
A Prediction Model of Hydrodynamic
Landslide Evolution Process Based on
Deep Learning Supported by
Monitoring Big Data
Rubin Wang1,2*, Kun Zhang1, Jian Qi1, Weiya Xu1, Yan Long1 and Haifeng Huang2

1Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, China,
2National Field Observation and Research Station of Landslides in the Three Gorges Reservoir Area of Yangtze River, China Three
Gorges University, Yichang, China

Owing to the complex formation mechanism of hydrodynamic landslides and the
involvement of multiple influencing factors, the accuracy of the current prediction
model of hydrodynamic landslide evolution process is unsatisfactory. This limitation
prevents adequate monitoring and early warning on possible landslides in an area. To
improve the accuracy of prediction model of hydrodynamic landslide evolution process
supported by monitoring big data, the variational mode decomposition (VMD) and support
vector regression (SVR) based on deep learning were integrated in the present study.
Typical hydrodynamic landslide in the Three Gorges Reservoir Area (TGRA) in China is
used as a case study for landslide displacement prediction. First, the VMD was utilized to
decompose the cumulative displacement into the trend, periodic, and random terms.
Then, external factors were decomposed into subsequences, and those characterized by
periodicity and randomness were selected as input datasets. The associated
displacement terms were then predicted using the Random Search–Support Vector
Regression model. Finally, the total displacement was obtained by superimposing the
three predicted components, and this was used to evaluate the performance of the model.
The results show that the model improves the performance and accuracy of predicting the
displacement associated with a hydrodynamic landslide, and the relative error is ≤2%.

Keywords: hydrodynamic landslide, prediction model, variational mode decomposition, random search-support
vector regression, deep learning

INTRODUCTION

A landslide is a geological hazard associated with severe environmental consequences, and it often
occurs in China. The prediction of landslide deformation is an established approach for preventing
landslide hazards (Tien et al., 2018). Hydrodynamic landslides commonly occur in reservoir areas,
and their displacement curves exhibit stages associated with the rainfall and reservoir level changes.
These changes and other influencing factors (Huang, 2007; Xu et al., 2008) in the reservoir area
manifest after years. Therefore, accurate prediction of landslide displacement is challenging, and
thus, this remains an area of significant interest in the field of natural disaster prevention and control.

Following the impoundment of the Three Gorges Reservoir in China in 2009, disasters involving
hydrodynamic landslides have occurred frequently in the Three Gorges Reservoir Area (TGRA).
These landslides, which have caused tremendous losses, are attributed to changes in the reservoir
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water level, rainfall, and other factors. Therefore, several studies
on the prediction of landslides and the associated damage are
available. Studies on landslide displacement prediction can
roughly be partitioned based on the duration and prediction
method into three groups (Xu et al., 2011). The empirical
approach involving the landslide displacement rate was used
to generate initial prediction models, which were then
improved by comparing the modeled to field monitoring data
(Sidle et al., 1985). The statistical approach models, such as the
Verhulst (Long et al., 2008), Verhulst inverse function (Belle et al.,
2014), golden section, Markov chain prediction (Zhao et al.,
2013), and time-series (Mazzanti et al., 2011) then improved
landslide deformation prediction. Further, the intelligent analysis
and prediction approach, which emerged in the 1990s, involves
artificial intelligence-based nonlinear theories, which produce
data-driven models for systematic prediction of landslide
deformation (Korup and Stolle, 2014).

However, models produced using existing landslide
displacement prediction methods are based mainly on
geological monitoring data (e.g., reservoir water level, rainfall,
and landslide displacement) to predict future displacement
(Zhang et al., 2015). Models including the Gray (GM) (Huang
et al., 2017), extreme learning machine (ELM) (Bernardie et al.,
2014), and support vector machine (SVM) (Lian et al., 2014)
involve different neural networks (Bergstra and Bengio, 2012;
Hochreiter and Schmidhuber, 1997) (e.g., back propagation
(BPNN), recurrent (RNN), etc.) and have generated varying
prediction results. In fact, different models are associated with
advantages and drawbacks. The GM, for example, involves a
simple structure but the prediction accuracy is unsatisfactory,
while the ELM is fast and requires little training data, and the
BPNN commonly produces an unsatisfactory fitting performance
for complex nonlinear curves.

The support vector regression (SVR) model is based on the
machine learning theory, and it involves few training samples and
a simple structure. Its prediction performance is better than that
of a conventional neural network model, and thus, it is suitable
for landslide displacement prediction involving a short
monitoring period. SVR parameter search methods include the
following: particle swarm optimization (PSO), genetic algorithm
(GA), grid search (GS), and random search (RS). The GA and
PSO are heuristic algorithms involving complex operations, while
the GS algorithm encompasses all possible solutions for a given
parameter range, and thus, it exhibits a higher classification
accuracy. Compared to other methods, the RS algorithm is
associated with a comparable prediction performance and it is
computationally inexpensive (Wen et al., 2017).

The evolution of landslide displacement is influenced by many
factors involving complex relationships that are difficult to
characterize accurately. Therefore, in data-driven multivariate
prediction models, time series decomposition methods are
commonly introduced to simplify the problem (Xu et al.,
2011). The displacement time series is decomposed into parts
associated with varying data characteristics such as, the trend,
periodic, and random terms, and varied models serve in
forecasting the decomposition terms. The prediction accuracy
of a model increases as the factors considered are increased. The

moving average method (Huang et al., 1998; Xu et al., 2011) and
the empirical mode decomposition (EMD) (Liu et al., 2020) are
methods commonly employed for decomposition in
hydrodynamic landslide displacement prediction studies
that produce satisfactory results. However, controlling the
decomposition terms obtained by these methods is
challenging, and therefore, correlations between different
factors and the displacement decomposition terms are poor.
In addition, the physical meaning of each decomposition term
is inadequately explained using these methods
(Dragomiretskiy and Zosso, 2014). The variational mode
decomposition (VMD) method (Wang and Min, 2014)
employed in the present study resolves these shortcomings.
Similar to the EMD, the VMD is a signal processing method
suitable for handling non-smooth and non-linear signals. It
was recently applied at the displacement decomposition stage
of landslide deformation prediction (Dragomiretskiy and
Zosso, 2014) and produced good results.

In the present study, the Bazimen landslide, which
occurred in the TGRA, was used as a case study to
establish a hydrodynamic landslide displacement
prediction model by integrating the VMD and RS–SVR
methods. In the time series model, the VMD method was
used to decompose the cumulative monitored displacement
into the trend, periodic, and random terms, thereby
assigning a clear physical meaning to each decomposition
term. After determining factors strongly correlated to each
term, the RS–SVR method was utilized to predict the
landslide displacement. The prediction results were then
compared with those for the KRR, ELM, LSTM, and
GS–SVR models.

METHODOLOGY

Time Series Analysis
In general, according to the additive time series, the cumulative
displacement of a landslide can be expressed as follows:

X(t) � ϕ(t) + η(t) + ε(t) (1)

where X(t) denotes the time series displacement value, ϕ(t)
represents the trend term displacement function, η(t) is the
periodic term displacement function, and ε(t) designates the
random term displacement function involving uncertainty.
Landslide deformation is mainly controlled by intrinsic
(topography, geological structure, etc.) and external
(temperature, rainfall, reservoir level, etc.) factors (Li and Xu,
2003). The trend term displacement associated with intrinsic
factors is an approximate function that increases monotonically
with time. It reflects the overall landslide cumulative
displacement. Conversely, the periodic term displacement is an
approximate function controlled by factors such as, rainfall,
reservoir level change, etc. Unpredictable episodic factors
including human activities and seismic effects also influence
the evolution of landslide displacement, and this is expressed
as the random term displacement (Vapnik, 1995; Zheng et al.,
2005).
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Variational Mode Decomposition
VMD is an adaptive non-recursive approach for mode
variation and signal processing. The technique is
advantageous because the mode decompositions can be
determined. Its adaptiveness is demonstrated by evaluating
mode decompositions associated with a given sequence
according to the actual situation. The subsequent search
and solution steps can be adaptively matched to the optimal
central frequency and the finite bandwidth of each mode.
Consequently, effective separation of the intrinsic mode
component (IMF), frequency domain partitioning of the
signal, and the N-efficient decomposition components of a
given signal can be achieved. This approach is suitable for
finding the optimal solution of a variational problem because it
overcomes the endpoint effect and mode component mixing
issues associated with the EMD method. In addition, it
involves a better mathematical foundation suitable for
reducing the complexity and nonlinearity of time series
non-stationarity, decomposition into relatively smooth sub-
series involving different frequency scales, and handling of
non-stationary sequences. In fact, the basis of the VMD is to
formulate and solve variational problems.

First, the variational problem is formulated by assuming that
the original signal f can be decomposed into k components, and
the decomposed sequence is guaranteed to represent a finite
bandwidth mode component characterized by a central
frequency. The sum of the estimated bandwidths of each
mode is minimized, with the sum of all modes equaling the
monitored signal as the constraint. The constrained variational
problem is then expressed as follows:

min
{uk},{ωk}

⎧⎨⎩∑
k

����[zt[(δ(t) + j/πt)puk(t)]e−jωkt]����22⎫⎬⎭
s.t.∑K

k�1
uk � f

(2)

where K represents the modes requiring decomposition (positive
integer), {uk}, {ωk} denote the central frequency of the kth mode
component after decomposition, δ(t) is the Dirac function, and p
designates the convolution operator.

Equation 2 is then solved, and the Lagrange multiplier λ is
used to convert the constrained variational problem into an
unconstrained variational problem. The generalized Lagrange
expression obtained is given as follows:

L({uk}, {ωk}, λ) � α∑
k

�������[zt[(δ(t) + j/πt)puk(t)]e−jωkt

�������
2

2
+

���������f(t) −∑
k

uk(t)
���������
2

2

+ 〈λ(t), f(t) −∑
k

uk(t)〉

(3)

where α is a quadratic penalty factor which reduces the Gaussian
noise interference. The alternating directional multiplier (ADM)
iterative algorithm combined with the Parseval-Plancheral
theorem and Fourier isometric transforms were employed for
optimization to obtain each mode component and the central

frequency. The saddle point of the extended Lagrange function
was then sought by iterations involving uk,ωk, and λ. The detailed
process involved the following equations:

ûn+1
k (w) ←

f̂(w) − Σ
i≠k

ûi(ω) + λ̂(ω)/2

1 + 2α(ω − ωk)2 (4)

ωn+1
k ←

∫∞

0
ω
∣∣∣∣ûn+1

k (ω)∣∣∣∣2dω
∫∞

0

∣∣∣∣ûn+1
k (ω)∣∣∣∣2dω (5)

λ̂
n+1(ω) ← λ̂

n(ω) + γ⎛⎝f̂(ω) −∑
k

ûn+1
k (ω)⎞⎠ (6)

where γ is the noise tolerance, which satisfies the fidelity
requirement of signal decomposition, and ûn+1k (ω), ûi(ω),
f̂(ω), and λ̂(ω) are the Fourier transforms of ûn+1k (t), f(t),
and λ(t), respectively.

The iterative solution process of VMD is summarized as
follows:

S1: initialize û1k,ω
1
k, λ

1 and maximize the iterations N, n ← 0.
S2: update ûk and ωk using Eqs. 4, 5.
S3: update λ̂ using Eq. 6
S4: If the accuracy convergence criterion is Σ

k
‖ûn+1k −

ûnk‖22/‖ûnk‖22 < ε and n<N is not satisfied, then return to

the second step, otherwise complete the iteration and
obtain the final ûk and ωk.

Support Vector Regression
The SVR model proposed by Vapnik (1995) has been widely
used for solving nonlinear problems. In this model, the sample
data is divided into training and test samples. Then, the pre-
selected input vector (training samples) is mapped to a high-
dimensional feature space. The best fit is then obtained in the
space of optimal decision function models and the testing
samples are utilized to validate the results. This approach is
primarily intended for predictive analysis (Üstün et al., 2005;
Wang et al., 2004; Yilmaz, 2010). Coordinates {xj, yj} are the
feature vectors of the sample data, where xj � {xj1, xj2,/, xjp}
is the factor controlling yj and p is the number of values in yj.
The regression estimation function of the support vector
machine (SVM) is expressed as follows:

f(x) � WT∅(x) + b (7)

where ∅(x) is the nonlinear mapping function of the sample
data, which is mapped to the feature space, WT represents the
autocovariance coefficient of the estimation function, and b is the
bias of the estimation function. The parametersWT and b can be
obtained by minimizing the following equation:

D(f) � 1
2

����W2
���� + C

n
∑n
j�1
Rε[yj, f(xj)] (8)

whereD(f) is a generalized optimal classification plane function,
which considers the minimum number of incorrect sample points
and the maximum classification interval, W2 represents the
complexity of the model, C designates the penalty parameter,
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and Rε denotes the error control function of ε. Thus, the
optimization problem can be expressed as follows:

minQ(W, ξ) � 1
2

������W2
������ + C∑n

j�1
ξj + ξ*j (9)

WT∅(xj) + b − yj ≤ ε + ξj (10)

yj −WT∅(xj) − b≤ ε + ξ*j (11)

ξj ≥ 0, ξ
*
j ≥ 0(j � 1, 2,/, n) (12)

where ξj, ξ
*
j are relaxation factors.

If partial derivatives of W, b, and ξj are 0, then, based on the
Lagrange equation and duality theory, the double optimization
problem can be expressed as follows:

L(W, a, b, ε, y) � min
1
2
∑n
r,j�1

(ar − apr)THr,j* (13)

(ar − a*r) + ε∑n
r,j�1

(ar − a*r) +∑n
r�1
yr(ar − a*r) (14)

∑n
r�1
(ar − a*r) � 0, (0≤ ar, apr ≤C) (15)

Hr,j � K(xr, xj) � ∅(xr)T∅(xj), (r � 1, 2,/, n) (16)

Here, K(xr, xj) is the kernel function, which in the present
study is a Gaussian kernel function (RBF). Thus, the SVR model
can be expressed as follows:

f(x) � ∑n
j�1
(a*j − aj)K(xj, x) + b (17)

Linear problems in engineering can be solved using the
inseparable SVM. Based on a mapping function, the linearly
inseparable problem is mapped to a linearly separable problem in
a high-dimensional space. This model, which is based on the
statistical learning theory requires few samples for learning. Thus,
it performs better than conventional feedback (BP) neural
networks because of its simple structure. Therefore, this model
is suitable for predicting landslide displacement involving a short
monitoring period.

CASE STUDY:BAZIMEN LANDSLIDE

Data Source and Description
The Bazimen landslide is located on the right bank of the Xiangxi
River in TGRA, as shown in Figure 1, with the following
geographical coordinates: longitude 110°45′30″, latitude
30°58′16″. The slope is oriented north-south, the landslide is
spread in a winnowing fan shape at the foot of the slope, in the
range of 139～280m in elevation, high in the west and low in the
east, sloping to the east, and the ground slope of the landslide is
10–30°, which is ladder-like and undulating. The part of the
landslide above the water surface is 380 m long, 100–500 m wide,
10–35 m thick, and has a volume of about two million cubic
meters.

Ten deformation monitoring points are present across the
landslide area, and the oldest points (ZG110 and ZG111) are in
the area associated with the largest landslide deformation. These
representative points adequately reflect the evolution trend of the
displacement linked to the Bazimen landslide. In the present
study, the monitoring data from the ZG110 point was utilized.
According to the data, the landslide deformation rate increased
annually from May to September, and the cumulative
displacement curve is steeper in this interval, as shown in
Figure 2. As of December 31, 2018, the cumulative horizontal
displacement and cumulative displacement direction of the
ZG110 monitoring point were 1,525.73 mm and 117°,
respectively.

The TGRA is characterized by an intense rainy season, and the
average annual rainfall exceeds 1,000 mm. Rainfall, which
significantly impacts the evolution of the landslide
deformation in the TGRA, exhibits an obvious periodicity,
which reflects the rainy and dry seasons (Figure 2). In the
TGRA, rainfall is mainly concentrated between
May–September, and the maximum monthly rainfall
commonly exceeds 220 mm, with an average of 321.3 mm
during the monitoring period. Considering that the Three
Gorges Hydropower Station has been operational since 2009,
in the present study, the reservoir water level dispatch data from
2009 to 2018 were utilized. Owing to flood control and water
storage requirements, the reservoir water level change data, which
involve a maximum variation of 30 m, exhibit obvious cyclical
characteristics. Considering a cycle from October 2016 to
October 2017 as an example, the reservoir water level rose
from November to May, and stayed high during operation in
June, and then decreased from July to September (Figure 2).

FIGURE 1 | Illustration of the monitoring layout in the Bazimen landslide
area.
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Prediction of Landslide Evolution Process
Supported by Monitoring Big Data
In the present study, monitoring data for the ZG110 point from
January 2009 to December 2018 were used to assess the suitability
of our model. Monitoring data for the first 100 months served as
the training samples, while data for the next 20 months were used

as the testing samples. To minimize the impact of missing data or
information in the displacement decomposition and model
training, and to enhance learning of the monitoring data
during the entire process by the prediction model, the
sequence “displacement decomposition → partitioning of the
dataset into training and testing samples” was not pursued. In

FIGURE 2 | Relationship between the cumulative displacement, reservoir water level, and rainfall in the Bazimen landslide area.

FIGURE 3 | Flowchart of the components utilized for landslide displacement prediction. Decomposition of the cumulative displacement and the controlling factors.
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contrast, the approach used involved “dividing the dataset into
training and testing samples → displacement decomposition”.
Finally, indicators, such as the absolute error (AR), relative error
(RE), and root mean square error (RMSE), were used to evaluate
the prediction performance of the model, and the entire process is
illustrated in Figure 3.

The VMD model was used to decompose the cumulative
displacement associated with the Bazimen landslide into the
trend, periodic, and random terms (Figure 4). The IMF
parameter K in the VMD model, α, the tolerance of the
convergence criterion τ, and the time step were set to 3, 1,
10−6, and 0.01, respectively. In the model decomposition
results, the low-frequency component corresponds to the
displacement of the periodic term, while the high-frequency
component represents the displacement of the random term,
and the residual component is the displacement of the
trend term.

Infiltration of rainfall alters the physical and mechanical
properties of the landslide mass, and this increases the
water content and bulk weight of the slope mass.
Besides, infiltration also changes the shear strength,
sliding force, and slip resistance of the slope mass
because of effects of the static and dynamic water
pressures. These impacts are prominent during long-
term or intense rainfall, which significantly affects the
stability of the landslide mass.

Scouring of the landslide mass associated with rainfall also
affects the slope stability. Intense rainfall produces slope runoff,
which promotes scouring of the surface of the landslide mass and
erosion of its base, and this ultimately, changes the structure of
the landslide mass. The resulting increase in the area and mass of
the landslide prolapse severely affect the stability of the landslide
mass. Concurrently, rainfall can easily penetrate the slip zone
through fractures produced by the landslide area deformation.
This significantly reduces the strength of the slip zone and further
weakens the stability of the landslide area. To assess the impact of
long-term rainfall, the rainfall of a month (R1) and that of the
chosen and previous month (R2) were selected as the main factors
controlling the landslide deformation.

The physical and mechanical properties of the slope mass
within the influence of the reservoir water level are also affected
because the landslide area soil mass comprises mainly siltstones
and sandstones. Therefore, the shear strength of the soil mass
beneath the water level is significantly decreased. Simultaneously,
the scouring caused by the rise and decline of the reservoir water
alters the morphology of the slope angle and landslide mass,
which is detrimental to the stability of the landslide mass.

The mechanical impact of the reservoir water level change on
the landslide mass is mainly associated with hydrostatic and
dynamic water pressures. The hydrostatic pressure acts vertically
on the landslide mass, which enhances the stability of the
landslide area. However, the submerged soil particles also

FIGURE 4 | Plot showing the decomposition of the cumulative displacement.
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experience buoyancy simultaneously, which reduces the stability
of the slope mass. The dynamic action mainly involves the force
generated by groundwater in pores between soil particles in the
slope mass. The central gentle section of the Bazimen landslide

area is mostly beneath the 145 m level because of the rapid
reservoir water level decline and the low permeability of the
landslide mass. Therefore, the groundwater level in the slope
mass lags the reservoir water level decline, and this produces a
positive drop in the reservoir water level. Thus, groundwater
seeps from the landslide mass, and the infiltration pressure is
directed towards the exterior of the slope mass, thereby
significantly deforming the slope mass during the sudden
reservoir water level decline. Considering that the impact of
the reservoir water level fluctuation is a slow process, changes
in a month (W1) and 2 months (W2) were considered controlling
factors. The increase of the landslide displacement in a month
(D1) and the cumulative increment for 2 months (D2) were also
selected as influencing factors.

If the IMF parameter K is set to two in the VMD model,
each influencing factor is decomposed into a high-frequency
and a low-frequency term, while other parameters in the model
are unchanged. Decomposition results associated with the
rainfall (R1), the reservoir level change (W1), and the
incremental displacement (D1) in a month as well as the
cumulative landslide displacement are displayed in
Figure 5. The dotted lines in blue represent the low-
frequency terms of each indicator, and these are
characterized by steady cyclical variations. The eight peaks
and troughs associated with the indicator curve for each
influencing factor correspond to the eight monitoring
periods of the selected training dataset. Similarly, the dotted
lines in red depict the high-frequency term of various
indicators, and the curves exhibit irregular variation during
the monitoring period. Therefore, the high-frequency term is
suitable for predicting the random displacement, while the
low-frequency term is useful for forecasting the periodic
displacement.

Based on GRAmethod, the grey correlation degree γk between
the periodic displacement, the random displacement, and the
controlling factor decomposition terms were calculated and the
results are presented in Table 1. A γk value >0.6 between the
displacement decomposition term and the decomposition term of
a controlling factor indicates that they are closely related

FIGURE 5 | Plots exhibiting the decomposition of different influencing
factors.

TABLE 1 |GRA results between the displacement periodic and random terms and
the influencing factors.

R1 R2 W1 W2 D1 D2

Periodic term 0.7810 0.7836 0.8309 0.8422 0.8210 0.8025
Random term 0.7929 0.7975 0.8314 0.8495 0.7803 0.7868

Trend displacement prediction.

TABLE 2 |Data for displacement trend parameters associated with the polynomial
fitting.

Parameters Goodness-of-fit (R2)

A B C d

−4.368e-5 −0.03449 17.77 428.10 0.9968
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(Schölkopf, 2008) and validates the rationale for utilizing the
chosen factors as the prediction model input.

In this study, the amount of discrete data used for fitting is
small, the curve shape is smooth, and complex fitting methods are
not required. The ideal effect can be achieved by using cubic
polynomial fitting. First, fitting of the trend term was achieved
using the following least squares-based polynomial:

ε(t) � at3 + bt2 + ct + d (18)

The calculated data for various parameters are presented in
Table 2, and the best-fit curve based on the cubic polynomial least
squares method was obtained. The main purpose of the least
squares curve-fitting is to generate the minimum sum of squares
for each error, and the prediction results are shown in Figure 6.

Periodic Displacement Prediction
The periodic displacement reflects the influence of external factors,
such as rainfall and the reservoir water level on the landslide
displacement. In the present study, the RS–SVR model was
employed for prediction of the periodic displacement. RS
algorithm is a simple direct method used to find the best
parameter set of an SVR model. The parameters C and γ in the
model are independent, and thus, the optimal-parameter-searching
process can be performed simultaneously after selecting sets of values

for both parameters. Each pair of γ and C values is then evaluated
through cross-validation, and that with the highest accuracy is
considered the optimal solution. In RS algorithm, the parameter-
search process is random, where each parameter setting value is
sampled fromadistribution to obtain the possible value. The following
are the advantages of the RS relative to theGS: the freedom to choose a
budget independent of the number of parameters and possible values
and the negligible effect on the efficiency because of the addition of
parameters with no effect on the performance. Bergstra and Bengio
empirically and theoretically demonstrated the superiority of the RS
relative to the GS. The performance of the RS and GS for identical
searches are shown in Figure 7.

According to existing studies, when using SVM algorithms for
training and classification of datasets, the choice of parameters, such as
the kernel and penalty factors significantly impact the accuracy and
performance of the prediction model (Schölkopf, 2008). Therefore,
reasonable model parameters can enhance the prediction accuracy and
significantly elevate the efficiency of themodel. The PSO (Eberhart and
Kennady, 2002), GA (Chen et al., 2004), RS, and GS (Kennedy and
Eberhart, 2002) are the most commonly used SVM parameter search
methods. However, the parameter optimizations associated with the
GA and PSO are characterized by randomness and chance, and thus,
the optimal parameters determined may be local. Therefore, these
algorithms classified as heuristic involve shortcomings. Conversely, the
RS algorithm explores all possible solutions within a particular range,
thereby yielding a more accurate final parameter selection.

In the training phase of the model, the low-frequency components
of the selected influencing factors associatedwith a timestep t served as
the input. The optimal model parameters generated by the RS
algorithm are presented in Table 3, while the training and
validation data for the periodic term displacement are

FIGURE 6 | Plot showing the prediction of the trend displacement.

FIGURE 7 | Illustration of the (A) grid and (B) random search layouts.

TABLE 3 | Data for parameters of the GS-SVR model used for periodic
displacement prediction.

Parameter R2 RMSE

C Γ

100.35 0.2760 0.9966 0.0973

FIGURE 8 | Plot displaying the prediction of periodic displacement.
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displayed in Figure 8. Obviously, the smooth curves of the
prediction data exhibit periodic variation, which demonstrates
the excellent performance of the RS-SVR prediction model.

Random Displacement Prediction
The random term displacement highlights the influence of
uncertainty factors (e.g., human activities, earthquakes, etc.) on
the change in landslide displacement. The displacement curve is
characterized by obvious fluctuations. However, the RS-SVR
model also displays excellent fitting and prediction

performance for such data. In the training phase of the model,
high-frequency components of controlling factors with a timestep
t served as the input. Optimal parameters obtained using the RS
algorithm are presented in Table 4, while the training and
validation data of the random term displacement are shown in
Figure 9. The smooth curves of the prediction data evidently
display periodic variation, which also demonstrates the excellent
performance of the RS-SVR prediction model.

Cumulative Displacement Prediction
From Eq. 1, the cumulative displacement of the landslide was
obtained through the linear summation of the trend, periodic,
and random terms, and the prediction results are shown in
Figure 10. The AE of the accumulated displacement
associated with the Bazimen landslide displacement

TABLE 4 | Data for parameters of RS-SVR model used for the random
displacement prediction.

Parameter R2 RMSE

C Γ

130.26 0.2930 0.9995 0.957

FIGURE 9 | Plot highlighting the prediction of random displacement.

FIGURE 10 | Plots highlighting the prediction of the cumulative displacement.

FIGURE 11 | Plots showing a comparison of prediction accuracy of the
periodic displacement for multiple models
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monitoring point ZG110 is less than 20 mm, while the RE is less
than 2.0% for each month of the prediction duration. The
prediction results demonstrate that the RS-SVR prediction
model is consistent with the monitoring data. The predicted
cumulative displacement also exhibits the step-like variation
associated with the displacement monitoring curve. Therefore,
the RS-SVR model adequately predicts the landslide
displacement.

Evaluation and Comparison of Prediction
Results
To demonstrate the superiority of the RS-SVR compared to other
algorithms, the prediction results were compared with those of
the KRR, ELM, LSTM and GS-SVR models. Monitoring data for
the Bazimen landslide periodic displacement were utilized as the
validation dataset, and the results are shown in Figure 11.
Relative to the other four models, the RS-SVR (dotted lines in
red) produced a better fit of the monitored periodic displacement
and a superior performance. The RMSE values for the RS-SVR,
GS-SVR, ELM, LSTM, and KRR models presented in Table 5 are
4.3950, 10.3673, 81.5314, 121.8, and 12.8, respectively. The values
of 81.5314, 121.8974 and 88.4979 fully accommodate the
prediction performance of each model.

However, this model also has applicable conditions and the
biggest difficulty in the application of the new predictionmodel of
landslide are: when the data size is insufficient, there is a chance of
overfitting, resulting in a decrease in prediction accuracy; in
addition, due to the small training data set, the model may
not be able to learn all the features of the original data set.
When using the new data set as the model input, the prediction
accuracy of existing models will also decrease.

CONCLUSION

In the present study, the variational mode decomposition and
random search-support vector regression algorithms were
integrated to predict landslide displacement, and the results
were validated using monitoring data for the Bazimen
landslide. The findings of the study are summarized as follows:

1) VMD method has the advantage that the number of mode
decompositions can be determined, and its adaptiveness is
demonstrated by determining the number of mode
decompositions of the given sequence according to the actual
situation. And the VMD model can reasonably explain the
physical meaning of each decomposition item: the
monotonically increasing term is the periodic displacement, the
high-frequency term is the random displacement, and the low-
frequency term is the periodic displacement.

2) Themodel is based on statistical learning theory and has many
advantages. Particularly, it requires only a very small sample
for learning, has a simple statistical structure, and performs
better than traditional backpropagation neural networks.
Thus, the model is appropriate for predicting the
displacement of landslides with only short-period
observational data.

3) The results confirmed the decomposition of landslide
displacement based on the VMD theory into the trend,
periodic, and random terms, with each term associated to a
distinct physical meaning. The cumulative displacement
predicted represented the sum of predicted results for
various decomposition terms. This approach produced a
high decomposition efficiency and clear results, which
validated its applicability in engineering.

4) Based on the cumulative displacement of the landslide and the
influencing factors obtained using the VMD method, three
decomposition terms associated with the displacement were
predicted. The displacement prediction results obtained from
the periodic and random terms demonstrated an outstanding
prediction performance using the RS-SVR model, and the
displacement prediction error was <2%.

5) The prediction accuracy of the RS-SVR model exceeded those
of the GS-SVR, ELM, LSTM, and KRR models. Therefore, in
the displacement prediction of hydrodynamic landslides, the
RS-SVR model exhibits broad application prospects.
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