LRB (Yixuan Wang et al., 2019). Compared with the 3-, 6-,
and 12-month timescales (Figures 2B–D), the EDDI, SPEI, and
SPI curves fluctuated more abruptly at the 1-month timescale.
Moreover, the SPI curve was similar with the SPEI (Figures
2B,C). However, the EDDI was different from the SPEI and SPI.

At the 12-month timescale, the grey shaded areas indicate
when the SPEI, SPI, and EDDI have opposite states (Figure 2D).
In 1983, 1988, 1990–1991, 1994–1996, 2002, and 2011, the EDDI

showed drought states (values less than −0.5), while the SPEI and
SPI displayed wet states (values more than −0.5). However, the
SPEI and SPI showed drought states, while the EDDI showed wet
states in 1982, 1992, 1999–2000 and 2002, 2006–2007,
2008–2009, and 2014. Under drought conditions, the red
wireframe highlights when the three indices had different
abilities to identify drought. In 1989 and 1997, the SPI and
SPEI performed better than the EDDI. Especially in 1989, the
SPI and SPEI showed moderate drought states, while the EDDI
showed a light drought state. In 1993 and 2001, the EDDI
performed better than the SPEI and SPI. Especially in 1993,
the EDDI showed extreme drought states, while the SPI and SPEI
showed light drought and moderate drought states, respectively.
This meant that the three drought indices were different in
identifying drought severity. However, the SPI, SPEI, and
EDDI showed the same wet/drought states for the other years,
which indicated that the SPI, SPEI, and EDDI were consistent.

Drought Characteristics at Different Time
Scales
Due to the complexity of drought, the drought intensity,
frequency, and duration under different timescales were
studied to have a comprehensive understanding of drought.
Figures 3A–C displayed that the shorter the timescale, the
greater the drought intensity. In particular, the average
drought intensity of the EDDI was greater than that of the
SPEI and SPI at 1-, 3-, 6-, and 12-month scales. This
illustrated that the EDDI can identify more severe drought

FIGURE 3 | Drought intensity (A–C), duration (D–F), and frequency (G–I) of the SPEI, EDDI, and SPI at 1-, 3-, 6-, and 12-month timescales in the LRB between
1981 and 2016 (it is noted that the black horizontal line represents the average value of drought characteristics at different scales; black dots mean outliers; the range of
boxes represents the 75% quantile and the 25% quantile; and the whiskers mean the 75% quantile and 25% quantile of 1.5 times, respectively.)
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than the SPEI and SPI, especially in short-term drought. The
drought intensity of the SPI did not change significantly in 1-, 3-,
6-mon scales. From SPEI-3 to SPEI-12, the average drought
intensity decreased from −0.81 to −0.64.

Figure 3D–F showed that, with the increase in timescale, the
drought duration became longer. Especially for EDDI-12, the
average duration of drought (more than 12 months) was higher
than that for SPEI-12 (7.9 months) and SPI-12 (6.5 months).
Furthermore, the drought duration for EDDI-1 (3.7 months) was
longer than that for SPEI-1 (2.1 months) and SPI-1 (1.7 months).
This indicated that the EDDI was better than the SPEI and SPI in
identifying short-term drought (1 mon) and long-term drought
(12 mon). For seasonal drought (3 mon) and semiannual drought
(6 mon), the SPEI was better than the SPI.

The drought frequency decreased with the increase in
timescale (Figures 3G–I), especially SPEI-3 and SPI-3. The
drought frequency of SPI-1 (1.8 times/year) and SPEI-1
(1.8 times/year) was higher than that of EDDI-1 (1.0 times/
year). For 3 months, there was no significant difference among
the three drought indices. For 6 months, the drought frequency of
SPI-6 was less than that of SPEI-6 and EDDI-6. On the contrary,
for long-term drought, SPI-12 can identify more drought events
than SPEI-12 and EDDI-12.

Correlation Between Drought Indices and
Climate Variables
Although drought variations of the EDDI, SPEI, and SPI were
mainly influenced by precipitation and evaporative demand,
other climate variables cannot be ignored. Figure 4 showed
the Spearman correlation among the three drought indices

and climate variables at 1-, 3-, 6-, 12- month scales. We found
that the SPEI and SPI were positively correlated not only with
precipitation (p < 0.01) but also the relative humidity (p < 0.01),
although the correlation coefficient was low. Surprisingly, the
correlation of SPI-12 and SPEI-12 with precipitation reached 0.98
(p < 0.01) and 0.77 (p < 0.01), respectively. In the meantime, the
SPEI also displayed a significant positive correlation with
evaporative demand (Spearman correlation coefficient is −0.47,
p < 0.01) and a negative correlation with temperature and solar
radiation (Spearman correlation coefficient is −0.23 and 0.29,
p < 0.01).

Generally, under the different timescales, the correlation
between the EDDI and evaporative demand is the highest,
fluctuating from 0.92 to 0.98 (p < 0.01). Moreover, wind
speed, solar radiation, and temperature were also highly
related to EDDI at 1-, 3-, 6-month scales, indicating that these
variables were also main factors affecting the change of the EDDI.
Yet, at the 12-month scale, the correlation between solar radiation
and temperature with drought indices was weakened. The
correlation between wind speed and relative humidity with the
EDDI changed from positive correlation to negative correlation,
and the value of the correlation coefficient also decreased.
Compared with other variables, relative humidity has little
effect on the EDDI under the different timescales.

Contributions of theClimate Variables to the
Drought Index Variation
This study set up four scenarios and twelve schemes under the
different timescales, to quantitatively characterize the impact of
climate variables on drought index changes based on the RF
model. Figure 5 shows that the contribution of evaporative
demand, wind speed, and solar radiation to the EDDI reaches
more than 87%. It was obvious that evaporative demand
contributed the most to the EDDI, up to 45–85%, and the
contribution was higher than that of wind speed and solar
radiation. Nevertheless, it is not worth mentioning the
contribution of relative humidity and temperature to the

FIGURE 4 | Correlation between the 1, 3, 6, and 12 months of the SPI,
SPEI, EDDI, and climate variables such as precipitation (P); temperature (T);
wind speed (Ws); solar radiation (Sr); relative humidity (Rh); and evaporative
demand (E0) (a single asterisk represents the significance level less than
0.05 (p < 0.05); double asterisks mean p < 0.01, respectively).

FIGURE 5 | Contribution of climate variables to drought indices are
based on the RF model at 1-, 3-, 6-, 12-month timescales.
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EDDI. For EDDI-3 and EDDI-6 in scenarios 3 and 4, the coupling
contribution of wind speed and solar radiation was close to that of
evaporative demand, and the solar radiation was greater than
wind speed.

For SPI-12 in scenario 4, the precipitation was the dominant
factor, contributing 92%. However, for short-term drought (SPI-
1) in scenario 1, the contribution of precipitation decreased
significantly. By contrast, the wind speed, solar radiation,
temperature, and relative humidity increased in varying
degrees at a 1-mon scale. The temperature contribution to the
SPI increased from 1% (SPI-12) to 24% (SPI-1), which indicated
that the shorter the timescale, the more intense the impact of
climate variables other than precipitation on the SPI.

For the SPEI, the contribution of precipitation is much higher
than that of evaporative demand. Besides, the contribution of
temperature to the SPEI should not be neglected, especially for
SPEI-1, SPEI-3, and SPEI-6, with a contribution of 20, 18, and
22%. So far , the wind speed and solar radiation contribution to

the SPEI has been weak, which indicated to a certain extent that
the precipitation and temperature have a great impact on
the SPEI.

DISCUSSION

Climate Variables Lead to the Differences
Among the Drought Indices
We found that the EDDI, SPEI, and SPI showed the opposite
states when it came to drought recognition (Figure 2D).
Especially in 2002, a severe drought year, the drought indices
showed two opposite states. The occurrence of this phenomenon
can be explicated by the fact that climate variables cause the
differences among the EDDI, SPEI, and SPI. Most of the results
were consistent with ours (Nam et al., 2015; Noguera et al., 2021).
Tirivarombo et al. (2018) believed that the difference between the
SPEI and SPI was mainly due to the temperature which increased

FIGURE 6 | Temporal variations in the SPEI, SPI, EDDI (A), and driving factors in different situations (situation 1 (S1) and situation 2 (S2)) in 2002. Among them,
(B–D) and (E–G) represent Evaporation demand(E0) and Solar radiation (Sr); Temperature (T) and Precipitation (P); Relative humidity (Rh) andWind speed (Ws) in S1 and
S2 respectively.
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the evapotranspiration rate, which in turn increased the
evaporative demand, while the SPI only considered the single
input variable of precipitation. In addition, their study differed
from ours in that it only thought about the effects of precipitation,
temperature, and evaporative demand, while not introducing
variables such as wind speed, solar radiation, and relative
humidity. In 2002, situation 1 (S1) of Figure 2D showed that
the EDDI identified the dry state, while the SPEI and SPI
identified the wet state in April (Figure 6A). This result is
mainly because precipitation and temperature have a large
upward trend starting in March (Figures 6A,C), with an
increase of 73.6 and 48.4%, respectively. However, relative
humidity and wind speed also have different degrees of
increase. Although relative humidity is positive, the
sensitivity of the EDDI to the relative humidity in this
region is small, which leads to little contribution to the
EDDI in S1. Therefore, the SPEI and SPI identify the wet
state in April. In addition, when evaporative demand (69.6%),
solar radiation (70.5%), and wind speed (53.2%) began to
increase in February, the drought identified by the EDDI
increased from moderate drought to severe drought
(Figure 6A).

In contrast, situation 2 (S2) showed that the SPEI and SPI
identified the dry state, while the EDDI identified the wet state in
August (Figure 6A). The driving factors evaporative demand
(12.5%), solar radiation (8.3%), and wind speed (8.3%) provided
negative contributions to the EDDI (Figures 6E,G). However,
from June to August, compared with evaporative demand and
solar radiation, the contribution of relative humidity and
temperature to the EDDI was small despite fluctuations
(Figures 6F,G). This led the EDDI to identify the wet state in
August. The decrease in precipitation (24.3%) led to the
aggravation of drought identified by the SPEI and SPI in July.
After August, the rapid increase in evaporative demand (34.9%)
led to a decrease in the EDDI, which resulted in the EDDI
showing a drought state. Consequently, the influence of these
variables on the drought index should not be ignored.

The Response of the Drought
Characteristics to Climate Variables
Drought intensity, drought duration, and drought frequency are
affected by different timescales (Satish Kumar et al., 2021). We

found that compared with the SPEI and SPI, the EDDI can
identify drought events with higher drought intensity and longer

duration (Figure 2). However, the SPEI and SPI can identify drought
events more frequently than the EDDI, especially short-term drought
(1 mon). From 1981 to 2016, the alteration of precipitation was not
obvious at any scale, while evaporative demand did not. Generally,
when the change of evaporative demand is greater than that of
precipitation, drought is more sensitive to evaporative demand than
precipitation (Qin et al., 2015), which indicates that evaporative
demand plays a relativity important role in the drought of the
LRB. This further proved that the drought intensity and drought
duration of the EDDI were higher than those of the SPEI and SPI,
which was mainly due to the joint effect of evaporation, wind speed,
and solar radiation. Compared with EDDI-12, the drought intensity
of EDDI-1 increased by 28%, the average drought duration increased
by 8months, and the evaporation, wind speed, and radiation

FIGURE 7 | Differences in the values of different contributing variables ((A) Evaporation demand(E0); (B) Wind speed (Ws); (C) Solar radiation (Sr)) to the EDDI at
different timescales.

FIGURE 8 | Differences in the values of different contributing variables
((A) Precipitation (P); (B) Evaporation demand (E0); (C) Relative humidity (Rh);
(D) Temperature (T)) to the SPEI at different timescales.
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increased by 40, 33, and 27%, respectively (Figure 7). Evaporation
demand also contributed to the SPEI, but the contribution (6–13%)
was much less than the EDDI (45–85%) (Figure 5). In addition, we
found that there was no significant difference in drought intensity
between SPEI-1 and SPEI-3. However, for SPEI-6, the drought
intensity began to weaken (Figure 3), which was caused by the
18.3% increase in precipitation, 15.6% increase in evaporation, 2.5%
increase in temperature, and 3.6% increase in humidity from SPEI-3
to SPEI-6 (Figure 8). This also confirmed that, in addition to
precipitation and evaporation demand, temperature and relative
humidity have a certain impact on the SPEI in identifying drought.

Although the temperature increase can promote the generation of
wind speed and increase the evaporative demand, thus aggravating
the occurrence of drought (Zhao et al., 2019), the temperature
contribution is far less than that of evaporative demand (80%),
which further explains the phenomenon that the drought intensity
of the EDDI is stronger than that of the SPEI and SPI. This finding is
related to seasonality (Van Loon and Van Lanen, 2013; Bisht et al.,
2018). Especially in winter, the precipitation was low, and the change
was not obvious. Other studies also explained roughly similar results;
that is, snow melting in winter increased soil moisture, and
evaporation increased gradually under the condition of lack of
rainfall, which led to the continuous increase in the EDDI
(Narasimhan and Srinivasan, 2005; Sheffield et al., 2012).
Although evaporation demand has a certain contribution to the
EDDI and SPEI, it showed a significant decreasing trend in the study
area, which was the main reason for the alleviation of drought. Other
studies also illustrated roughly similar results (Yao et al., 2018;
Lingcheng Li et al., 2020). In this period, not only did evaporative
demand decrease significantly but also the solar radiation had a
similar trend, and the temperature increased significantly (p < 0.01).
The significant reduction of solar radiation is the main reason for the
reduction of evaporative demand, which is further proved by the
research results of Roderick and Farquhar (2002). It is mainly caused
by the wide-range reduction of solar radiation caused by the increase
in cloud cover and aerosol concentration, which also reduces
evaporative demand to varying degrees.

Moreover, the smallest timescale for both the SPI and SPEI
was 1 month, while for the EDDI, it was 1 week (McEvoy et al.,
2012; Yao et al., 2018). For example, Figure 9 illustrates the
variation characteristics of the EDDI with 1- to 8-week timescales.
We found that the shorter the timescale was, the more the peaks
and valleys the curve had. In particular, the 1-week EDDI curve
was steeper than the longer timescales. Therefore, the EDDI can
identify more serious drought events and is especially suitable for
early warning and rapid drought detection.

Study Limitations
Although this study quantifies the impact of climate variables on
drought, it still ignores some factors, such as human activities and
soil properties. Solar radiation is related to air pollution caused by
rapid urbanization (Qian et al., 2007; Zongxing et al., 2012).
Therefore, land use and cover change will have a certain impact
on drought. The same is true of deforestation, which will cause
soil erosion and reduce soil water content, further increase
evaporation, and lead to more droughts (Sun et al., 2017).
Generally, soil properties are closely related to soil moisture.
Different soil properties directly affect the water holding capacity
of the soil (Park et al., 2004). It is necessary to explore the impact
of soil properties on drought, which plays an important role in
monitoring drought.

CONCLUSION

In this study, we compared the differences of meteorological
drought indices (SPI, SPEI, and EDDI) at different timescales in
the LRB, northern China, and further carried out quantifying the
contribution of climate variables to drought change. To sum up,
this study emphasized the necessity for adequate attention to the
coupling effect between climate variables in drought studies. The
conclusions are as follows.

The temporal fluctuations of the EDDI, SPEI, and SPI were
increasingly acute when the timescale decreased. Besides, the

FIGURE. 9 | Temporal variations in the EDDI with 1–8-week timescales during 1981–2016.
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drought indices showed opposite states in 2002. This is mainly
because of the positive contribution of evaporative demand and
solar radiation to the EDDI, which made it show severe drought
in April. In the meantime, the SPEI and SPI identified the wet
state under the coupling effect of precipitation and temperature,
respectively. The smallest timescale for both the SPI and SPEI was
1 month, while for the EDDI, it was 1 week. The weekly EDDI
illustrated the potential to bring to light early warnings of the
drought that occurred, which was not accomplished by the SPEI
and SPI.

The results of four scenarios and twelve schemes based on the
RF model showed that the R2 of the model was greater than 0.88
and the MSE was small, indicating that the performance of the
model was good. For the EDDI, the contributions are evaporative
demand > Rn > U, respectively. Precipitation and evaporative
demand are not the only variables affecting the SPEI, and the
temperature (22%) contribution to the SPEI is greater than that of
evaporative demand (6%), especially in SPEI-6.

With the decrease in timescale, the drought intensity of the three
drought indices became stronger, the drought duration shortened,
but the drought frequency increased. Especially, the drought intensity
and duration of the EDDI were significantly higher than those of the
SPEI and SPI. This is mainly due to the coupling effect of evaporative
demand, wind speed, and solar radiation on the EDDI. The
contribution of evaporative demand to the SPEI was less than
that of precipitation, but the contribution of temperature cannot
be ignored. This is also the main reason that the SPEI and SPI can
identify more short-term drought events.

The information gained from this study may have useful
implications not only for the LRB but also for other areas with
strong evaporation change in the world. We cannot ignore the joint
response of climate variables other than precipitation and evaporative
demand in drought disasters. The spatial differences of climate
variables may have a certain impact on the evolution of drought.
Therefore, a quantitative model selected through the comparative
optimization of multiple machine learning models can be established
to explore the effects of climate variables on drought at a spatial scale,
which will be conducted in our further studies.
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