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Light use efficiency (LUE) is a critical variable for modeling gross primary production (GPP)
of vegetation. The photochemical reflectance index (PRI) is based on reflectance at 531
and 570 nm, which has great potential in predicting the light use efficiency (LUE) and
makes LUE related to plant optical characteristics. Despite the great achievement in
understanding the correlation of PRI and LUE on forests, the application of PRI in
estimating LUE on crops has almost been ignored. The present study reported the
ability of multi-angle PRI to track eddy covariance (EC)-based LUE in a rice field in East
China. We found that PRI can estimate LUE in sunny days (R2 = 0.4; p < 0.05). The
correlation of PRI and LUE was greater than that at OZA of 0° (R2 = 0.4; p < 0.05) after
distinguishing different OZAs and scatter directions and was the greatest in the
backscatter direction with an OZA of 60° (R2 = 0.7; p < 0.01). This correlation was
also corrected by the bidirectional reflectance distribution function (BRDF), where R2 =
0.72 after correction. We noted that the relationship between PRI and LUE on cloudy days
was poor, where R2 = 0.26. Photosynthetically active radiation (PAR) had an influence on
the LUE and PRI, while vapor pressure deficit (VPD) and air temperature (Ta) had negative
influences on the correlation of PRI and LUE. Our research suggests that PRI can efficiently
track the LUE of the rice growth period when considering environmental factors and rice
canopy structures.
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INTRODUCTION

Gross primary production (GPP) represents the amount of organic carbon fixed by terrestrial plants
through photosynthesis and drives the carbon cycle of the ecosystem (Sun et al., 2018). Light use
efficiency (LUE) is determined by environmental factors such as nutrients, moisture, and
atmospheric temperature and has become the crucial parameter variable for estimating GPP. To
date, vegetation indices constructed by remote sensing to estimate reliable vegetation information
(Damm et al., 2010). The Normalized difference vegetation index (NDVI) (Peñuelas and Inoue,
1999) has been successfully applied to estimate leaf area index (LAI), leaf nitrogen concentration, leaf
chlorophyll concentration, and fractional absorbed photosynthetically active radiation (FPAR)
(Goward and Huemmrich, 1992; Gamon et al., 1995; Sellers et al., 1995; Justice et al., 1998) but
could not be related to variable LUE from day to day even hour to hour (Running andNemani, 1988),
for it is relatively stable (Tenhunen et al., 1987).
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The photochemical reflectance index (PRI), widely used to
estimate LUE, was first proposed by Gamon et al. (1992) and can
be measured using a spectrometer such as NDVI (Ryu et al., 2019).
The changes in PRI are caused by changes in the pigment bank of
plant leaves on the spectrum (Gamon et al., 1992) and are driven by
the xanthophyll cycle on a daily scale. Researchers have found that
there is a good correlation between PRI and LUE at the leaf, canopy,
and landscape scales (Peñ uelas et al., 1997; Gamon and Surfus, 1999;
Nichol et al., 2000; Asner et al., 2004; Fuentes et al., 2006), some study
used PRI combined with solar-induced chlorophyll fluorescence
(SIF) to estimate GPP (Wang et al., 2020). Taking the canopy
level as an example, the influencing factors of PRI observation are
mainly the characteristic of the canopy itself (such as average leaf
angle and LAI) and observation geometric relations (such as the solar
zenith angle and observed zenith angle) due to the difference in the
observation geometry of the Sun and the observation target. The
spectrometer may receive canopy and background information
through different sunlight and observation angles when giving an
instantaneous observation field of view. Multi-angle spectral
observation provides a means of removing non-physiological
factors from physiological signals. A study of different ecosystems
in the Mediterranean (grassland, alfalfa, chickpea, and rice) showed
that PRI directional responses of horizontally homogeneous canopies
are characterized by higher values in the backscatter direction than in
forward scatter direction (Biriukova et al., 2020). Two studies on
multi-angle PRI indicated that the correlation of PRI and LUEon rice
increased when raising the observed zenith angle (Zheng and Xin
Bao, 2014; Li, 2018). On the basis of multi-angle spectral observation,
recent studies provided that the PRI normalized by the bidirectional
reflectance distribution function (BRDF) model can be explored to
improve the relationship between PRI and LUE (Wen et al., 2018).
The BRDF model describes how land surface reflectance varies with
views and solar angles (Barnsley et al., 1997; Gao et al., 2003; Los et al.,
2005), and the semi-empirical kernel representation is the most
common (Roujean et al., 1992b; Wanner et al., 1995c). Given the
Sun’s position and canopy structure, kernel-based BRDF models
represent angular reflectance distribution as a linear superposition of
a set of basic BRDF shapes.

However, using the BRDF model to improve the relationship
between PRI and LUE was mostly applied to forests (Hilker et al.,
2008; Zhang et al., 2015; Zhang et al., 2017; Wen et al., 2018; Ma
et al., 2020), and there are few reports on crops which are also an
important part of the ecosystem. The lack of data has led to the
uncertainty of the relationship between PRI and LUE on crops
such as rice. It is worth noting that the rice canopy, like most
ground features, belongs to the non-Lambertian body and has not
been reported on using multi-angle data to fit the BRDFmodel. It
is also unclear whether vapor pressure deficit (VPD), air
temperature (Ta), photosynthetically active radiation (PAR),
and LAI can affect PRI capturing LUE changes in rice. A
study on evergreen broad-leaved forests in Malaysia showed
that the correlation between PRI and LUE reached R2 = 0.12.
Using different fitting methods, the impact of VPD on the
relationship between PRI and LUE was 34% and 38% (Nakaji
et al., 2014). Ma et al. (2020) research in subtropical mixed forests
showed that the correlation between PRI and LUE is best at Ta of
10–15°C and is negative with VPD.

In this study, we used the rice field in East China as the
research object to study the relationship between PRI and LUE.
The objectives of this study are, 1) to try to analyze the change law
of multi-angle spectra under the condition of the same
physiological conditions of the canopy, 2) to study the
correlation between PRI and LUE and how it is affected by
environmental factors (VPD, Ta, PAR), and 3) to improve
PRI-LUE correlation by using angle distinction and BRDF
model and evaluate the improvement effect.

MATERIALS AND METHODS

Research Area and Period
The study was carried out in National ClimateObservatory in Shou
county, Anhui Province (32°26 ‘N, 116°47′ E), which covers an area
of 20 hm2, and has an altitude of 27 m. The average temperature
was 25°C during this experiment. Shou county represents the
climate conditions of typical agricultural regions in the middle
and lower reaches of the Yangtze River basically in East China. The
rotation crop is single-cropping medium rice. The time period for
the experiment is from 3 August 2018 to 4 October 2018.

Acquisition of Remote Sensing Field
Observation Data
In this experiment, a JAZ-Combo2 spectrometer (Ocean Optics,
United States) set up at an altitude of 2m above the horizontal field
canopy was used to automatically record the reflectance in all
weather conditions, and it was capable of measuring the
wavelength range of 350–800 nm with a resolution of 1.5 nm.
The spectrometer has two probes, one of which was fitted with a
cosine receiver, mounted vertically upward and fixed to observe the
received solar radiation at any time, while the other is used in
conjunction with the Pan-tilt Unit (PTU) platform (the type is D46-
17.5W). The platform was rotated horizontally from −150° to +150°

and vertically from 0° to 60°, and canopy reflectance measurement at
different observed angles was driven by the rotation of the PTU.

We set the due south direction as the observed azimuth angle
of 0°, east as negative azimuth and west as positive azimuth. The
probe rotated at a speed of 10°/10s. In the vertical direction, the
instrument was observed at zenith angles of 0°, 15°, 30°, 45°, and
60°, respectively. The PTU did not convert the azimuths when the
zenith angle was 0° (the probe is perpendicular to the ground).We
obtained the observed zenith angle and observed azimuth angle
according to the PTU angle code table and recorded the solar
zenith angle and solar azimuth angle at the same time. The
definition of the terms used to describe the geometry of spectral
measurements is given in Table 1. After acquiring multi-angle
spectrometer data, we first retrieved the data. Then, the
whiteboard correction parameters and the value of the central
wavelength were used to control the quality of data. The
whiteboard was a standard diffuse reflection reference for
measurement. After the outliers were removed, we extracted
the canopy reflectance at the wavelengths of 531 and 570 nm
from the archived data, and PRI was calculated using the
following equation (Gamon et al., 1992):
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PRI � R531 − R570

R531 + R570
, (1)

where R531 and R570 represent the reflectance at 531 and
570 nm, respectively. The PRI at different moments need to
be interpolated to obtain the multi-angle PRI every half an
hour due to the working mechanism of the spectrometer.
Along with the reflectance observations, experimental
observations of crop density, plant height, and leaf
inclination were carried out in the rice field at 7-days
intervals. A random sample of ten plants was taken for each
observation to determine the biomass of leaves, spikes and
stems, chlorophyll content, LAI, and carotenoids.

Acquisition and Calculation of Eddy
Covariance and Radiation Data
An infrared open circuit CO2/H2O gas analyzer (LI-7500, LI-Cor
Inc., United States), a data collector, and a 3D ultrasonic
anemometer (CSAT, Campbell., United States) were installed
at a height of 2 m above the canopy to determine the water vapor
content and CO2 concentration in the air and measure the 3D
wind speed and temperature above the canopy. The flux data were
collected by a high-speed data collector and communication

system, with a sampling frequency of 10 Hz. We retrieved the
CO2 flux (Fc), VPD, and Ta at 30-min intervals by Eddypro.
Then, we screened the original flux data obtained and set the
following four criteria to remove invalid flux data, 1) out of range
of the instrument, 2) negative at night, 3) one hour before and
after rain, and 4) when frictional wind speed was below critical
value at night, we set critical value at night to 0.13 m s−1 (Hilker
et al., 2008). The net ecosystem exchange (NEE) was considered
as Fc, which was used in calculating gross primary
production (GPP):

GPP � Re − NEE, (2)
where Re is the ecological respiration rate on the rice field. There
is no photosynthetic effective radiation at night, so the flux of the
night CO2 can be thought to be Re. We used night CO2 flux and
the temperature to match the Vant Hoff’s (Baldocchi et al., 1988;
Verma et al., 2005) breath equation:

Re � Re,ref · eB(Ta−Tref ), (3)
where Re,ref is the respiration rate at the reference temperature
Tref. In this article, the reference T is 25°C, Re,ref =
0.22 mg m2 s−1, and B = 0.1235. Figure 1 shows the
relationship between Fc and Ta at night.

We conducted conventional meteorological element
observations, used the RMET system supplied by VECTOR
and VAISALA, and installed approximately 5 m from the
vorticity correlation system to measure wind direction, wind
speed, temperature, and humidity at two heights of 1 and 2 m
above the canopy. Total radiation (CM11), net radiation (CNR-
1), photosynthetically active radiation (LI-190SB), and rainfall
(TE525MM) were measured above the canopy to obtain PAR.
The data measured earlier were subsequently processed by a data
collector and averaged at 30-min. LUE was calculated using the
following equation (Gamon et al., 1992):

LUE � GPP/APAR, (4)
where APAR represents absorbed photosynthetically active
radiation. The calculation formulas are as follows (Chen, 2014):

APAR � PAR*FPAR, (5)
FPAR � 0.95(1 − e−k×LAI), (6)

where FPAR represents the fraction of the absorbed
photosynthetically active radiation, k is the extinction
coefficient; we chose 0.5 (Chen et al., 2006).

TABLE 1 | Definition of terms used to describe the geometry of the measurements.

OZA Observed zenith angle
OAA Observed azimuth angle
SZA Solar zenith angle
SAA Solar azimuth angle
Backscatter direction Direction of reflected radiation scattering opposite to that of the incident radiation
Forward scatter direction Direction of reflected radiation scattering coinciding with that of the incident radiation

FIGURE 1 | Fitting effect of night NEE (Fc) and temperature (Ta) with the
Vant’s Hoff breath equation between August 3 and October 4, 2018. The
relationship between night NEE and T is significant for examining (R2 = 0.45;
p < 0.05).
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Using Multi-Angle PRI and the BRDF Model
to Track LUE
The PRI obtained from the JAZ-Combo2 spectrometer was
affected by the observation angle and physiological status. We
assumed that the physiological state and lighting conditions of the
rice remained unchanged every 15 min, and we followed the
method by Hilker et al. (Wanner et al., 1995b). Kernel-based
BRDF model was used to present vegetation index from different
angles for the differences in the sun–observer geometry as the
sensor observed different locations around the flux tower
(Wanner et al., 1995a; Wanner et al., 1997), which was widely
used in ground-based measurements and satellite remote sensing
(Roujean et al., 1992b). The semi-empirical kernel representation
is given by Roujean et al. (1992a):

ρ(θv , θs,Δ∅) � ki + kgKL(θv , θs,Δ∅,
h
b
,
b
r
) + kvKR(θv , θs,Δ∅),

(7)
where ki, kg, and kv are isotropic, geometric, and volumetric
scattering parameters, respectively, and KL and KR are the
geometric and volumetric BRDF kernels, since temperate crops
are most commonly represented by the Li-Sparse (Strahler, 1995)
and Ross–Thick (Ross, 1981) kernels (LSRT), h/b and b/rare
crown relative height and shape, take 1 and 2, respectively
(Wanner et al., 1995b). Isotropic scattering assumes that the
leaves in the canopy were randomly distributed and have the
characteristics of a Lambertian surface. Geometric optical
scattering is due to the shape of the vegetation canopy.
Volumetric scattering describes the scattering effects inside the
canopy (Roujean et al., 1992b).

RESULTS

Multi-Angle Rice Spectra and PRI
Figure 2 shows an example of reflectance acquired over a 15-min
interval at the rice canopy, and the reflectance reached a peak at
550 nm, which showed varied reflectance obviously. It can be seen
that reflectance increased with rising OZA (Figure 2A) and was

higher in backscatter direction than in forward scatter direction
(Figure 2B). Figure 3 shows the multi-angle PRI over a 15-min
interval before (a, b, c, and d) and after (e, f, g, and h) noon. The
change characteristics of PRI with angle were the same at 4 days of
the rice growth period. PRI varied with the angle of observation and
was smaller in the direction of the solar incident (backscatter
direction) than the reflective (forward scatter direction) direction.
However, the hot spot effect of the multi-angle PRI was not obvious.

Figure 4 shows multi-angle PRI, LUE, and PAR over a day
interval, and the 3 days we chose can represent the tasseling,
filling, and maturing stages of rice. The change characteristics of
LUE related to the light conditions had a tendency to decrease
with rising PAR (Figures 4G–I) and were close to the change of
PRI, especially in backscatter direction. The cold spot of daily PRI
was concentrated near noon in backscatter direction (Figures 4B
and C). Generally, the LUE and PRI gradually decreased with the
growth of rice.

Using Multi-Angle PRI and the BRDF Model
to Track LUE
Figure 5 shows the comparisons of the relationships between the
LUE and PRI on sunny (R2 = 0.4, p < 0.01) and cloudy (R2 = 0.26,
p < 0.05) days at a half-hourly time scale with OZA of 0°. The
relationship between the LUE and PRI was significantly improved
by distinguishing four OZAs and two scatter directions of PRI on
sunny days, as shown in Figure 6. Generally, the correlation of
PRI and LUE increased with rising OZA and was better in
backscatter than forward scatter direction. The correlation was
most significant at OZA of 60° in backscatter direction but was
less in back than forward scatter direction at OZA of 30°. As
shown in Figure 7, the PRI standardized by the BRDF model to
common observation and solar illumination geometry enhanced
the correlation with LUE (R2 = 0.72, p < 0.01), as the vertical
range of PRI values for a given LUE was reduced. Figure 8 shows
the comparisons of the PRI with and without the correction of the
BRDF model in forward and back scatter direction, respectively.
In the rice growth period, the PRI of backscatter direction was
lower than that of forward scatter direction regardless of
observation or BRDF model. Although the PRI of observation

FIGURE 2 |Multi-angle reflectance within 15 min at 10:30 a.m. on August 29 (ZAAwas about 47.2°), 2018; (A) various OZAwith OAA at −130° and (B) various OAA
with OZA at 60°.
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exhibited a performance of nonlinear change, it was lowest at
OZA of 60° and −60°, respectively. In brief, the BRDFmodel made
PRI linear with OZA in both scatter directions.

The Effect of Environmental Variation on the
Relationship Between PRI and LUE
Figures 9A and B illustrate the effects of VPD on LUE and PRI,
observed using the JAZ-Combo2 spectrometer. Figure 7 reveals the
change in the correlation between PRI and LUE as a function of
VPD. PRI decreased with rising VPD while LUE increased, and the

correlation between PRI and LUE decreased with rising VPD. The
best correlation between PRI and LUE (R2 = 0.32) occurred when
VPD<2 kpa. Figure 10 shows the change in the correlation between
the PRI and the LUE as a function of air temperature, which ranged
from 20 to 35°C in our study, and the LUE and PRI increased
gradually with rising Ta. The correlation was at its largest (R2 = 0.29)
when Ta was between 25 and 30°C. Table 2 shows the response of
LUE and PRI to PAR, VPD and Ta on sunny and cloudy days. On
sunny days, LUE was affected by PAR and VPD, PAR had the best
impact on LUE (R2 = 0.27), followed by Ta (R2 = 0.26), while the
effect of VPD on LUE can be ignored, and PRI also had the best

FIGURE 3 | Multi-angle PRI within 15 min at 10:30 (A–D) and 13:30 (E–H) in August 10, August 29, September 12, and September 23, 2018. The polar angles
represent OAA, and the polar diameter represents OZA.
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FIGURE 4 | Daily multi-angle-PRI (A–C), LUE (D–F), and PAR (G–I) of the canopy during rice growth. Three times were selected as representative periods of rice
growth [(A–I) represent 9:00–15:00 in August 10, August 29, and September 12, 2018, respectively]. The x-axis is the SZA; the negative direction of which is before 12:
00. The negative direction of the left y-axis in (A–C) is the backscatter. The values between the measurements are linearly interpolated.

FIGURE 5 | Correlation between PRI and LUE on sunny days (A) and cloudy days (B) with the OZA of 0°.
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response to PAR (R2 = 0.26), while Ta and VPD had no effect on
PRI. However, the response was not obvious, even though PAR
could explain LUE (R2 = 0.19).

DISCUSSION

Multi-Angle Canopy Reflectance and PRI
The results in Figure 3 confirm the expectation of reflectance
changing with observation angles, which correlated with canopy
structures and different observation angles. The characteristics of
reflectance in observation angles are mainly due to the differences
in the sun–observer geometry as the sensor observes different
locations around the observation tower under the assumption
that the physiological state remains unchanged (Hilker et al.,
2010a). The PRI over a 15-min interval was smaller in backscatter
than forward scatter direction (Figure 3). This result seems to be
inconsistent with the that reported byMa et al. (2020), whichmay
be explained by the difference in physiological characteristics of
rice from forests. The cold spot PRI appeared in the backscatter
direction (Figures 4B and C), and the hot spot appeared in the
forward scatter direction (Figure 4B). The change of PRI near
−60° is linear with the daily change of LUE (Figures 4A–F).
Rising OZA seems to be more conducive to PRI tracking LUE,
and this result was consistent with that reported by Khelvi et al.
(Biriukova et al., 2020). The improvement of correlation between
PRI and LUE was limited at the OZA of 15° and 30° but obvious at
45° and 60° (Figure 6). The correlation was greatest at OZA of 60°

with a backscatter direction (Figure 6D). The different
correlations in OZAs and scatter directions may be ascribed to

FIGURE 6 | Correlation comparison of PRI-LUE from different observation angles on clear days. (A–D) represent OZAs of 15°, 30°, 45°, and 60°, respectively.

FIGURE 7 | Relationship between LUE and PRI corrected by BRDF.
After using the BRDFmodel to correct PRI, the correlation was improved (R2 =
0.72; p < 0.01).
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the fact that the leaf inclination of the whole rice canopy was
about 60° in our study. The OZA of 60° reduces the influence of
PRI instability caused by the incorporation of non-canopy
information, and the backscatter direction reduces the
influence of canopy shadow. Generally, multi-angle
observation can reveal the anisotropy of vegetation surface
reflectance, reducing the influence of the structural and
shadow on vegetation canopy according to the canopy structures.

Response of the Correlation Between PRI
and LUE to BRDF Model
The multi-angle PRI corrected by the semi-empirical kernel-driven
bidirectional BRDF model improved the correlation with LUE
(Figure 7). The result indicates that using the BRDF model
correction, the spatial structure characteristics of vegetation can
be more accurately observed through spectral observations (Hall
et al., 2008), can eliminate the uncertainty brought by the Sun and

observation angles, and increase the comparability of different
observations (Ma et al., 2020). The changing angle of observation
and Sun will cause the variance of the observation data to increase.
This uncertainty caused by the angle factor will no longer exist after
using the BRDFmodel correction, and the estimation accuracy of the
LUE by PRI will be improved. However, this improvement of rice
seems to be worse than the results reported by some boreal and
tropical forests (Hilker et al., 2008; Wen et al., 2018; Ma et al., 2020).
This seems to be due to the better continuity of the rice canopy
structures, and further experiments on other crops are needed to
verify the feasibility of the BRDF model in multi-angle observations
of crops.

Response of PRI and LUE to Environmental
Factors
The spectroscopic and flux observation is also affected by growth
environment factors, such as light intensity, air temperature, and

FIGURE 8 | PRI observations and BRDF fitting values under different observation zenith angles in forward (A) and backward (B) scattering directions.

FIGURE 9 | Half-hour time scale of PRI and LUE are as affected by VPD (A,B). Correlation between PRI and LUE under different VPD gradings (C).
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moisture. Previous studies found that environmental factors
affected the physiological state of the plant and the accuracy
of PRI tracking LUE (Chunlin et al., 2007; Hall et al., 2008;
Hilker et al., 2010b; Garbulsky et al., 2011; Soudani et al.,
2014; Zhang et al., 2015). The results of Figure 5 confirm the
difference in PRI-LUE correlation between sunny and cloudy
days. This difference explained that the change of PRI is
undefined when radiation is scattered and light diffused in
sky, leading to unclear changes in LUE and PRI (Table 2).
PRI and LUE were also sensitive to Ta, and the correlation
between PRI and LUE was greater in a low VPD environment
(Figure 9), which explained the effect of moisture and
temperature on PRI and LUE. The temperature does not
interfere with the characterization of LUE by PRI (Ma et al.,
2020). The response of PRI and LUE to environmental factors
was inconsistent with the results of forests (Hilker et al.,
2010a; Zhang et al., 2017; Ma et al., 2020). Therefore, finding
a clear response of PRI and LUE to environmental change on
rice still needs further research.

CONCLUSION

This study used the reflectance and flux data by the multi-angle
automatic remote sensing platform and the flux tower during the
period from 3 August 2018 to 4 October 2018. The goal was to
study the ability of PRI in estimating the LUE of middle and lower
reaches of the Yangtze River rice in China. The following
conclusions were drawn from this study:

1 The reflectance changes with observation angles with the
physiological state remaining unchanged. The PRI was
smaller in backscatter than the forward scatter direction
over a 15-min interval.

2 The improvement of correlation between PRI and LUEwas greatest
at OZA of 60° with backscatter direction (R2 = 0.7), and using the
BRDF model also improved this correlation (R2 = 0.72).

3 The correlation of PRI and LUE on rice canopy was greater on
sunny days than on cloudy days, which was mostly affected by
PAR, followed by VPD.

PRI has a vital reference value in estimating LUE. However, strict
requirements for testing and observation sitesmay limit the promotion
of research results to some extent. Separating PRI and LUE of sunlit
and shaded leaves still needs to be verified in crop ecosystems.
Subsequent research could be carried out on multiple crops to
make it possible to apply the PRI inversion LUE in a large area.
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FIGURE 10 | Half-hour time scale of PRI and LUE are as affected by Ta (A,B). Correlation between PRI and LUE under different Ta gradings (C).

TABLE 2 | Comparison of responses of PRI and LUE to environmental factors in
the sunny and cloudy days.

R2 Sunny days Cloudy days

PRI LUE PRI LUE

PAR 0.26* 0.27* 0.06 0.19*
VPD 0 0.01 0 0.02
Ta 0.06 0.26* 0.03 0

*p< 0.05.
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