AUTHOR=Fu Qiang , Yan Maodu , Dekkers Mark J. , Guan Chong , de Boer Rosa A. , Yu Liang , Xu Wanlong , Li Bingshuai , Shen Miaomiao , Zhang Jingyu , Xu Zunbo TITLE=The Early Cretaceous Zaduo Granite, Eastern Qiangtang Terrane (China)—An Attempt to Constrain its Paleolatitude and Tectonic Implications JOURNAL=Frontiers in Earth Science VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2022.829593 DOI=10.3389/feart.2022.829593 ISSN=2296-6463 ABSTRACT=
The Eastern Qiangtang Terrane is an orogenic-like belt around the Eastern Himalayan syntaxis (EHS). The deformation history of this terrane must be known to understand how the EHS region responded to the Lhasa-Qiangtang collision and the closure of the Bangong-Nujiang Ocean (BNO). Here, we present a new paleomagnetic investigation on an Early Cretaceous granite (∼126 Ma) in the Zaduo area, Eastern Qiangtang Terrane. Petrographic observations reflect crystallization from primary melts with only limited subsequent alteration (chloritization of biotite). Magnetite appears to be the dominant carrier of the characteristic remanent magnetization (ChRM) based on stepwise demagnetization of the natural remanent magnetization, supplemented by detailed rock magnetic measurements, including magnetization versus temperature, and acquisition curves of the isothermal and anhysteretic remanent magnetization. End-member modeling of those acquisition curves helped to constrain the paleomagnetic analysis. The inconsistent demagnetization behavior between alternating field (AF) demagnetization at high levels and thermal demagnetization was attributed to the development of gyroremanent magnetization in the AF demagnetization generated by fine-grained single domain magnetite. The ChRM directions from 92 granite samples in geographic coordinates yield an average of declination (Dg) of 2.6° and inclination (Ig) of 38.6° (precision parameter k = 51.4, and 95% confidence cone α95 = 2.1°). The amount of tilting of the granite is poorly constrained which makes proper correction rather tedious. We compared the expected bedding attitudes (Strikeexp = 43.1°, Dipexp = 46.1°) derived from published data (