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The Tibetan Plateau suffers from various types of geohazards (collapses, landslides, and
debris flows.) due to abrupt changes in complex topography and weather conditions.
Global warming and frequent high-intensity earthquakes in recent years have exacerbated
the situation. Collapses and landslides provide vast amount of soil and debris which are
conveyed downstream by runoff caused by extreme rainfalls to form large-scale debris
flows; then, the debris flows block rivers and finally form dam-break floods, that is, a hazard
chain triggered by debris flows. Along the evolution direction of the hazard chain, the
affected areas are constantly amplified. This study first summarizes the related research
studies on river blockage, debris-flow dam failure, and the hazard chain triggered by debris
flows and then points out the drawbacks of existing research studies. Overall, the research
(including mechanism, risk assessment, key prevention, and control technologies) on the
hazard chain triggered by debris flows is still in its infancy and is disconnected among
single hazard types in the hazard chain; meanwhile, the understanding of the mechanism
of debris flow blocking the river is not enough; the establishedmodel and discriminant have
minimal application scope, and there is no empirical model and dynamic model of debris-
flow dam failure. Finally, several key scientific issues of this field were raised: 1) it is
necessary to elaborate the coupling mechanism of debris-flow dam formation and
construct the discriminant and numerical model of debris flow blocking the river with
high precision and a wide application range. 2) It is necessary to further study the failure
mechanism of a debris-flow dam, construct the numerical model of the failure process of a
debris-flow dam, and accurately simulate the outburst flood hydrograph. 3) It is necessary
to clarify the critical transformation conditions and dynamic evolution process of the hazard
chain caused by debris flows, complete the accurate quantitative simulation of the whole
disaster chain process, then establish a complete risk assessment system of the hazard
chain, and finally develop some key prevention and control technologies suitable for the
hazard chain.
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1 INTRODUCTION

In recent years, river blockages induced by debris flows occur
more frequently due to the impact of climate change and
earthquakes, especially in case of high-intensity earthquakes
(Zhou et al., 2022), which are often accompanied by multiple
collapses and landslides (Djalante 2019; Haque et al., 2019; Bai
et al., 2020). Occurrence of collapses and landslides leads to
change of geological and geomorphic conditions and increases
the scale of loose materials in gullies, which is prone to large-scale
debris flows when there are heavy rainfalls (Liu and Zhao 2016;
Domènech et al., 2019; ZhouW. et al., 2019; Ciccarese et al., 2020;
Liu et al., 2020; Zhang et al., 2020). River blockage occurs when
abundant loose materials of debris flows are brought from
tributaries into the main river in a short time, but the main
river does not have enough capacity to carry these materials
downstream. It often leads to inundation upstream and outburst
flood induced by debris-flow dam failure. This is often referred to
as the hazard chain induced by debris flows (Guo et al., 2004; Yin
et al., 2009; Chang et al., 2011; Cui et al., 2011; Chen C. G. et al.,
2012; Zhuang et al., 2012; Cui et al., 2013; Liu and Zhao 2016).

For example, on 9April 2000, a huge avalanche-landslide-debris
flow broke out in the Zhamu gully, a tributary of Tibet’s
Polongzangbu River Basin, which completely blocked the
Yigong Zangpo River. The peak discharge of the dam-break
flow reached 124,000 m3/s when the debris-flow dam failed and
smashed nearly a 30-km highway downstream. A total of 2.5
million residents were displaced with 94 casualties (Song 2015). On
7 August 2010, a large-scale debris flow was triggered by heavy
rainfall in Luojiayu and Sanyanyu gullies, Zhouqu County,
resulting in 1,364 deaths and 401 missing people. After the
debris flow passed through the county of Zhouqu, the Bailong
River was blocked and inundated half of the county
(Supplementary Figure S1) (Zhang et al., 2007; Hu et al., 2010;
Tang et al., 2011). At around 23:00 on 5 July 2016, a glacier lake
(Cirenmacuo Lake) outburst flood transformed into debris flows in
Zhangzangbu, Nyalam County. Soon after the river was blocked,
dam breach occurred, flooded the Zhangmu port and hydropower

facilities, and destructed road and houses in the downstream towns
of Kodari and Tatopani in Nepal (Cook et al., 2018; Liu J. K. et al.,
2019). On 17 October 2018, a large-scale debris flow broke out in
the Sedongpu gully ofMilin County, Tibet. The debris flow blocked
the Palalung Zangbo River and formed a barrier dam (height
77–106 m, width 3,500 m, and volume 30 × 106 m3). The reservoir
capacity of the barrier lake reached 3260 × 106 m3, and the flood
peak flow reached 18,000 m3/s after 56 h, which caused important
losses to the upstream and downstream (Liu C. z. et al., 2019)
(Supplementary Figure S2).

The dynamic evolution process of the hazard chain induced by
debris flows is shown in Figure 1. It mainly includes two kinds of
secondary hazards: debris flow blocking the river and debris-flow
dam failure.

Based on a brief review of the literature on single mountain
hazard types (river blockage and debris-flow dam failure) in the
hazard chain triggered by debris flows, this study points out the
issues occurred in these studies. Then, research studies on the
hazard chain of debris flows blocking the river and dam-break
flood are discussed, and some unresolved key issues are put
forward.

2 MECHANISM OF RIVER BLOCKAGE
INDUCED BY DEBRIS FLOWS

2.1 Influencing Factors
Debris flows are mass movement of viscous and highly
concentrated fluid–solid mixture between hyper-concentrated
flows and soil mass (Prochaska et al., 2008; Hu et al., 2012;
Namgyun et al., 2019). When a debris flow is blocking a river,
there is a complicated interaction between the debris flow and the
main river, adding difficulty to the identification of related
influencing factors. Selecting influencing factors is fairly
important to establish a discriminant with accuracy while
simplifying the mathematical model. Therefore, multiple
research studies are carried out to identify influencing factors
in river blockings induced by debris flows (Table 1).

FIGURE 1 | Diagram of the hazard chain evolution.
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Table 1 | Researches on the influencing factors of river blocking induced by debris flows

Researcher Influencing factors of the debris flows Influencing factors of the main river Other comprehensive influencing factors

Total
volume

Gravity Gully
gradient

Discharge Particle
grading

Others Discharge Width of
main
river

Gradient of
main river

Others Angle of
intersection

The ratio of main
and branch
discharges

The ratio of
main and
branch
velocities

Zhang et al.
(2007)

○ ○ ○ ○ ○ Outbreak
frequency,
viscosity

○ ○ ○ — ○ — —

Zhou (1991) ○ — ○ — — — ○ — — — — ○ —

Zhu et al.
(2000)

— ○ — — — Duration — ○ — Bending
radius of
river

○ ○ —

Liu and Zhou
(2015)

— ○ ○ ○ — — ○ ○ ○ — ○ — —

Xu et al. (2002) ○ ○ — — — — — — — — ○ — —

Guo et al.
(2004)

○ ○ — — — — — ○ ○ — ○ ○ ○

Chen et al.
(2002)

— ○ — — — — — — — Water
density

○ ○ ○

Tang et al.
(2006)

— ○ — ○ — — ○ ○ — — — — —

Wu et al.
(2005)

— — — ○ ○ Nature ○ ○ ○ Velocity ○ — —

Wei et al.
(2002)

— ○ — ○ ○ — — — — — ○ — —

Liu and Zhao
(2016)

○ ○ — — — — — ○ — — — — —

Zhu et al.
(2016)

○ — — — — Moisture
content

— — — Velocity ○ — —

Lv et al. (2016) ○ — — — — Velocity — — — — — — —

He (2014) ○ — — — — Moisture
content

— — — — ○ ○ ○

Dang et al.
(2009a)

— — — — — Impact
strength

— ○ ○ — ○ ○ —

He (2003) — ○ ○ ○ ○ — ○ — — — — — —

Total times 8 10 4 6 4 — 6 8 5 — 11 6 3

The circle “○” in the table indicates that the researcher has considered this influencing factor, and the short line “—” indicates that the researcher has not considered this influencing factor.
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Table 1 indicates the complexity and diversity of related
influencing factors, including the total volume of debris flows,
gravity, discharge and width of the main river, ratio of the main
river and other discharges, and angle of intersection. The
aforementioned influencing factors can be mainly summarized
into three categories: main rivers, debris flows, and other
comprehensive influencing factors. In addition, although
significant progress has been made in studying these related
influencing factors, it is worth noting that some of these
results are only qualitative descriptions, limiting the
applications to other cases. In particular, the process and
mechanism of river blockage induced by debris flows under
the coupling of multiple factors are not clear, which should be
considered by means of experiments and numerical simulation
studies in the future.

2.2 Main River Blocking Patterns
There are three river-blocking patterns induced by debris flows:
complete blockage, partial blockage, and submerged dam
blockage (Chen C. g. et al., 2012; Chen et al., 2013; Liu and
Zhao 2016). Complete blockage (Figure 2A) refers to a debris
flow flowing into the mainstream with vast amount of solid
materials. The flow front rapidly reaches the opposite bank
and completely blocks the main river. Partial blockage
(Figure 2B) means that part of the flow front moves forward
above the water surface. However, it cannot reach the opposite
bank due to insufficient total mass or strong dynamic conditions
of the main river. Blockage caused by submerged dam

(Figure 2C) means that due to the small scale of the debris
flows or the depth of the main river, the flow front can only move
forward below the water surface and then form a submerged dam
that partly blocks the river (Liu and Yao 2012).

Compared with partial blockage and submerged dam
blockage, complete blockage can heavily increase the
upstream water level and result in serious damage. In order
to predict river blockages and take effective hazard mitigation
measures, many scholars select key influencing factors based on
dimensionless analysis or specific parameter analysis to study
the threshold of river blocking induced by debris flows. The
judgment formula is shown in Table 2. In addition, it should be
noted that although the risk of partial blockage patterns is lower
than that of complete blockage patterns, it is easy to cause
serious erosion of the opposite bank and cause secondary
geological disasters, such as landslides and collapses
(Figure 3). Therefore, all river-blocking patterns should be
further deeply studied in the future.

Due to the complexity of the influencing factors and the
mechanism in general, it is difficult to establish a discriminant
with comprehensive influencing factors. The selection index is
simple, and the application scope of the established discriminants
is restricted to a certain extent. The main reason behind that is the
limited understanding in the mechanism of river blockage.
Therefore, the discriminants should be selected cautiously
when it is applied, and a discriminant with a larger scope of
application should be established considering multiple key
influencing factors.

FIGURE 2 | Three river-blocking patterns induced by debris flows: (A) Complete blockage, (B) partial blockage, and (C) submerged dam blockage. The subscript
“s” in the figure number represents the “sectional view” and “v” represents the “vertical view.”
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2.3 River Blocking Mechanism
2.3.1 Experimental Study of River Blocking
The process of river blocking induced by debris flows is essentially
a complex process of interactions between Newtonian fluid
(water) and non-Newtonian fluid (debris flows) (Chen et al.,

2011; Maria et al., 2014; Stancanelli et al., 2015). Through flume
experiments, we can have an intuitive preliminary understanding
of the process of debris flows blocking the river. When the debris
flows enter into the main river, most coarse particles such as
boulders and cobbles deposit at the gully mouth, which changes

TABLE 2 | Discriminants of river blocking induced by a debris flow.

Researchers Discriminants Threshold condition Notes Research objects

Zhang and Xie
(2008)

R � PQnJn
BzQzJ

z. R <5, barely blocked; 5< R
<10, seriously blocked; R
>10, inclined to be blocked

P—outbreak possibility of debris flow,
BZ—width of the main riverway,
Qn—discharge of the debris flow,
Qz—discharge of the mainstream,
Jz—gradient of the mainstream, and
Jn—gradient of the debris flow gully

Four debris flow gullies in the arid
valley area of the upper reaches of
the Minjiang River in China

Zhu et al.
(2000)

K � (1 − cos θ)(bR + 0.2 Qb
Qm

+ ln γc + 0.01t). K <1, never blocked; 1< K <2,
temporarily blocked or
partially blocked; K >2,
completely blocked

θ—confluence angle, b—width of the
main riverway, R—bending radius of
the river, Qb—peak discharge of the
tributary debris flow, Qm—mainstream
discharge of the tributary debris flow,
γc—density of the debris flow, and
t—duration of the debris flow

Peilong gully, Sichuan–Tibet
Highway, Tibet, China

Chen et al.
(2002)

γdQdvd sin α
γmQmvm

≥Cr . Cr >1.44, blockage formed γd—volume-weight of the debris flow,
γm—volume-weight of the water flow,
vd—average flow velocity of the debris
flow, vm—average flow velocity of the
mainstream, α—confluence angle,
Qd—discharge of the debris flow, and
Qm—discharge of the mainstream

The formula is based on the flume
test.

Tang et al.
(2006)

Z � 2KQcγcβ
QmB

. Z <0.5, never blocked; 0.5
<Z <1.0, partially blocked;
Z >1.0, completely blocked

B—width of main riverway,
Qm—discharge of mainstream,
QC—discharge of debris flow,
β—confluence angle, K—correction
coefficient, ranging from 1.0 to 1.5

Some debris flow gullies in the
upper reaches of the Minjiang
River and the Xiaojiang River of
Yunnan province, China

Dang et al.
(2009a)

C � ( r
tanφ)1/2( τ

ρgw)1/3 tan(D2). C ≥ 0.87, blockage occurs;
When the second
discriminant is satisfied, the
river is barely blocked.

w—width of the main riverway,
tanψ—gradient of the mainstream,
r—flow ratio of the debris flow to
mainstream, D—confluence angle, τ/
(ρgw)—comprehensive parameter
considering the scour resistance of the
debris flow and the width of the
mainstream

The formula is based on the flume
test.

r
1
2 <1.0 and ( τ

ρgw)
1
3 tan(D2)/(tan φ)

1
2 < 0.4.

Cheng et al.
(2007)

r � Qbvbγcτb
QmvmγwHρg

. r > 1001.16, blockage occurs B—confluence angle, Qm—discharge
of the mainstream, Qb—discharge of
the debris flow, vb—flow velocity of the
debris flow, vm—flow velocity of the
mainstream, γc—volume-weight of the
debris flow, γw—volume-weight of the
water flow, ρ—density of water,
τb—initial shear force of the debris flow,
H—upstream banked-up water level,
RM—momentum ratio of the branch to
mainstream

Some debris flow gullies in the
southeast of Tibet, China

Du et al. (2012) R � (γs−γw)gcdu cos θ·n
(γs−γw )cdu+γw − g sin θ. R ≥ 1, the main riverway may

be fully blocked; 0.5< Z <1.0,
the main riverway may be
partially blocked

γs, γw —density of the debris flow and
water flow, respectively,
Cdu—concentration of the debris flow,
θ—downstream slope of the gully,
g—gravitational acceleration

The formula is derived from the
theory.

Liu and Zhou
(2015)

D � 21.18
Qn

Qs
+ 0.54

Jn
Js

+ 0.08β+
1.39γn − 0.06Kz − 9.69.

D <3, barely blocked; 3
<D <6, partially blocked;
D >6, completely blocked

β—angle of intersection, Kz—width of
the main riverway, Qn—discharge of
the debris flow, Qs—discharge of the
mainstream, Js—gradient of the
mainstream, Jn—gradient of the debris
flow gully, γn—volume-weight of the
debris flow

Six debris flow gullies in the
Wenchuan earthquake area of
China
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the local boundary conditions of the confluence area (Maria et al.,
2014). The debris flow head, driven by the high momentum,
continues to advance to the opposite bank of the main river
(Wang et al., 2017). Under the strong hydraulic condition of the
main river, the fine particles from debris flows are carried away by
the water flow. The sediment concentration and velocity
distribution of the solid–liquid two-phase flow at the
confluence are characterized as “small and fast in the upper
part and large and slow in the lower part” (Chen et al., 2013).
When the head of the debris flows reaches the opposite bank and
a large volume continues to flow into the river, the main river can
be completely blocked; thus, a dam is formed (Wang et al., 2017).
In case of a confluence, viscous debris flows are prone to move
and accumulate as a whole, while the dilute ones are easier to be
carried away in the way of suspended and bed loads, respectively
(Chen et al., 2013).

In addition, Chen et al. (2004b)carried out experiments to
study the confluence process of the debris flows and water flows.
It was found that the inflow angle and the velocity ratio of the
main river and tributaries have a great impact on the position and
shape of sediment accumulation. Based on the theory of density
flow, the motion equation of the debris flow front in the main
river was deduced, and the calculation formula of its movement
distance was given by (Liu C. R. et al. 2013; Liu C. R. et al. 2014;
Liu and Zhao 2016), but these results have not been verified by
examples. Chen (2016) studied the intersection process of debris
flows and the main river using the flume model test and
calculated the width of the debris-flow dam plug by
momentum conservation theory; however, these results also
have not been verified by examples. At the same time, flume
experiments are likely to mask many important experimental
phenomena in the prototype. Therefore, it is necessary to further
strengthen the verification of experimental results and fully
consider the similarity between the model and the prototype,
including geometric similarity, kinematic similarity, and dynamic

similarity, so that the results of small-scale model experiments
can be directly applied to the prototype. Furthermore, based on
macroscale analysis of the basin, Lv et al. (2016) pointed out that
the two-phase debris flows blocked the Nujiang River, forming a
large number of damNick points, changing the river flow pattern,
causing a large amount of sediment deposition in the lake, and
limiting riverbed undercutting. Although the results of this study
are qualitative, it can inspire us: in the study of the debris flow
blocking the river process, in addition to the intersection process
and mechanism of debris flows and the main river, we should also
pay attention to the influence of the intersection process on the
upstream and downstream of the intersection area, including the
upstream and downstream hydraulic characteristics and
sediment transport characteristics.

Although research on the threshold of river blocking based on
empirical expressions has made some progress, there are few
achievements in the quantitative description of its mathematical
models by the view point of the hydrodynamic process of water
and sediment.

2.3.2 Numerical Simulation of River Blocking
Compared with the traditional flume model test, application of
numerical simulation methods to study and analyze the river-
blocking mechanism induced by debris flow is more cost-
effective, time-saving, and is easier to change parameters
(Szczukiewicz et al., 2014; Celis et al., 2017).

Combining with particle-in-cell (PIC) and marker and cell
(MAC) algorithms, Chen et al. (2013) proposed a two-field
coupling model for the interaction between the debris flow
and the main river. The main characteristic of the model is
that the rheological parameters and sediment settling velocity in
the calculation unit of a confluence may be expressed with the aid
of the specific weight of mixed fluids. In addition, based on the
weir flow theory, a numerical calculation method to figure out the
main river depth and debris flow velocity after river blockage was
established by Chen C. G. et al. (2012). However, the shock wave
at the initial debris flow intersection was not fully considered in
the model. Liu and Yao (2012) applied the finite volume method
to simulate and analyze the flow field of the main river under
different blocking coefficients of debris flows in the partial
blockage pattern; however, in the model, the debris flow
blockage body is generalized as circular, which is inconsistent
with the actual fan-shaped accumulation body, and under the
action of the main river flow, the fan edge will inevitably shift in
the water flow direction (Figure 4). Some commonly used fluid
mechanics simulation software applications have also been used
to simulate the debris flow movement and accumulation process.
For example, CFX software was used by Han et al. (2016) and Xu
et al. (2019) to simulate debris flows in the Mozi gully in
Wenchuan County and Shiwulong Gully in Rantang County,
respectively; FLO-2D software was used by Wang et al. (2017) to
simulate and analyze river blockage patterns of the
Guangyuanbao gully debris flows under different rainfall
intensities. Although these pieces of software have high
accuracy in the simulation of debris flow movement, there are
large errors in the simulation of the debris flow accumulation
process because these pieces of software do not consider the

FIGURE 3 | Partial blockage pattern of debris flow causes serious
scouring on the opposite bank (In 2008, a debris flow occurred in Guanshan
gully, Sichuan province, China, partially blocking the Minjiang River. After the
sharp deflection of the river flow streamline, the bank slope was scoured,
resulting in the instability and failure of the opposite bank slope).
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interaction between the debris flow and the main river water flow
in the simulation.

Therefore, for the complex process involving sediment
dynamics, hydrodynamics, and soil dynamics of the debris
flow blocking the river, it is necessary to consider using other
relatively novel numerical simulation methods, such as DDA (Fu
et al., 2020), MPM (Du et al., 2021), and NMM (Yang et al., 2019,
2020; Zheng et al., 2019). Table 3 lists some new numerical
simulation methods in recent years, which can be used to
simulate the process of debris flows blocking the river.

All the aforementioned studies are aimed at analyzing river
blockage induced by the viscous debris flow. The main reason is
that diluted debris flows are accompanied by the sedimentation of
large particles during the movement. The internal composition is
highly heterogenous, and the related mechanism is far more
complicated. Furthermore, the results of numerical simulation
are quite different from reality since the numerical simulation
parameters of the debris-flow dams are difficult to be calibrated,

and the model’s boundary conditions and dynamic equations are
oversimplified. Hence, numerical simulation studies on the
process of river blocked by diluted debris flows are rare at present.

3 MECHANISM OF DEBRIS-FLOW DAM
FAILURE

The internal composition of debris flows and the dynamic process
of river blockage are complex. There are great differences between
the dams induced by debris flows and the ones induced by the
landslides (or maimora dam) (Wang et al., 2017; Wu et al., 2020).
The former is difficult to maintain long-term stability and often
bursts soon, and dam failure often occurs when there is an
overtopping flow (Yan et al., 2009). The main differences
between different types of barrier dams are shown in Table 4.
These differences lead to the inevitable differences between the
collapse process and the mechanism of the debris-flow dam and

FIGURE 4 | (A) On July 3, 2011, the debris flow in Gaojiagou Gully, Yinxing Township, Wenchuan County, Sichuan Province blocked the Minjiang River. (B) On
June 26, 2020, a debris flow in Yihai Town, Mianning County, Sichuan Province blocked Caogu River..

TABLE 3 | Some new numerical simulation methods in recent years.

Method Features

DDA DDA (discontinuous deformation analysis) is a numerical analysis method for geotechnical engineering, which can be used to
simulate discontinuous large deformation problems.

MPM MPM (material point method) is a new particle numerical method with the advantages of Lagrange description and Euler
description, which is especially suitable for the analysis of problems with large deformation and moving interfaces.

PFEM PFEM (particle finite element method) is also the combination of Euler and Lagrange methods, which can consider free
surface, breaking wave, flow separation, etc., and can effectively avoid grid distortion in large deformation.

SPH Core of the SPH (smoothed particle hydrodynamics) method is the interpolation principle of the kernel function, which strictly
meets the mass conservation. Different rheological constitutive relations can be used in the calculation model, which is
suitable for dealing with large deformation, movable boundary, free surface tracking, and moving interface problems.

NMM NMM (numerical manifoldmethod) usesmathematical and physical two sets of independent cover systems, which only need
to cover the whole calculation area with regular grids. The cover function can be freely selected, according to the type of
solving problems, and can solve continuous and discontinuous problems uniformly.

DEM DEM (discrete element method) takes particles as the research object and reflects the microscopic dynamic characteristics
of a large number of particles by defining the interaction between particles, which is suitable for analyzing the water debris
flow and diluted debris flow with a small viscosity of the slurry.

CFD-DEM CFD-DEM (computational fluid dynamics–discrete element method) is a coupling calculation of the continuous medium and
discrete medium, which is suitable for simulating the debris flow with obvious gap flow and solid particle interaction.
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other dam types. For example, the former is difficult to maintain
long-term stability and often bursts soon, and dam failure often
occurs when there is an overtopping flow (Yan et al., 2009).

There are three failure modes of a barrier dam: overtopping,
piping, and slope instability (Figure 5) (Peng and Zhang 2012;
Shrestha and Nakagawa 2016; Dhunagan andWang 2019; Kumar
et al., 2019; Jiang et al., 2020; Ruan et al., 2021). However, because
the debris-flow dams are mostly saturated, they have high clay
content and strong water-retaining property; moreover, the
height and slope of debris-flow dams are much smaller than
other dams (landslide dam and moraine dam), and the seepage
path is longer (Chen et al., 2011; Liao et al., 2012; Pan et al., 2013;
Liu et al., 2015; Neupane et al., 2019; Sattar et al., 2019; Zou et al.,
2020). Therefore, it is very difficult for the debris-flow dam to
have piping or dam slope failure.

In the process of debris-flow dam failure, based on the flume
model experiment, Ruan et al. (2021) drew on the idea of dividing
landslide dams and divided the failure process of debris-flow
dams into three stages according to the longitudinal evolution
characteristics of the breach: the formation stage of the
retrogressive scarp, the erosion stage of the retrogressive scarp,
and the decline stage of the retrogressive scarp (Figure 6).
Different from landslide dams, the debris-flow dam can form
a very obvious retrogressive scarp in the process of failure. In
addition, in a recent study, we found that the erosion rate and
peak discharge of debris-flow dam failure were significantly
higher than those of landslide dams under the same
conditions, and the peak time of debris-flow dam failure was
slower (Figure 7). Therefore, in the future, it is necessary to
further compare and study different types of dams (the debris-

TABLE 4 | Comparing different types of barrier dams.

Category Debris-flow dams Landslide dams Moraine dams Notes

Formation
conditions

It is formed by the debris flow blocking the
river (Wang et al., 2017; Zou et al., 2020).

It is formed by landslides blocking the river
(Cui et al., 2009; Li et al., 2021).

It is formed by moraine accumulation and
contains buried ice (Clague and Evans,
2000; Benn and Owen, 2002.

—

Geometry of
the dam

Dam height and upstream and downstream
slopes are smaller than those of landslide
dams Cheng et al. (2007); Dang et al.
(2009b)

Dam height and upstream and downstream
slopes are larger than those of other dams
Lai et al. (2015); Shen D. et al. (2020).

Dam height and upstream and downstream
slopes are smaller than those of landslide
dams Evans and Clague (1994).

In most
cases

Water content of
the dam

Full saturation Cheng et al. (2007); Dang
et al. (2009b); Wang et al. (2017)

Natural water content Cui et al. (2009); Li
et al. (2011); Zheng et al. (2021)

Natural water content Osti et al. (2011);
Herrmann and Bucksch (2014); Begam
et al. (2018)

In most
cases

Clay content of
the dam

High Dang et al. (2009b); Liu J. F. et al.
(2014)

Middle Cui et al. (2009); Zhang et al. (2016);
Zhang et al. (2019)

Low Osti et al. (2011); Begam et al. (2018);
Neupane et al. (2019)

In most
cases

Roundness of the
dam material
particles

High Dang et al. (2009b); Wang et al. (2009) Middle Li et al. (2011); Zhang et al. (2016);
Zhong et al. (2017); Zheng et al. (2021)

LowHerrmann and Bucksch (2014); Begam
et al. (2018); Neupane et al. (2019)

In most
cases

Structure of dam Dense and poor particle sorting Dang et al.
(2009b); Liu J. F. et al. (2014)

Relatively loose and good particle sorting
Zhang et al. (2019); Zheng et al. (2021)

Loose and poor particle sorting Evans and
Clague (1994); Neupane et al. (2019)

In most
cases

Permeability of
the dam

Low Dang et al. (2009b) Middle Gregoretti et al. (2010); Wang et al.
(2017); Zheng et al. (2021)

High Liu J. J. et al. (2013); Neupane et al.
(2019)

In most
cases

FIGURE 5 | Failure modes of a debris-flow dam: (A) Overtopping, (B) piping, and (C) slope instability.
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flow dam, landslide dam, and moraine dam) and construct the
theory and model of different types of dams.

A reasonable description of the development process of the
breach (the longitudinal downcutting process and cross widening
process) is a prerequisite for accurate simulation of the outburst
flood. At present, several models of the breach evolution of
barrier dams have been proposed (Figure 8). The models of
Chang and Zhang (2010), Zhong et al., (2017), and Zhou G. G. D.
et al. (2019) are only applicable to landslide dams. When Chang
and Zhang’s (2010) and Zhong et al’s., (2017) models are used to
simulate the outburst flood, the cross-sectional shape of the
breach is assumed to be trapezoidal (Figures 8A,B). Zhou G.
G. D. et al’s. (2019) model does not have a calculation model for
the cross widening of the breach and a complete calculation

model for the longitudinal evolution of the breach (Figure 8C),
which cannot be applied to numerical simulation. Ruan et al.
(2021)obtained the longitudinal evolution model of a debris-flow
dam through flume experiments (Figure 8D), but the bottom
slope and velocity of the breach in the model are difficult to obtain
in advance (Formula 1), and there is no cross expansion model of
the breach, which cannot be applied to numerical simulation.

E � −0.01 · (0.0149 ln(μ)
μ

+ 2.72
1
D2

c

+ 0.301) · v

· sin(0.85 + θ)3, (1)
where E is the erosion rate (cm/s); μ and Dc are grain-size
distribution parameters (Li et al., 2013; Li et al. 2015; Li et al.

FIGURE 6 | Longitudinal evolution process of the debris-flow dam breach. (A,B) Formation stage of the retrogressive scarp (0–90 s); (B–D) Erosion stage of the
retrogressive scarp (90–320 s); and (D,E) Decline stage of the retrogressive scarp (320–360 s) (Ruan et al., 2021).

FIGURE 7 | Comparison of the dam-break discharge between a debris-flow dam and a landslide dam.
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2017); v is the flow velocity of the breach (m/s); and θ is the
longitudinal slope of the breach (°).

The numerical simulation of debris-flow dam failure is still in
the preliminary exploration stage. Depending on the gradual
breach model (Zhang and Huang 2007; Huang 2008), Zhao
et al. (2009) stimulated the flood discharge process and
calculated the peak discharge of the debris-flow dam in the Kezi
River, Xinjiang. In this model, it is assumed that the cross-sectional
shape of the breach is trapezoidal. However, for high viscous
debris-flow dams, the failure process is often accompanied by
intermittent large-scale collapse of the negative angle breach slope
(Ruan et al., 2021). Moreover, Liu Hd et al. (2013) calculated the
stability of a debris-flow dam by FLAC3D software, which can be
used to determine the failure possibility of the debris-flow dam.
However, the stability of a debris-flow dam is not the focus of the
study because the length of a debris-flow dam along the river is

usually very long, and the upstream and downstream dam slopes
are much slower than those of the landslide dam. It is difficult to
understand the instability of the dam slope, and the overtopping
failure is the focus of the study of the debris-flow dam. Table 5
summarizes several dam-break models based on dynamics
proposed in recent years, which can simulate the evolution
process of the break and the dam-break flood hydrograph, but
they are only applicable to the simulation calculation of a landslide
dam. In the future, these models can be improved according to the
characteristics of debris-flow dams, and then, some dam-break
models suitable for debris-flow dams can be obtained.

In summary, little research on the failure of debris-flow dams
has been conducted until now. The existing research studiesmainly
focus on the failure mode and process of dam break. Research on
the failure mechanism of a landslide dam, especially the evolution
law of the debris-flow dam of the breach, including longitudinal

FIGURE 8 | Evolution models of the breach of the barrier dam. (A) Evolution model of the breach of the landslide dam proposed by Chang and Zhang (2010)
(modified). (B) Evolution model of the breach of the landslide dam proposed by Zhong et al. (2017) (modified). (C) Evolution model of the breach of the landslide dam
proposed by Zhou G. G. D. et al. (2019) (modified). (D) Evolution model of the breach of the debris-flow dam proposed by Ruan et al. (2021) (modified). The subscript “L”
in the figure number represents the “longitudinal evolution of the breach” and “V” represents the “cross evolution of the breach”.

TABLE 5 | Several dam-break models based on dynamics proposed in recent years.

Model Sediment transport Breach shape Flow over
the dam

Breach mode Soil erodibility Reference

DABA Meyer–Peter and Müller formula Trapezoidal Broad-crest weir flow Overtopping Varied Chang and Zhang (2010)
Zhong et al.’s model Linear shear stress erosion formula Trapezoidal Broad-crest weir flow Overtopping Constant Zhong et al. (2017)
DB-IWHR-2018 Hyperbolic shear stress erosion formula Trapezoidal Broad-crest weir flow Overtopping Constant Chen et al. (2015)
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and cross evolution laws of the breach, is relatively limited. In
addition, there are no numerical models and theoretical calculation
methods that can completely and reasonably describe the evolution
law of the breach of the debris-flow dam (undercutting erosion and
lateral collapse of the breach) and the flow discharge during the
dam failure process. The dynamic model of the debris-flow dam
break should be constructed in the future. Furthermore, from
Table 6, it can be found that there is no empirical formula for the
peak discharge of dam break that is applicable to debris-flow dams,
which is also the focus of future studies.

4 HAZARD CHAIN TRIGGERED BY
RIVER-BLOCKING DEBRIS FLOWS

Mountain hazards often include collapses, landslides, debris flows,
and glacial lake outburst floods (GLOF). (Zhong et al., 2017; Begam
et al., 2018; Bhambri et al., 2019;Medwedeff et al., 2020; Shen P. et al.,
2020). However, sometimes due to factors such as limited space,
large-scale or extra large-scale mountain hazards often transform
from one kind to another, forming hazard chains and causing severe
damages (Shulmeister et al., 2009; Xu et al., 2014). There are many
variants of mountain hazard chains, with different combinations of
disaster types (Zhong et al., 2013). “The debris-flow river-blocking
debris-flow dammed-lake dam-break flood” is only a common type
of the mountain hazard chain. Due to the distinctions in material
composition, structure, movement form, and enlargement scale, the
dynamic process of river blocking and dam failure caused by debris
flows is significantly different from that caused by collapse or
landslides.

4.1 Basic Characteristics and Mechanism
Attention was paid to formation, basic characteristics, distribution
laws, hazard risk analysis, and prevention measures of debris flows

in the last couple of years. However, less attention was paid to the
hazard chain caused by debris flows. Cui et al. (2008) pointed out
that Wenchuan earthquake-induced debris flows→dammed
lakes→burst floods and secondary disasters were distributed
intensively along the fracture zone and its two sides from the
perspective of regional spatial analysis, and it did not involve the
transformation process and mechanism of disasters. Xu et al.
(2012) analyzed the formation conditions and chain formation
mechanism of four types of disasters chains and found that in all
these disaster chains, each episode was caused by the previous
episode. Moreover, the amount ofmassmovement decreased along
the disaster chains. Zou et al. (2013)investigated and analyzed some
typical hazard chains after the Wenchuan earthquake and pointed
out that a complete hazard chain process includes four key stages:
disaster formation, the triggering stage, damage stage, and chain-
breaking stage; but these analyses were qualitative. Zhong et al.
(2013)analyzed the factors causing a mountain hazard chain and
pointed out that the formation of mountain hazard chains is the
result of interaction, infiltration, transmission, and transformation
of materials and energy of each disaster under specific conditions.
The most remarkable characteristic of a disaster chain is the
obvious amplification effect in the evolution process of the
disaster chain. However, there are very few quantitative research
studies on the amplification effect of disaster chains caused by
debris flows, which is the focus of future research. He (2014)
preliminarily simulated and calculated the river-blocking debris
flow and dam-break hazard chains caused by the so-called “8.13
Hongchun gully large-scale debris flow” from three aspects: the
impact force of the debris flow, peak discharge of dam breaks, and
the evolution process of flood outburst; but these three parts are
separated in the analysis process. Fan et al., (2020) first integrated
the rock mass stability model (FLAC3D and RocPlane tools),
landslide sliding MassFlow program, dam-break DABA
program, and dam-break flood HEC-RAS program to simulate

TABLE 6 | Empirical formula for the peak discharge of dam break.

Empirical formula Parameter Applicable
condition

Reference

Qp � 6.3 · (Hd)1.59. Hd—dam height (m) Landslide dam Costa (1985)

Qp � 672 · (V1)0.56 ,
Qp � 181 · (V1Hd)0.43.

V1—volume of dammed lake (m3) and Hd—dam height (m) Landslide dam Costa and Schuster (1991)

Qp � 0.0158 · (PE)0.41 ,
Qp � 0.99 · (dV0)0.40.

PE—potential energy of water, d— lake water-level drop during the
flood (m), and V0—volume of dammed lake (m3)

Landslide dam Walder and O’Connor (1997)

Qp � g0.5H2.5
d (Hd/Hr)−1.417 · (V1/3

1 /Hd)1.569
· (V1/3

d /Hd)−0.471 · (Hd/Wd)−0.265 · ea.
g—the acceleration of gravity (m/s2), Hd—dam height (m). Hr = 1 m,
V1—volume of dammed lake (m3). Wd—dam width (m), Vd —dam
volume (m3), and a—erodibility coefficient

Landslide dam Peng and Zhang (2012)

Qp � 1.268 · (Hw + 0.3)2.5. Hw—height of water above final breach bottom (m) Embankment dam Kirkpatrick (1977)

Qp � 1.776 · (S)0.47. S— lake area (m2) Embankment dam Singh and Snorrason (1984)

Qp � 1.154 · (VwHw)0.412. Vl—volume of water above the final breach (m3) and Hw—height of
water above final breach bottom (m)

Embankment dam Macdonald and
Langridge-Monopolis (1984)

Qp � 0.6971(Hw)1.5(V1)0.25. Hw—height of water above final breach bottom (m) and Vl—volume
of the dammed lake (m3)

Embankment dam Hakimzadeh et al. (2014)

Qp � 0.038(V0.475H1.09). H —height of water behind the dam (m) and V —volume of water
behind the dam (m3)

Embankment dam Pierce et al. (2010)

Qp � 0.6971(Hw)1.5(V1)0.25. Hw—height of water above final breach bottom (m). Vl—volume of
the dammed lake (m3)

Embankment dam Froehlich et al. (1995)

Qp � 0.0443g0.5V0.367
1 H1.40

w . g—the acceleration of gravity (m/s2),Hw—height of water above final
breach bottom (m), and Vl —volume of the dammed lake (m3)

Embankment dam Webby (1996)
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the whole process of river blocking and collapse hazard chains
which might be caused by three potential landslides in the Baige
landslide dam. Although each model has its limitations to some
extent, the simulation process has error accumulation; the study
only focuses on the river-blocking landslide break hazard chain,
and it provides a new idea for the study of river-blocking debris
flow-dam break hazard chains and other types of disaster chains
(Figure 9). In addition to numerical simulation, experimental
research can also be used as an important research method for
future research on the disaster chain.

The transformation among disaster types is the key in forming
a hazard chain, making the critical conditions of the
transformation a prerequisite for the formation of a hazard
chain. Although achievements have been made in studying
critical conditions of river-blocking debris flows and the dam-
break model, the two are studied separately. In order to get a
better understanding of the transformations in the hazard chain
and quantitative descriptions of the whole process, it is necessary
to conduct a systematic and in-depth analysis of the whole hazard
chain and the evolution process of each knot in the chain.

4.2 Risk Assessment and Key Prevention
and Control Technologies
Risk assessment of a singlemountain-hazard type has been relatively
mature after years of development. Based on empirical methods and
numerical simulation methods (Tacconi Stefanelli et al., 2020; Choi
et al., 2021), a relatively mature mountain-hazard risk assessment
system has been established. However, in the context of global
warming, a single mountain-hazard type is often transformed to
form a hazard chain with strong destructive power (Fan et al., 2020),
which also brings many challenges to the risk assessment of the
hazard chain. For example, the specific challenges of the risk
assessment of the hazard chain caused by debris flows are as
follows. 1) The hazard chain caused by debris flows mainly
includes three single types of hazards (the debris flow, weir dam,
and outburst flood). The three single types of hazards occur
continuously and follow their respective physical laws and
transformation mechanisms. Therefore, in the risk assessment, it
is necessary to clarify the transformation mechanism of three single
types of hazards and systematically evaluate the entire hazard chain.
For example, the physical properties of the debris flow in the process
of movement are changing at all times, and there are erosion and
scale amplification effects along the movement direction (Chen
et al., 2020). The characteristics of the dam after debris flow blocking
the river and the evolution of the outburst flood need to be fully
considered. 2) In the risk assessment, it is necessary to take full
account of the hazard-bearing bodies within the impact range of the
entire hazard chain, but the impact range is often hundreds of

kilometers or even thousands of kilometers. The hazard-bearing
bodies involved mainly include roads, railways, bridges, villages, and
farmland. The workload of the investigation is very huge. Hence, the
traditional risk assessment method of a single hazard type cannot
meet the quantitative assessment requirements of many mountain
hazard chains. On this basis, it is necessary to further consider the
relationship between various single hazards to truly describe the
risks brought by the evolution process of themountain hazard chain.

At present, the key technologies for debris flow prevention and
control have been studied in depth. A variety of debris flow
prevention and control projects have been proposed, such as
check dams (Kim and Kim 2021) and drainage channels (Wang
et al., 2021), and have been widely applied to effectively reduce the
risk of debris flow hazards. In terms of the debris-flow dam, there is
no key technology for the prevention and control of the debris-flow
dam, and the related prevention and control technology of the
landslide dam can be used for reference in the future. Most
importantly, for the large-scale hazard chains occurring in the
alpine gorge area, such as the hazard chain caused by debris flows,
the conventional key technologies for the prevention and control of
single disaster types cannot meet the needs of hazard reduction.
Therefore, on the basis of clarifying the evolution mechanism of
hazard chains, we need to develop new materials and structural
prevention and control projects suitable for strong earthquake,
high altitude, extremely cold and large temperature difference
working environments, explore new hazard risk prevention and
control principles, and regulate the whole process of hazard chain
material and energy. In addition, effective engineering measures
are needed to control the key links of hazard chain and cut off the
critical conditions of disaster chain transformation.

5 CONCLUSION AND PROSPECTS

Although some progress has been made in studying debris flows
that block the main river, the investigations on hazard chains of
river-blocking debris flows and dam-break floods are still at an
initial stage. Some conclusions and several frontier scientific
issues on the river-blocking mechanism by debris flows and
dam failure hazard chains are drawn as follows:

1) There are three patterns of river-blocking debris flows:
complete blockage, partial blockage, and submerged dam
blockage. Although the river-blocking factors have already
been considered comprehensively and varied discriminants
were established, studies on river blocking are mostly
restricted at laboratory scales (flume tests), which limit the
applications of the established river-blocking discriminants
because the characteristics of the debris flows, the shape of the

FIGURE 9 | Research ideas of the disaster chain.
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main river, and its hydrogeological conditions are unique in
real-world scenarios. In addition, studies on the mechanism of
river blocking by debris flows mainly focus on describing the
macro phenomena. There are fewer quantitative achievements
in describing the mathematical model of the dynamic process
in water–particle interactions, which is also the main reason
for low accuracies in the simulation results. In this regard, it is
necessary to elaborate on the coupling mechanism of debris-
flow dam formation, and then, a discriminant and numerical
simulation model of debris flow blocking the river with
multiple influencing factors and larger application scope
should be established in the future. In the meantime, a
large-scale model test is worth considering in future studies.

2) At present, studies on the breach of debris-flow dams mainly
focus on the breach mode and dynamic failure process by
considering different particle size distribution, bulk density,
and clay content of a debris-flow dam, not on the breach
mechanism, especially the law of the breach development
(undercut and side collapse of the breach). There is no
numerical model or theoretical calculation method that can
reasonably reflect the evolution law of the breach and the
discharge hydrograph of the outburst flood. It is vital to
estimate the peak discharges of the outburst flood and
erosion rate of dam materials accurately in order to predict
the dynamic failure process of the dam with higher precision.
Hence, in the future, it is necessary to further strengthen the
research on the mechanism of debris-flow dam failure,
accurately describe the evolution process of the breach,
establish the physical model of debris-flow dam failure
based on dynamics, and establish a prediction model of the
peak discharge of debris-flow dam failure.

3) The hazard chain of river-blocking debris flows and dam
failure is a common type of mountain hazard chain, with
continuous evolution and strong destructive power. Although
researchers have made some progress in the blockage and
breach models, the investigations are designed and conducted
separately. Also, related studies are still lingering over the
initial stage, mainly focusing on typical case studies of the
hazard-inducing environments, inducing factors, basic
characteristics, and prevention measures. In addition, the
research study on the risk assessment and key prevention

and control technology of the disaster chain caused by debris
flows is still in the initial stage of exploration. The traditional
risk assessment theoretical methods and key prevention and
control technology for a single disaster type are no longer
applicable to the disaster chain caused by debris flows,
especially because the current understanding of the whole
dynamic evolution process of the disaster chain is not enough.
In this regard, it is worth noticing the critical conditions and
dynamic evolution process of hazard type transformation,
conducting in-depth and systematic investigations on the
hazard chain, and completing a quantitative description of
the whole process of the hazard chain. Finally, a complete
hazard chain risk assessment system should be established,
and some key prevention and control technologies suitable for
the hazard chain should be developed as well, including new
materials, prevention and control projects, and emergency
plan measures.
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