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Polarimetric synthetic aperture radar remote sensing extracts the information about the
target using decomposition models to separate the polarimetric information into single-
bounce (contributed by smooth surfaces), double-bounce (contributed by urban
structure), and volume (mainly due to vegetation cover) scattering components. The
penetration capacity of the electromagnetic wave into the surface increases with the
decrease in its frequency. This study explores and compares the polarimetric
decomposition models for scattering-based characterization of land use and cover
using multifrequency spaceborne synthetic aperture radar sensor datasets that were
acquired over San Francisco, CA, USA. The present work compares the scattering
parameters of coherent (Pauli), roll-invariant (Barnes), eigenvalue–eigenvector (Cloude),
and compact-polarimetric (Raney) decomposition modeling approaches for scattering-
based characterization of urban structures, waterbody, and vegetation cover. The land
use/cover classification was performed based on the scattering response of the scatterers
using a support vector machine classifier. The outputs of the classification approach on
multisensor, multifrequency, and multi-polarization polarimetric synthetic aperture radar
data have shown reasonable accuracy in classifying the land use and land cover. The
decomposition models fail to characterize the oriented urban structures that cause
misclassification of urban structures as vegetation. The higher-order roll-invariant
decomposition modeling approaches could improve the interpretation of different
targets and accuracy in land use and land cover classification.

Keywords: multifrequency spaceborne SAR, eigenvalue-eigenvector, roll-invariant, compact-polarimetric
decomposition, support vector machine, land use and land cover classification

INTRODUCTION

The development of polarimetric synthetic aperture radar (PolSAR) remote sensing has provided an
opportunity to the scientific community and researchers to study the polarimetric properties of the
objects on the Earth’s surface (Schuler et al., 2003, Schuler et al., 2004; Sato et al., 2012; Chen and
Sato, 2013; Chen et al., 2014a; Kumar et al., 2022). The PolSAR remote sensing is based on the
concept of electromagnetic (EM) wave polarization. The polarization state of the EM wave is defined
by the amplitude, orientation angle, ellipticity, and direction of the electric field vector. The PolSAR
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sensor emits the EM wave to the ground target in a specific
polarization state. The target absorbs some EM energy and
reradiates the rest of the EM energy as a new EM wave in a
different state of polarization to the sensor. This change in
polarization state depends on the shape, size, orientation, and
dielectric property of the target (Lee and Pottier, 2009).
Therefore, the study of polarimetric properties is essential
for the characterization of different targets such as
waterbody, buildings, bridges, and forest structures present
on the Earth’s surface, as each scatter produces a unique
scattering response due to the differences in their dielectric
and structural properties.

The PolSAR sensor can measure the scattering response of
different types of scatterers within a single SAR resolution
cell. The PolSAR sensor transmits the EM signal to the ground
target in horizontal and vertical polarization mode and
receives the backscatter signal horizontally and vertically,
thus, providing the information in four polarimetric
channels HH, HV, VH, and VV. It has been found that the
polarimetric distortions present in the PolSAR data also affect
the scattering retrieval contributed by different scatterers
(Babu et al., 2021a, Babu et al., 2021b; Maiti et al., 2021).
However, this is not a problem in recent days because
concerned space agencies provide the data free from the
polarimetric distortions, so the user should not get
difficulty in accurate scattering retrieval from SAR data
(Kumar et al., 2022). The polarimetric responses are
sensitive to the dielectric and structural property of the
imaged ground target. This polarimetric information can be
decomposed into different scattering components such as
surface/odd, double-bounce/dihedral, and volume, which
describes the scattering mechanisms of the ground target.
The odd-bounce scattering response is given by the smooth
surfaces or Bragg’s scatterers such as waterbody, double-
bounce scattering response is produced by the high-rise
buildings, and the volume scattering response is generated
by the vegetation structures. These scattering components are
useful for the characterization of the target within a single
SAR resolution cell. Therefore, the decomposition of the
PolSAR dataset is essential to retrieve the scattering
information. There are various PolSAR-based (Cloude,
1985; Holm and Barnes, 1988; Krogager, 1990; van Zyl,
1993; Freeman and Durden, 1998; Yamaguchi et al., 2005;
Freeman, 2007) and PolSAR Interferometry (PolInSAR)-
based (Chen et al., 2014b; Agrawal et al., 2016; Shafai and
Kumar, 2020; Bhanu Prakash and Kumar, 2021a; Bhanu
Prakash and Kumar, 2021b) decomposition modeling
approaches for extracting the scattering components from
PolSAR datasets to study the different scattering mechanisms
of the targets.

The decomposition modeling approaches are categorized as
“coherent” and “incoherent,” “model-based” and “eigenvalue/
eigenvector” based, and the decomposition based on the
dichotomy of the “Kennaugh matrix (K).” The coherent target
decomposition models provide suitable information about
coherent targets or pure single targets. It is considered that a
“pure target” produces the coherent scattering or complete

polarized response free from any external noise caused by a
cluttered environment or time variation of target exposure for the
incident EM wave. The coherent decomposition models are used
directly on the scattering matrix. In contrast, the incoherent
target decomposition is favorable for studying “distributed
targets.” Generally, the dynamics of changing environment
causes spatial and temporal variation to the imaging radar
targets, leading to the concept of “distributed targets.” It is
considered that “distributed targets” produce a partially
polarized scattering response. The incoherent decomposition
models are used on second-order statistics, i.e., coherency
matrix or covariance matrix.

The PolSAR sensor operates in the microwave region of the
EM spectrum ranging from 1 mm to 1 m. These long-wavelength
microwaves easily penetrate dust, smoke, and water vapor, which
enable earth observation in all-weather conditions. The
development of active SAR sensors brings the additional
advantage that allows continuous monitoring of the Earth’s
surface, i.e., both day and night. There are different
frequencies/wavelength bands used by the PolSAR sensor such
as Ka—0.75–1.1 cm, K—1.1–1.67 cm, Ku—1.67–2.4 cm,
X—2.4–3.8 cm, C—3.8–7.5 cm, S—7.5–15 cm, L—15–30 cm,
and P—30–100 cm. Generally, the penetration capacity of the
EM wave increases as the wavelength increases. Thus, each
frequency band has their characteristic and applications. The
longer wavelengths, such as L-band, can easily penetrate through
the surface feature such as soil, ice, or forest canopy, which causes
more interaction of emitted EM signal with the subsurface targets,
branches, leaves, and tree trunks, and provide subsurface feature
information. Therefore, the longer wavelengths are suitable for
retrieval of subsurface information such as forest height
estimation (Kumar et al., 2020), forest aboveground biomass
retrieval (Kumar et al., 2019), mapping land subsidence (Ng
et al., 2012; Chaussard et al., 2013), and archaeological studies
(Stewart et al., 2013). The shorter wavelengths, such as X-band,
have relatively less penetration capacity. The emitted EM wave
interacts with the top layer of the soil, ice, or forest canopy and
provides less subsurface information. Therefore, the shorter
wavelengths are suitable for sea ice monitoring (Scheuchl
et al., 2014), flood detection (Mason et al., 2010), oil spill
observation (Velotto et al., 2011), and ship detection (Brusch
et al., 2011).

In SAR remote sensing, the surface roughness is related to the
wavelength used by the SAR sensor (λ), depression angle (ϒ), and
local height of the object (h). The “Rayleigh criteria” is used to
determine the surface roughness in SAR imagery (Bole et al.,
2014). The smooth surface acts as a specular reflector, most of the
EMwave will backscatter away from the SAR sensor, and the SAR
sensor will receive a very low backscatter signal. The rough
surface acts as a diffuse reflector, the EM wave will be
scattered in all directions, and the SAR sensor will receive a
strong backscatter signal.

The scattering mechanism described by the radar target is
greatly affected by its shape, size, and frequency or wavelength
used by the SAR sensor (Ferro-Famil and Pottier, 2016). The
scattering behavior of the target is determined by the ratio of the
size of the target and the sensor’s wavelength. Therefore, the
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sensitivity to the surface roughness decreases with an increase in
the wavelength. The high-frequency or shorter EM wave can
easily scatter from the surface, causing diffuse reflection, and low-
frequency or longer EM wave easily penetrates through the
surface, causing dominant specular reflection. Thus, an
irregular surface may appear smooth in L-band, and a similar
surface may appear very rough in X-band.

Many space agencies have launched radar satellites for the
polarimetric-based study of the Earth’s surface and subsurface
features. National Aeronautics and Space Administration
(NASA) was a pioneer to launch the first-ever synthetic
aperture radar satellite “SeaSAT” in 1978. The SeaSAT’s SAR
sensor provided L-band HH polarization (HH → horizontal
transmit and vertical receive) datasets (Jordan, 1980). Canada’s
radar satellite RADARSAT-2 launched in 2008, the successor of
RADARSAT-1 (operational period—1995–2013); the sensor
acquires quad-polarization (HH, HV, VV, and VH) datasets in
C-band (Mahmood, 1997; Morena and James, 2004; Ali et al.,
2014). The Japan Aerospace Exploration Agency (JAXA) had a
Phased Array L-band Synthetic Aperture Radar (PALSAR-1)
instrument onboard the Advanced Land Observation Satellite
(ALOS)-1 spacecraft (2006–11) successor to SAR Japanese Earth
Resources Satellite (JERS), and the PALSAR-1 instrument
collected quad-pol radar images in L-band; the next
descendant ALOS-2/PALSAR-2 of ALOS mission was
launched in 2014 to acquire high-resolution fully polarimetric
dataset in L-band (Rosenqvist et al., 2007, Rosenqvist et al., 2014).
The currently operational Gaofen-3 spacecraft, which was
launched in 2016, China’s first SAR satellite, operates in
C-band and provides quad-polarization datasets (Zhao et al.,
2021). The Indian space agency launched the first Radar Imaging
Satellite (RISAT-1) in 2012 (Misra et al., 2013), which was
supplementary to the Indian remote sensing satellite (IRS)
class satellite. The sensor operated in hybrid polarimetric
mode, i.e., the sensor transmits circular polarization signal in
the C band and receives either horizontal or vertical polarization
signal. The polarimetric data of RISAT-1 have been widely used
in different thematic applications (Babu et al., 2019a; Tomar et al.,
2019; Awasthi et al., 2020; Chaudhary and Kumar, 2020). In 2007,
Germany joined the sphere of SAR remote sensing with the
launch of the TerraSAR-X spacecraft, and the sensor is capable of
acquiring very high-resolution quad-polarization datasets in
X-band (Werninghaus and Buckreuss, 2010). Recently,
NASA–Indian Space Research Organisation (ISRO) jointly has
developed NASA–ISRO SAR (NISAR) spacecraft, which is
expected to be launched in 2023, which will provide the fully
polarimetric dataset in L- and S-bands (Rosen et al., 2017).

The classification of polarimetric datasets has gained wide
attention due to its ability to measure the polarimetric response of
the ground features. These polarimetric signatures in various
polarization bases give a more detailed insight into radar targets
(Jafari et al., 2015; Buono et al., 2017). Also, the development of
polarimetric decomposition models has intensified its application
in land use/land cover (LULC) classification because it provides
scattering information associated with the ground targets
(Alberga, 2007; Saito et al., 2018; Yin et al., 2018). A
comparative study was done by Lardeux et al. (2009) using

different polarimetric indicators derived from the
decomposition of PolSAR datasets. The result showed that the
support vector machine (SVM) algorithm outperforms the
conventional Wishart classification approach. Another novel
effort was made by Qi et al. (2012) for LULC classification.
The combination of polarimetric decomposition and
polarimetric SAR interferometric parameters was used to
retrieve the information of textural and spatial features. A
decision tree classifier was used for the classification. Bai et al.
(2021) showed the improvement of the classification approach
based on the integration of optical and SAR data to extract the
urban and vegetation land cover feature. Niu and Ban (2013)
significantly improved the classification accuracy using the
polarimetric parameter of decomposition models derived from
the multi-temporal SAR dataset.

Over the last few years, various classification methods based
on statistical and nonstatistical approaches have been used to
classify the Earth observation datasets (Lu, 2007; Kumar et al.,
2015; Mishra et al., 2017a). Scientists are exploiting the machine
learning approach for image classification practices (Mishra et al.,
2017a; Yin et al., 2018, 2020; Chaudhary and Kumar, 2021; Rawat
et al., 2021; Garg et al., 2022) due to its ability to handle multiple
datasets and shows good accuracy in the classification results than
other conventional approaches. Advanced machine learning-
based classification algorithms such as SVM, artificial neural
network, decision tree, and random forest have been
extensively used for the LULC classification of satellite images
(Kumar et al., 2015; Mishra et al., 2017b). The SVM algorithm has
received substantial attention because of several advantages over
the traditional classification method. It is sensitive to the
dimensionality of the data accompanied by the size of training
datasets (Pal and Foody, 2010; Kumar et al., 2015). It does not
assume a probability distribution of the training datasets; as a
substitute, it finds a decision from the training data directly based
on a kernel function in a suitable space. The potentiality of the
SVM method has attracted a great deal and is reported in many
studies (Kumar et al., 2015; Kranjčić et al., 2019; Mishra et al.,
2019; Orieschnig et al., 2021).

The scattering response of the target depends on the frequency
used by the SAR sensor. A surface may appear rough in X-band;
the high-frequency EM wave will easily scatter from the surface,
causing diffuse reflection; a similar surface may appear smooth in
L-band, as the EM wave easily penetrates through the surface,
causing specular reflection. Therefore, it is necessary to study the
unique polarimetric scattering response of radar targets such as
waterbody, vegetation, and urban structure in different frequency
ranges using fully polarimetric SAR datasets. The prime focus of
this study is to compare the polarimetric parameters of
decomposition modeling approaches for scattering-based
characterization of LULC using multifrequency spaceborne
SAR sensor datasets. The objectives of this study are as follows:

• extraction of the scattering components from
multifrequency polarimetric SAR datasets using coherent
(Pauli), roll-invariant (Barnes), eigenvalue–eigenvector
(Cloude), and compact-polarimetric (CP) (Raney)
decomposition modeling approaches.
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• comparison of the scattering components of Pauli, Barnes,
Cloude, and Raney decomposition models for
characterization of the waterbody, urban, and vegetation
structures.

• analysis of the accuracy of Pauli, Barnes, Cloude, and Raney
scattering components for LULC classification using an
SVM classifier.

STUDY AREA AND DATASETS

The study site is located on San Francisco Peninsula on the west
coast of the United States. This area is enclosed by the San
Francisco Bay, Pacific Ocean, and the Golden Gate strait
(Figure 1). The study site consists of natural and artificial
features such as vegetation, forests, parks, buildings, roads,

FIGURE 1 | Location of study area: San Francisco, CA, USA, on Google Earth Image (historical optical imagery: April 9, 2008); subset of study area (red line);
location of water, urban, and vegetation regions.
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TABLE 1 | Description of datasets: SLC—single look complex; Quad-Pol—HH, HV, VH, and VV.

Satellite/Sensor RADARSAT-2 ALOS-1 PALSAR-1 ALOS-2 PALSAR-2 TerraSAR-X RISAT-1 Gaofen-3

Product ID PDS_00,058,900 ALOS-P1_1__A-
ORBIT__ALPSRP202350750

ALOS2-HBQR1_1_A-
ORBIT_ALOS2044980750-150324

TSX1_SAR_SSC_BTX1_SM_Q_DRA_
20151220T141542_20151220T141549

163,791,211 2,599,253

Product type SLC SLC SLC SLC SLC SLC
Date (mm-dd-yyyy) and time (hh-
mm-ss) of acquisition

04–09-2008 11–11-2009 03–24-2015 12–20-2015 08–09-2016 09–15-2017
02:01:39 (UTC) 06:28:43 (UTC) 08:01:55 (UTC) 14:13:58 (UTC) 02:03:45 (UTC) 01:56:

41 (UTC)
Frequency (GHz),
Wavelength (cm)

C-band L-band L-band X-band C-band C-band
5.40 GHz 1.26 GHz 1.23 GHz 9.64 GHz 5.35 GHz 5.40 GHz
5.6 cm 23.8 cm 24.3 cm 3.1 m 5.6 m 5.6 cm

Polarization Quad-Pol Quad-Pol Quad-Pol Quad-Pol Hybrid-Pol
(RH, RV)

Quad-Pol

Incidence Angle 28.92° 23.87° 33.85° 39.69° 38.19° 21.22°

Pass ASCENDING ASCENDING ASCENDING DESCENDING ASCENDING ASCENDING
Range spacing × Azimuth
spacing

4.73 × 4.82 m 9.36 × 3.54 m 2.86 × 3.20 m 2.31 × 2.31 m 1.80 × 2.33 m 5.36 × 2.24 m

No. of Scan lines and Samples 14,416, 2,823 18,432, 1,248 22,608, 8,080 10,673, 8,833 13,843, 8,719 7,173, 5,829
Multi-look Factors 1 × 2 1 × 7 1 × 2 5 × 8 4 × 5 1 × 7
No. of Rows and Column
(subset)

1,674, 2049 654, 800 4,451, 4,896 7,006, 8,571 4,598, 5,625 2,102, 2,571
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hilly terrain, ponds, and sea surface. The urban features of the
study area illustrate both orthogonal and oriented urban
structures. The orthogonal urban structure refers to the
building structure that is orthogonal to the imagery. The
oriented urban structure refers to the building structure
oriented at some angle to the imagery. Therefore, the diversity
of different land features of the study area is suitable for this work.

The objective of this work is the comparison of polarimetric
parameters for the scattering-based characterization of LULC
using multifrequency PolSAR datasets. The fully polarimetric
multifrequency SAR datasets of the study area (San Francisco,
C.A, United States) were not available for the same date.
Therefore, this study utilizes multifrequency and multi-
temporal fully polarimetric spaceborne SAR sensor datasets of

ALOS-1 PALSAR-1, ALOS-2 PALSAR-2, RADARSAT-2,
RISAT-1, Gaofen-3, and TerraSAR-X that were acquired over
San Francisco, C.A, United States. The detailed description of
datasets is given in Table 1.

METHODOLOGY

The PolSAR datasets were in single look complex (SLC) file
format. The SLC SAR pixel represents the associated ground
target information in the form of complex numbers—real and
imaginary. Firstly, preprocessing (multi-looking, radiometric
calibration, and terrain correction) of the polarimetric dataset
was performed, then the coherency matrix was generated for

FIGURE 2 | Methodology flowchart.
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polarimetric analysis. After that, scattering components were
retrieved using Pauli, Barnes, and Cloude decomposition
models on the coherency matrix elements derived from fully
polarimetric datasets, and the m − χ decomposition model
proposed by Raney et al. (2012) was used for the hybrid
polarimetric RISAT-1 dataset. The scattering response was
measured for vegetation, waterbody, and urban regions. Then,
SVM-based LULC classification was performed on the scattering
components. The accuracy assessment was done for the
comparative evaluation of LULC images.

For this work, SNAP 8.0 software (SNAP 8.0 released—STEP,
2022) was used for the preprocessing of the polarimetric datasets;
ArcGIS 10.5 software (ArcGIS Desktop Download and
Documentation, 2022) was used for the geocoding: the
coherency matrix generation. The polarimetric
decomposition models were utilized using PolSARPro 6.0.3
software (PolSARpro v6.0 Toolbox Download—STEP, 2022).
The accuracy assessment was performed using ENVI 5.3
software (ENVI, 2022). The ground reference data for the
accuracy assessment were collected from Google Earth Pro
version 7.3 (https://www.google.com/intl/en_in/earth/
versions/#earth-pro). Figure 2 shows the methodological
flowchart.

Data Preprocessing
The fully polarimetric multifrequency datasets were in SLC file
format. The complex values of four channels—HH, HV, VV, and
VH—are represented in a scattering matrix [S] (Eq. 1). In
contrast, the CP sensor of RISAT-1 transmits the EM signal in
the right circular mode, receives linear coherent backscattering
response, and produces CP RH and RV datasets (Misra and
Kirankumar, 2014; Babu et al., 2019b). The circular that transmits
and linearly receives (CTLR) RH and RV datasets are expressed as
complex scattering matrix [S] (Cloude et al., 2012) as of Eq. 2.

[S] � [ SHH SHV

SVH SVV
] (1)

[ERH

ERV
] � 1�

2
√ [ SHH SHV

SVH SVV
][ 1

−i] � 1�
2

√ [ SHH − iSHV

SVH − iSVV
] (2)

Here, SHH → horizontal transmits and horizontally receives
polarized EM wave, SHV → horizontal transmits and vertically
receives polarized EM wave, SVH → vertical transmits and
horizontally receives polarized EM wave, SVV → vertical
transmits and vertically receives polarized EM wave, ERH →
right-hand circular transmits and horizontally receives
polarized EM wave, and ERV → right-hand circular transmits
and vertically receives polarized EM wave.

Because the datasets were in SLC file format consisting of
slant-range ambiguity, the multi-looking was performed to
generate the square pixels; the number of range-looks and
azimuth-looks for each dataset is shown in Table 1. The
multi-looking process also reduces the speckle noise from the
SAR pixels. Then, radiometric calibration was done to remove the
ambiguity from the SAR pixels that arise due to fluctuation in
transmission and receiving of signal from the radar sensor or due
to variation in satellite roll angle and the sensor records errors in

the datasets. After that, terrain correction was performed on the
radiometrically corrected datasets to eliminate the geometric
distortions such as layover, foreshortening, and shadows,
which generally occur due to variations in terrain surface
height and tilt in SAR sensors position (Lillesand and Kiefer,
1979).

Polarimetric Synthetic Aperture Radar
Coherency Matrix
In a subset of the study area comprising forest cover, vegetation,
parks, and dense urban structures, the water surface was taken for
further processing of the datasets (Figure 1). The details of the
number of rows and columns used for the subset are shown in
Table 1. A polarimetric coherency matrix was produced from the
scattering matrix [S] (Eq. 1), which is based on the Pauli spin
matrix. Considering the monostatic SAR system, the following
Eq. 3 represents the Pauli feature vector corresponding to the
ground target:

kp � 1�
2

√ [SHH + SVV SHH − SVV 2SHV)]T (3)

Here, kp → Pauli feature vector, T → transpose. Considering
the ergodicity (variation in space and time) of the environment,
second-order statistics, i.e., coherency matrix (Eq. 4), produced
by multiplying the Pauli feature vector (kp) with its trans-
conjugate (k+p). A coherency matrix consists of nine elements
that describe the target physical structure and dielectric
properties.

T3×3 � 1
2
⎡⎢⎢⎢⎢⎢⎢⎣ 〈|SHH + SVV|2〉 〈(SHH +SVV)(SHH −SVV)p〉 2 〈(SHH +SVV)SpHV〉
〈(SHH −SVV)(SHH +SVV)p〉 〈|SHH −SVV|2〉 2 〈(SHH −SVV)SHV

p〉
2〈SHV(SHH + SVV )p〉 2〈SHV(SHH −SVV )p〉 4〈|SHV|2〉

⎤⎥⎥⎥⎥⎥⎥⎦
(4)

Here, 〈 〉→ ensemble average, | | → modulo, p→ complex
conjugate.

For the case of a single look CP SAR sensor system (Cloude
et al., 2012), the CTRL datasets RH and RV are expressed as
complex scattering matrix [S] as in Eq. 3. The stokes vector
(S) is required to analyze the CP dataset (Raney et al., 2012).
The polarization state of the monochromatic EM wave (Eq.
5) can be represented by the stokes vector. It consists of four
real numbers—S1, S2, S3, and S4,—known as stokes
parameters.

E � Ex + Ey (5)
Here, Ex � a1exp j(τ + θ°) and Ey � a2exp j(τ + θ° + δ) are

horizontal and vertical components of EM wave, respectively,
a1 → amplitude of Ex, a2 → amplitude of Ey, τ → oscillation of
EM wave, θ° → an arbitrary phase reference, and δ → relative
phase difference between Ex and Ey components. The stokes
parameters of a monochromatic EM wave are given
as—S1 � a21 + a22, S2 � a21 + a22, S3 � 2a1a2 cos δ,
andS4 � −2a1a2 sin δ. The CP sensor provides four
information—horizontal, vertical, and complex cross-
product of the real and imaginary parts of the horizontal
and vertical components. Considering the mode of CP
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sensor as the right-hand circular transmission, the stokes
parameter is given as (Eq. 6):

S �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
S1
S2
S3
S4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
〈|ERH |2 + |ERV |2〉
〈|ERH |2 − |ERV |2〉
2Re〈ERHE

p
RV〉

−2Im〈ERHE
p
RV〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

Here, Re, Im → real and imaginary values. The stokes
vector in the form of 2 × 2 coherency matrix is expressed
as (Eq. 7):

C2 � [ 〈ERHE
p
RH〉 〈ERHE

p
RV〉

〈ERVE
p
RH〉 〈ERVE

p
RV〉

] � 1
2
[ S1 + S2 S3 + iS4
S3 − iS4 S1 − S2

]
(7)

Polarimetric Decomposition Models
The polarimetric decomposition models aim to separate the
PolSAR datasets into different scattering components. The
decomposition models are broadly classified as coherent and
incoherent. Pauli, Kroggager, Polar, and Cameron are the
coherent decomposition models. The incoherent
decomposition is classified as model-based and
eigenvalue–eigenvector decompositions.

The model-baseddecomposition is based on fitting the
physical scattering mechanism sub-models to the SAR
observation to retrieve the scattering components (Freeman
and Durden, 1998; Yamaguchi et al., 2005; Yamaguchi et al.,
2006; Freeman, 2007; Bhattacharya et al., 2015). The scattering
mechanism associated with the cloud of randomly oriented
dipoles (such as forest canopy structure) is termed as volume
scattering, the even-bounce or double-bounce response was
produced by a pair of orthogonal surfaces with two different
dielectric constants (such as building and bridges), the
moderately rough or Bragg scatter describes the odd-bounce
or surface scattering response, and the helix scattering
response is associated to the “helix target.” The helix targets
do not assume reflection symmetry in backscattering response
and produce left- or right-hand circular polarization response for
incident radar signal. Recently, two additional scattering
mechanism models have been introduced for the oriented-
dipole and compound dipole structures (Singh and
Yamaguchi, 2018).

Huynen, Holms-Barnes, and Yang decompositions are based
on the Kennaugh matrix “K” (Lee and Pottier, 2009). Huynen
(1978) was the pioneer in developing the target decomposition
theorems using PolSAR datasets. He proposed “phenological
theory” to derive the radar scatterer’s structural and physical
properties. This theory aimed to isolate the radar backscattering
response into a single residue target [i.e., the stationary or “pure
target” (T0)] and a residue component [i.e., a “distributed target”
(TN)]. He defined nine roll-invariant parameters called “Huynen
Parameter” such that the N-target was independent of the line
sight between the SAR sensor and the radar target. The following
Eq. 8 illustrates the Huynen N-target TN and pure target T0. The
coherency matrix T3 expanded into the single pure target (T0),

which has five degrees of freedom, and a residue target (TN),
which has the remaining four degrees of freedom. Huynen
parameters define the target’s real physical property and are
suitable for the general study of the targets.

T3 � ⎡⎢⎢⎢⎢⎢⎣ 〈2A0〉 〈C〉 − i〈D〉 〈H〉 + i〈G〉
〈C〉 − j〈D〉 〈B0〉 + 〈B〉 〈E〉 + i〈F〉
〈H〉 − j〈G〉 〈E〉 − i〈F〉 〈B0〉 − 〈B〉

⎤⎥⎥⎥⎥⎥⎦ � T0 + TN

(8)
Here, T3 → the average coherency matrix is described by nine

parameters: A0 → total scattering power contribution of regular,
smooth, and convex parts of scatterer; B0 → total scattering
power contribution of irregular, rough, and nonconvex
depolarizing parts of the target; B0 + B → the total
contribution of symmetrical or irregular depolarized power; B0 −
B → total contribution of nonsymmetrical depolarized power;
C → total depolarized power of symmetrical target global shape
(linear), D → total depolarized power of symmetrical target local
shape (curvature); E → total depolarized power of
nonsymmetrical target local twist (torsion); F → total
depolarized power of nonsymmetrical target global twist
(helicity); G → total depolarized power of coupling between
the asymmetric and non-symmetric component of global
target; and H → total depolarized power of coupling between
the asymmetrical and nonsymmetrical components of the global
target.

The decomposition models are based on the
eigenvalue–eigenvector of 3 × 3 Hermitian coherency T3

matrix known as eigenvalue–eigenvector decomposition
models (Lee and Pottier, 2009; Chen et al., 2018). This
approach is roll-invariant and considered a substitute for the
Huynen target decomposition approach. The decomposition of
the polarimetric coherency T3 matrix is given as Eq.9:

T3 � U3∑3
U−1

3 (9)

∑
3
� ⎡⎢⎢⎢⎢⎢⎣ λ1 0 0

0 λ2 0
0 0 λ3

⎤⎥⎥⎥⎥⎥⎦ (10)

U3 � [u1 u2 u3] (11)
where ∑3 → 3 × 3 diagonal matrix representing real

eigenvalues of T3, i.e., λ1 ≥ λ2 ≥ λ3 ≥ 0 and U3 → the unitary
matrix representing three-unit orthogonal eigenvectors of T3, i.e.,
u1,u2, u3. Eqs. 9–11 combined the decomposition of T3, which
can be represented as the sum of three independent targets as
Eq. 12:

T3 � ∑3
i�1
λiuiu

pT
i � T01 + T02 + T03 (12)

Here, T01, T02, T03 → equivalent scattering matrix for a
deterministic scattering mechanism is described by
eigenvalue (λi), and the type of scattering mechanism is
specified by eigenvector ( ui); upTi → conjugate transpose of
eigenvector ui. The eigenvalues and eigenvector are essential
parameters for this decomposition. Cloude (1985) was a
pioneer in developing eigenvector-based decomposition.
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The largest eigenvalue determines the dominant scattering
mechanism. Similarly, van Zyl (1993) considered the
eigenvalue of 3 × 3 covariance matrix for decomposition.
They assumed a monostatic case for azimuthal symmetrical
backscattering response from the natural terrain so that there
exists no correlationbetween co-polar and cross-polar terms.
They described four parameters—α,ρ,η,and μ —all depends on
the shape, size, and electric and statistical angular distributions
of the radar target. A hybrid approach was developed by Holm
and Barnes (1988) for the decomposition based on the concept
of eigenvalue/eigenvector and Huynen approach for the pure
target (T0) and distributed target (TN). This decomposition
represents the coherency matrix as the sum of three individual
sub-matrices corresponding to the pure target, mixed target,
and unpolarized mixed target, which is termed noise.

Pauli Decomposition
Pauli decomposition is coherent decomposition based on the
Pauli spin matrix, as shown in Eq. 13. Here, the first element 1)
corresponds to the odd bounce component associated with the
smooth surface, the second elements 2) correspond to the
double-bounce component associated with the corner

reflectors such as walls and buildings, and the third 3) and
fourth elements 4) correspond to the volume component
associated with the forests or vegetations (Lee and Pottier,
2009).

S � [ SHH SHV

SVH SVV
]

� a/ �
2

√ [ 1 0
0 − 1

] + b/ �
2

√ [ 1 0
0 − 1

] + c/ �
2

√ [ 0 1
1 0

]
+ d/ �

2
√ [ 0 − i

i 0
]

(13)
where, a � SHH + SVV�

2
√ , b � SHH −SVV�

2
√ , c � SHV+SVH�

2
√ , d � SHV−SVH�

2
√ ;

Considering the monostatic SAR system following the
reciprocity principle, SHV � SVH, the fourth element becomes
zero. i.e., d � 0; hence, the remaining three elements, i.e.,a b, and
c, describe the odd-bounce, even-bounce, and volume
components, respectively.

The Pauli decomposition model was used on the scattering
matrix [S] (Eq. 1), and (SHH + SVV)/

�
2

√
, (SHH − SVV)/

�
2

√
, and

FIGURE 3 | Scattering components retrieved from multi-temporal and multifrequency SAR sensor ALOS-1 PALSAR-1, ALOS-2 PALSAR-2, RADARSAT-2,
RISAT-1, Gaofen-3, and TerraSAR-X datasets. Color composite RGB image of (A) Pauli, (B) Barnes, (C) Cloude scattering components: red-double-bounce scattering,
green-volume scattering, and blue-surface scattering; Location of (1) water, (2) urban, and (3) vegetation regions for analysis of scattering response.
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(SHV + SVH)/
�
2

√
as to 1) surface, 2) double-bounce, and 3) volume

scattering components were retrieved, respectively. The RGB color
composite image of the Pauli scattering components obtained from
multifrequency PolSAR datasets is shown in Figure 3.

Barnes Decomposition
A roll-invariant decomposition technique was developed based
on the Huynen N-target decomposition theorem (Lee and
Pottier, 2009; Maghsoudi, 2011). Barnes objected to the
theory of Huynen (1978), as the structural property derived
from Huynen decomposition was not unique, and other
decomposition techniques could present the same structural
property. Hence, he proposed a generalized form of Huynen
decomposition. The TN (roll invariant parameter) was
considered as vector space orthogonal to vector space T0

(pure target). An arbitrary q vector belonging to N-target
space was assumed so that TNq � 0 and being roll invariant
following Eq. 14,

TN(θ)q � 0 → U(θ)TNU(θ)−1q � 0 (14)
U(θ)−1q � λq (15)

Here, U (θ) → 3 × 3 rotation matrix for angle “θ.” The three
eigenvectors q1, q2 , and q3 are as follows:

q1 � ⎡⎢⎢⎢⎢⎢⎣ 10
0

⎤⎥⎥⎥⎥⎥⎦; q2 � 1/ �
2

√ ⎡⎢⎢⎢⎢⎢⎣ 01
i

⎤⎥⎥⎥⎥⎥⎦; q3 � 1/ �
2

√ ⎡⎢⎢⎢⎢⎢⎣ 0i
1

⎤⎥⎥⎥⎥⎥⎦ (15a)

Hence, the coherency matrix T3 could be represented as pure
target To and distributed target TN in three ways:

• q1 → Huynen theorem decomposition
• q2 & q3 → Barnes theorem decomposition

The normalized target vectors k01, k02, and k03 corresponding
to T0 for q1, q2 , and q3 are given by following Eqs. 16–18:

k01 � T3q1�������
qTp1 T3q1

√ � 1������
2〈A0〉

√ ⎡⎢⎢⎢⎢⎢⎣ 〈2A0〉
〈C + jD〉
〈H − jG〉

⎤⎥⎥⎥⎥⎥⎦ (16)

k02 � T3q2�������
qTp2 T3q2

√ � 1������������
2(〈B0〉−〈F〉)

√ ⎡⎢⎢⎢⎢⎢⎣ 〈C〉−〈G〉+ j〈H〉− j〈D〉
〈B0〉+〈B〉−〈F〉+ j〈E〉
〈E〉+ j〈B0〉− j〈B〉− j〈F〉

⎤⎥⎥⎥⎥⎥⎦
(17)

k03 � T3q3�������
qTp3 T3q3

√ � 1������������
2(〈B0〉+〈F〉)

√ ⎡⎢⎢⎢⎢⎢⎣〈H〉−〈D〉+ j〈C〉− j〈G〉
〈E〉+ j〈B〉+ j〈B〉+ j〈F〉
〈B0〉−〈B〉+〈F〉+ j〈E〉

⎤⎥⎥⎥⎥⎥⎦
(18)

The Barnes decomposition model was used on the
coherency matrix (Eq. 4) obtained in the previous step
from fully polarimetric SAR datasets to retrieve the surface,
double-bounce, and volume components. The RGB color
composite image of the Barnes scattering components
retrieved from multifrequency PolSAR datasets is shown in
Figure 3.

Cloude Decomposition
Cloude (1985) made a significant approach for the retrieval of
scattering elements based on the eigenvalue/eigenvector of the
coherency matrix T3, where the largest eigenvalue (λ1)
determines the dominant scattering mechanism of the
coherency matrix T3. Cloude et al. (Lee and Pottier, 2009)
have formulated the target vector k1 (Eq. 20) by considering
the coherency matrix T01 as rank-1 and represented as a product
of a single target vector k1 as Eq. 19:

T01 � λ1u1 · upT
1 � k1 · kpT1 (19)

k1 �
��
λ1

√
u1 � eiϕ����

2A0

√ ⎡⎢⎢⎢⎢⎢⎣ 2A0

C + iD
H − iG

⎤⎥⎥⎥⎥⎥⎦ � eiϕ⎡⎢⎢⎢⎢⎢⎣
����
2A0

√�������
B0 + B

√
e+i arctan(D/C)�������

B0 − B
√

e−i arctan(D/C)
⎤⎥⎥⎥⎥⎥⎦
(20)

Here, ϕ ∈ [−π, π] → absolutephase ofthe target, 2A0 →
surface scattering; B0 + B → double-bounce scattering; B0 −
B → volume scattering. Cloude decomposition model was
used on the coherency matrix (Eq. 4) to retrieve the scattering
components. Figure 3 shows the color-coded RGB image of
Cloude scattering components retrieved from fully
polarimetric multi-temporal and multifrequency datasets.

Raney Decomposition
Raney et al. (2012) proposed them − χ decomposition for the CP
SAR datasets. This decomposition approach requires two
parameters, namely, degree of polarization m and degree of
ellipticity χ. The chi (χ) is an essential parameter to describe
the even versus odd backscattering signal. The degree of
circularity of the polarizing ellipse is determined by utilizing
the stokes parameter (Eq. 21).

sin 2 χ � (−S4
mS1

) (21)

Raneydecomposition was used on the 2 × 2 coherency matrix
elements (Eq. 7) retrieved from the CP dataset to extract the
surface→ [mS1(1 − sin 2 χ)/2]1/2, double-bounce→
[mS1(1 + sin 2 χ)/2]1/2, and volume→ [S1(1 −m)]1/2
components. Figure 3 represents the color-coded RGB image
of Raney scattering components obtained from CP RISAT-1
datasets.

Comparative Analysis of Scattering
Response for Urban, Vegetation, and Water
Surface
In this study, the mean pixel value of the surface, double-bounce,
and volume scattering components derived from different
decomposition modeling approaches were measured for the
comparative study of scattering response for a waterbody,
urban, and vegetation structure. Figures 1 and 3 show the
location of the test area on the optical image of Google Earth
and the color-coded RGB image of scattering components,
respectively. The present work utilizes multifrequency PolSAR
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datasets of different sensors which were acquired on different
dates between the years 2008 and 2017. The historical optical
images provided by Google Earth were used for validation. The
historical optical images of Google Earth were coordinated to the
date of acquisition of SAR imagery for the validation of the test
area selected for urban, vegetation, and water regions; there was a
very minor or negligible change in the testing area during the
span of 9 years (2008–2017). The test area for the waterbody
represents the smooth surface. Such targets describe surface
scattering response because the emitted SAR signal interacts
with a single dielectric surface. The chosen urban test region
comprises both orthogonal and oriented urban. The urban
structure is termed as corner reflectors or dihedral structures
that produce a double-bounce scattering response due to the
interaction of transmitted SAR signals with two different
dielectric media. The scattering response was measured for
both orthogonal and oriented urban structures. The selected
vegetation test region comprises distributed vegetation
structure over undulating terrain. The vegetation or forest
canopy are complex structures that produce a volume
scattering response due to the interaction of SAR signal with
multiple dielectric media such as branches, leaves, and tree
trunks.

Support Vector Machine-based Land Use/Land Cover
Classification of Scattering Components.

SVM classifier is based on the statistical learning theory
(Vapnik, 1995). This classifier requires small training samples
and produces favorable results in the classification. Support
vectors are the data points or training data closest to the
hyperplane and affect the location of the hyperplane (decision
boundary) in the space. In Figure 4, the SVM classifier creates a
model based on the maximummargin hyperplane and divides the
N-dimensional space into different classes (Boser et al., 1992;
Vapnik, 1995; Chaudhary and Kumar, 2021).

The authors considered a case of binary SVM as in Figure 4
(Chaudhary and Kumar, 2021). Suppose “x1, x2, x3, x4 . . .xn” be
the training data that belongs to class 1 (red color dot) or class 2
(blue color dot), the decision function is expressed by (Eq. 22).

F(x) � w.x + b (22)
where w = weight vector (orthogonal to hyperplane), and b =

bias (parameter that maintains the position of hyperplane at the

maximummargin). The position of the hyperplane is determined
by Eq. 23.

w.x + b � 0 (23)
The class of the data points is determined by the following:

w.x + b ≥ 1→ the data point falls above the hyperplane; w.x +
b ≤ − 1 → the data point falls below the hyperplane. The SVM
classifier was invented for binary structure classification
(Figure 4). So, for the case of multi-class data, the SVM
classifier creates multiple binary structures and determines the
location of the hyperplane for each class based on the
training data.

The SVM classifier was used for the LULC classification of
the waterbody, urban, and vegetation using scattering
components retrieved from different decomposition
modeling approaches. The scattering response of the
scatterers was used to train the SVM classifier. The radial
bias function (RBF) was utilized for the classification. It
requires less arithmetic calculative efforts and is capable of
handling the nonlinear relationship between the input training
pixels and the entire pixels of the datasets (Mishra et al.,
2017a). The value of the RBF kernel is determined by the
distance between the support vector point or the origin.
Equation 24 represents the RBF kernel used by the SVM
classifier (Chaudhary and Kumar, 2021).

KRBF(xi, x′) � exp[ − γ
����xi − x′

����2] (24)
where xi − x’ → Euclidian distance between training pixel

data xi and x’ point data; γ→ Gamma-the extent of kernel
spread. The SVM classifier calculates the similarity index based
on the distance between xi training pixel data and x’ point
data. There are two tuning parameters to the RBF kernel,
namely, penalty parameter “C- cost” and gamma (γ), which
influence the overall accuracy of the classification. The penalty
parameter “C” controls the degree of misclassification by
imposing the rigid margin to adjust the trade-off between
training sample data errors; hence, increasing its value creates
a more accurate model. However, the large value of C may
create over-fitting of the model (Qian et al., 2015). The gamma
(γ) determines the potential of single data to affect the entire
pixels of a dataset; it controls the shape of the hyperplane. For
the classification of scattering components, the values of
penalty parameters “C” and gamma (γ) were set to 100.00
and 0.33, respectively.

The study area is comprised of various LULC features: 1)
land use urban features such as residential colonies, road
networks, bridges, high-rise buildings, oriented buildings,
and industrial area; 2) very few vegetation cover structures
such as forest, vegetation, and urban green space; and 3) a
small portion of water bodies such as swimming pools, ponds,
and sea surface. To achieve better accuracy in the classification
of vegetation, urban, and waterbody, the SVM classifier
requires the training sample pixels to represent all the
different types of features for each class. So, the training
sample was collected for each type of feature representing

FIGURE 4 | Binary support vector machine.
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the individual classes. The size of the training sample for each
class was different. The multifrequency and multi-temporal
SAR datasets were used; the land cover may change from 2008
to 2017. Therefore, training pixel was collected carefully for
each class for each sensor’s datasets; the spatial resolution of
each dataset was different, which caused variation in the
training sample size collected for each dataset. The details
of the training pixels used for the classification of Pauli,

Barnes, Cloude, and Raney scattering components are given
in Table 2.

Confusion Matrix and Accuracy
Assessments
The accuracy of the LULC classification images was evaluated
based on the error matrix approach (Lillesand and Kiefer, 1979;

TABLE 2 | Description of training sample and testing sample used for SVM classification of surface (odd), double-bounce (dbl), and volume (vol) scattering components
retrieved from decomposition models using multi-temporal and multifrequency datasets.

1 Sensor/Satellite - ALOS 1 PALSAR 1, 11–11-2009

Parameter Class Vegetation Urban Water
Pauli scattering components (odd, dbl, vol) Training Sample 223 582 246

Testing Sample 111 289 121
Barnes scattering components (odd, dbl, vol) Training Sample 223 582 246

Testing Sample 111 289 121
Cloude scattering components (odd, dbl, vol) Training Sample 223 582 246

Testing Sample 111 289 121

2 Sensor/Satellite- ALOS 2 PALSAR 2, 03-24—2015

Parameter Class Vegetation Urban Water
Pauli scattering components (odd, dbl, vol) Training Sample 2,911 7,583 3,210

Testing Sample 1,449 3,767 1,579
Barnes scattering components (odd, dbl, vol) Training Sample 2,911 7,583 3,210

Testing Sample 1,449 3,767 1,579
Cloude scattering components (odd, dbl, vol) Training Sample 2,911 7,583 3,210

Testing Sample 1,449 3,767 1,579

3 Sensor/Satellite- RADARSAT 2, 04-09-2008

Parameter Class Vegetation Urban Water
Pauli scattering components (odd, dbl, vol) Training Sample 1,261 3,287 1,391

Testing Sample 628 1,633 684
Barnes scattering components (odd, dbl, vol) Training Sample 1,261 3,287 1,391

Testing Sample 628 1,633 684
Cloude scattering components (odd, dbl, vol) Training Sample 1,261 3,287 1,391

Testing Sample 628 1,633 684

4 Sensor/Satellite- Gaofen-3, 09-15-2017

Parameter Class Vegetation Urban Water
Pauli scattering components (odd, dbl, vol) Training Sample 1986 5,176 2,191

Testing Sample 989 2,571 1,078
Barnes scattering components (odd, dbl, vol) Training Sample 1986 5,176 2,191

Testing Sample 989 2,571 1,078
Cloude scattering components (odd, dbl, vol) Training Sample 1986 5,176 2,191

Testing Sample 989 2,571 1,078

5 Sensor/Satellite- TerraSAR-X, 12-20-2015

Parameter Class Vegetation Urban Water
Pauli scattering components (odd, dbl, vol) Training Sample 5,672 14,825 6,278

Testing Sample 2,833 7,365 3,088
Barnes scattering components (odd, dbl, vol) Training Sample 5,672 14,825 6,278

Testing Sample 2,833 7,365 3,088
Cloude scattering components (odd, dbl, vol) Training Sample 5,672 14,825 6,278

Testing Sample 2,833 7,365 3,088

6 Sensor/Satellite- RISAT 1, 08-09-2016

Parameter Class Vegetation Urban Water
Raney Scattering Components (odd, dbl, vol) Training Sample 9,408 24,508 10,376

Testing Sample 4,683 12,175 5,104
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Congalton, 1991). It is the most effective method for analyzing
classification accuracy. The error matrix, also referred to as the
confusion matrix, compares the data (pixels) of each category/
class of the classification result image with the ground reference
data (pixels) to evaluate the accuracy. The error matrix provides
descriptive measures such as overall accuracy (OA), user’s
accuracy (U.A), producer’s accuracy (P.A), commission error,
omission error, and kappa coefficient (kc) to characterize the
misclassification of the data (pixels). The overall accuracy (O.A)
is the ratio of the total number of correctly classified pixels and
the total number of referenced pixels (Eq. 25). The producer’s
accuracy (P.A) shows the accuracy of an individual class; it is the
ratio of correctly classified pixels of a class (say A) to the total
number of ground reference pixels of that class (Eq. 26); the user
accuracy (U.A) shows the reliability of a map; it is the ratio of the
correct pixel of a class (say “A”) to the total number of pixels of
that class (Eq. 27). The commission error (Eq. 28) describes the
pixels that originally belong to the other classes (“B or C”) and
are wrongly included or categorized into a particular class (“A”).
It is used to measure the error in “producer accuracy.” The
omission error describes the pixels that originally belong to a
particular class (“A”) but are omitted or excluded from that
original class (Eq. 29). It describes the error in the “user’s
accuracy.”

O.A (%) � total number of correctly classified pixels

total number of reference pixels
× 100

(25)
P.A � total number of correctly classified pixels of class }A}

total number of reference pixels of class }A}
× 100

(26)
U.A � total number of correctly classified pixels of class }A}

total number of classified pixels of class }A}
× 100

(27)
Commission error(%) � 100 − P.A (28)
Omission error (%) � 100 − U.A (29)

The KAPPA is a multivariate approach for the accuracy
assessment, and its results are based on the KHAT statistics
(kc) (Congalton, 1991). The KHAT statistics (Eq. 30) measures

the difference between “true agreement” (observed accuracy) and
the “chance agreement.” The “true agreement” refers to the
precision between reference data and the classifier, whereas
“chance agreement” shows precision between reference data
and random classifier. The value of kc ranges from “0” to “1”;
kc → 0 shows no agreement; kc → 1, shows strong agreement.
The value of kc corresponds to the percentage of correct values
due to “true agreement” versus “chance agreement” of the error
matrix (Lillesand and Kiefer, 1979). Hence, the KAPPA

A

B

C

FIGURE 6 | Scattering response for vegetation structure obtained from
Pauli, Barnes, and Cloude decomposition models. (A) Scattering response
retrieved from Pauli decomposition. (B) Scattering response retrieved from
Barnes decomposition. (C) Scattering response retrieved from Cloude
decomposition.

FIGURE 5 | Scattering response for urban, oriented urban, and water
(smooth) scatterer obtained from Raney decomposition.
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coefficient indicates the extent to which the classification results
are expressed by the error matrix better than the random results.

kc � observed accuracy − chance agreement

1 − chance agreement
(30)

The ground reference data or testing sample for each class,
i.e., vegetation, urban, and waterbody, was collected from the
Google Earth platform. The historical optical images of Google
Earth were coordinated to the date of acquisition of SAR
datasets to collect the ground reference data. The sampling
technique and size are important considerations for collecting
the testing sample (Lillesand and Kiefer, 1979). The stratified
random sampling technique was used to collect the testing
samples, representing each land cover as strata. The study area

consists of a variety of features. The testing samples were
collected for all the features representing each class. The
sample size of the testing pixels was half of the training
pixels for each class. The description of the testing sample
used for the accuracy assessment of each LULC image is shown
in Table 2. The confusion matrix was produced to derive
overall accuracy (O.A.) and kappa coefficient (kc) commission
error (C.E.), omission error (O.E.) for each LULC classified
image; the O.A., kc, was used to determine the accuracy of
LULC images, and C. E and O. E were used to determine the
error of individual LULC classification.

The presence of heterogeneous features in the study area and
disproportionate LULC caused an imbalanced number of
training pixels for individual classes. This study utilized
multifrequency and multi-temporal SAR data of different

A

B

C

FIGURE 7 | Backscattering response for orthogonal urban structure obtained from Pauli, Barnes, and Cloude decomposition models. (A) Scattering response
retrieved from Pauli decomposition. (B) Scattering response retrieved from Barnes decomposition. (C) Scattering response retrieved from Cloude decomposition.
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sensors that caused imbalanced training sample sizes for each
sensor’s dataset (Table 2). The training sample size (the number
of pixels) was significantly reduced for the low spatial resolution
PolSAR datasets (i.e., ALOS-1 PALSAR-1) than for high spatial
resolution datasets (i.e., TerraSAR-X, RISAT-1). The overall
accuracy of the classification is influenced by the training
sample size used by the classifier. However, several studies
showed (Foody et al., 2006; Qian et al., 2015; Heydari and
Mountrakis, 2018; Thanh Noi and Kappas, 2018) that the
classification accuracy produced by the SVM classifier is least
sensitive to the training sample size. The SVM creates the
hyperplane or decision boundary based on support vectors
instead of using all the training sample data. Therefore, the

training sample size does not affect the SVM classification
accuracy. A study by Qian et al. (2015) illustrated that the
classification accuracy of the SVM classifier was significantly
higher than the decision tree and k-nearest neighbor classifier,
even for the small training sample data. Similarly, Thanh Noi and
Kappas (2018) compared the effect of different training sample
sizes for imbalanced and balanced training sample data using
SVM, random forest, and k-nearest neighbor classifiers. They
demonstrated that the imbalanced training sample data had the
least impact on the SVM classifier’s classification accuracy.

A

B

C

FIGURE 8 | Backscattering response for oriented urban structure
obtained from Pauli, Barnes, and Cloude decomposition models. (A)
Scattering response retrieved from Pauli decomposition. (B) Scattering
response retrieved fromBarnes decomposition. (C) Scattering response
retrieved from Cloude decomposition.

A

B

C

FIGURE 9 | Backscattering response for water region obtained from
Pauli, Barnes, and Cloude decomposition models.
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FIGURE 10 | LULC images obtained from classification of Pauli, Barnes, Cloude scattering components extracted from multi-temporal and multifrequency
datasets; Green—vegetation, Red—urban, and Blue—waterbody.

FIGURE 11 | Overall accuracy, kappa coefficient (kc ), of LULC images obtained from Pauli, Barnes, Cloude, and Raney decomposition models using
multifrequency and multi-temporal datasets.
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TABLE 3 | Overall Accuracy (O.A), kappa coefficient (kc), commission (C.E.), and omission error (O.E.) of LULC images displayed in Figure 10.

1 ALOS-1 PALSAR-1

Class C.E. (%) O.E. (%) O.A. (%) kc
Pauli Vegetation 49.25 28.11 81.6 0.72

Urban 2.46 37.49
Water 12.63 4.64

Barnes Vegetation 47.95 7.61 81.8 0.72
Urban 7.02 35.50
Water 6.40 4.52

Cloude Vegetation 46.06 13.61 82.2 0.72
Urban 7.23 20.34
Water 6.84 1.06

2 ALOS-2 PALSAR-2

Class C.E. (%) O.E. (%) O.A. (%) kc
Pauli Vegetation 54.74 34.76 80.2 0.71

Urban 2.46 37.90
Water 11.10 0.00

Barnes Vegetation 53.70 6.42 82.1 0.72
Urban 3.17 35.65
Water 0.00 0.00

Cloude Vegetation 50.53 13.46 83.1 0.74
Urban 5.32 29.37
Water 10.17 0.00

3 RADARSAT-2

Class C.E. (%) O.E. (%) O.A. (%) kc
Pauli Vegetation 54.64 40.00 81.1 0.71

Urban 0.17 32.39
Water 20.30 0.00

Barnes Vegetation 47.97 10.14 83.2 0.74
Urban 5.48 26.69
Water 0.00 7.44

Cloude Vegetation 36.58 19.71 89.3 0.83
Urban 1.06 17.29
Water 4.81 0.00

4 Gaofen-3

Class C.E (%) O.E. (%) O.A (%) kc
Pauli Vegetation 52.66 35.37 81.9 0.72

Urban 6.73 31.22
Water 17.20 0.00

Barnes Vegetation 49.29 7.05 83.6 0.74
Urban 10.24 23.74
Water 0.53 0.00

Cloude Vegetation 23.56 24.34 91.1 0.85
Urban 7.79 9.35
Water 3.33 0.00

5 TerraSAR-X

Class C.E. (%) O.E. (%) O.A. (%) kc
Pauli Vegetation 54.31 8.23 64.8 0.41

Urban 3.71 48.09
Water 43.62 11.37

Barnes Vegetation 55.15 13.41 63.6 0.39
Urban 4.64 47.54
Water 53.37 13.95

Cloude Vegetation 3.68 45.84 65.1 0.42
Urban 51.19 12.43
Water 63.51 11.43

6 RISAT-1

Class C.E. (%) O.E. (%) O.A. (%) kc
Raney Vegetation 49.70 9.95 70.2 0.48

Urban 2.43 35.21
Water 59.46 11.14
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FIGURE 12 | Location of vegetation structure and urban structure of study area on Google Earth Image and corresponding LULC images obtained from
classification of Pauli, Barnes, and Cloude scattering components retrieved from L-band and C-band datasets.
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RESULT AND DISCUSSION

Comparison of Scattering Response for
Vegetation, Urban, and Waterbody
The volume, double-bounce, and surface scattering responses
retrieved from decomposition models were measured for the
water, urban, and vegetation regions. The selected test area for the
analysis is shown in Figures 1 and 3.

Vegetation
Figure 6 shows the scattering response for vegetation structure of
decomposition models using multi-temporal and multifrequency
datasets. The vegetation or forest canopy structure exhibited the
volume scattering response due to multiple interactions with the
branches, leaves, and tree trunks for the transmitted EM signals. The
Pauli decomposition displayed the highest contribution to surface
scattering response. The scattering components were coherent;
therefore, it was suitable for the characterization of the
homogeneous target within a single SAR resolution cell, hence
failing to provide suitable scattering information. The Barnes
decomposition displayed favorable results for the vegetation
structure. The best volume scattering response was observed for
L-band datasets due to its ability to penetrate the vegetation
structure. However, the Cloude scattering components based on
the eigenvalue–eigenvector approach failed to describe the
appropriate scattering mechanism. It displayed a surface
scattering response. The Raney decomposition model showed
reliable information for vegetation structure. It displayed the
highest contribution to volume scattering for CP datasets (Figure 5).

The roll-invariant decomposition model was suitable for the
study of vegetation structure (Figure 6B). The small contribution
to surface scattering response in the vegetation region showed the
interaction of emitted radar signal with the ground/smooth
surface. Similarly, even-bounce scattering contribution
illustrated the interaction between ground and tree trunks.
From Figure 6, the volume scattering response associated with
the vegetation cover was more intense for the longer wavelength
(L-band). The intensity of volume scattering decreased for the
shorter wavelength (X-band) because the penetration capacity of
EM wave decreases with an increase in frequency. It shows that a
low-frequency or longer wavelength dataset is more suitable for
the study of vegetation or forest structures.

Urban Region
The urban structure is described as a dihedral structure that
produces a double-bounce (even) scattering response for the
incoming SAR sensor’s EM radiations. In this study, the
chosen test area for urban region consists of orthogonal
urban structure and oriented urban structure; the scattering
response was measured for both types of structures and shown
in Figures 7 and 8.

All the decomposition models provided reliable information
for the orthogonal urban structure and illustrated the dominance
of the double-bounce scattering response. The best double-
bounce scattering response was obtained from Cloude and
Barnes decomposition models using C-band datasets
(RADARSAT-2, Gaofen-3). The Cloude and Barnes scattering

components were roll-invariant, useful for characterizing the
urban structure using C-band datasets. The Pauli scattering
components were coherent, which was favorable for studying
homogeneous structures. The Raney decomposition models
showed a double-bounce scattering response for the CP
RISAT-1 dataset.

For oriented urban structures, all the decomposition models
overestimated volume scattering response and displayed the least
contribution to double-bounce scattering response. From
Figure 8, the Pauli decomposition displayed minimum
contribution to the double-bounce scattering power. The
Barnes decomposition improved the double-bounce scattering
response to some extent, whereas Cloude decomposition reduced
the volume scattering contribution. Similarly, the Raney
decomposition model displayed volume scattering response for
oriented urban structures (Figure 5). All the decomposition
models failed to describe the appropriate scattering
mechanism for oriented urban structure.

Water Region
The result of the scattering response retrieved from decomposition
modeling approaches for water region is displayed in Figure 9. The
water surface illustrates smooth or Bragg’s scatterer type, producing
odd-bounce or surface scattering response for the transmitted EM
wave. All the decomposition models described surface scattering
response for water region using L-band and C-band datasets. The
Raney decomposition displayed a higher contribution to volume
scattering response than surface scattering response for waterbody
(smooth surface) using CP datasets (Figure 5). The Cloude and
Barnes displayed enhanced surface scattering response for ALOS-2
PALSAR-2 and Gaofen-3 due to an increase in spatial resolution of
the datasets (Figure 9).

All the decomposition models displayed the lowest surface
scattering contribution for the waterbody using TerraSAR-X
datasets. The Pauli and Barnes decomposition underestimated
surface scattering mechanism and overestimated volume
scattering response, whereas Cloude decomposition displayed
surface scattering contribution. The low-frequency dataset
provided very less scattering information for the
characterization of smooth structures.

Comparison Land Use/Land Cover
Classification of Scattering Components
Figure 10 represents the LULC images obtained from the
classification of Pauli, Barnes, Cloude, and Raney scattering
components (Figure 3), which were retrieved from the
multifrequency PolSAR datasets, and Table 3 shows their
accuracy assessment.

Classification of Scattering Components Retrieved
From L-Band ALOS-1 PALSAR-1 and ALOS-2
PALSAR-2 Datasets
The classification of the Pauli scattering component displayed
O.A. values of 81.6% (kc = 0.72) and 80.2% (kc = 0.71) for ALOS-1
PALSAR-1 and ALOS-2 PALSAR-2, respectively. The Pauli
decomposition described the highest surface scattering
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contribution than volume scattering for vegetation structure
(Figure 6A), which led to misclassification of vegetation pixels
into water class. The Barnes decomposition model appropriately
defined the volume scattering mechanism for vegetation structure
and the double-bounce scattering response for urban structure
than the Pauli decomposition model. The Barnes scattering
components showed better O.A. in the classification: 81.8% (kc
= 0.72) and 82.1% (kc = 0.72) for ALOS-1 PALSAR-1 and ALOS-
2 PALSAR-2 datasets, respectively, than Pauli scattering
components. The Cloude decomposition model demonstrated
a remarkable scattering mechanism for the smooth surface
(waterbody) and dihedral (orthogonal urban) structures. This
approach minimized the volume scattering response for oriented
urban buildings. Therefore, the classification of Cloude scattering
components improved the O.A. to 82.2% (kc = 0.72) and 83.1%
(kc = 0.74) for ALOS-1 PALSAR-1 and ALOS-2 PALSAR-2
datasets, respectively. However, vegetation pixels were
misclassified into the water class because this model had
displayed a dominant surface scattering response for vegetation.

Classification of Scattering Components Retrieved
From C-Band RADARSAT-2 and Gaofen-3 Datasets
The targets had demonstrated favorable scattering responses for
C-band datasets. The Barnes and Cloude decomposition models
displayed relatively good scattering responses to characterize
dihedral (orthogonal) structures and smooth surfaces (waterbody)
for C-band than the L-band datasets, which eventually increases the
O.A. of the LULC classification. The Pauli decomposition displayed
a relatively lower double-bounce scattering response for oriented
urban structure for the C-band than the L-band datasets; therefore, it
presented low accuracy in the classification. The classification of
coherent scattering component of Pauli decomposition displayed
O.A. values of 81.1% (kc = 0.71) and 81.9% (kc = 0.72) for
RADARSAT-1 and Gaofen-3 dataset, respectively. The roll-
invariant scattering component of Barnes decomposition showed
better O.A. than Pauli decomposition in the classification, i.e., 83.2%
(kc = 0.74) and 83.6% (kc = 0.74) for RADARSAT-2 and Gaofen-3
datasets, respectively. The highest O.A. values were achieved from
the classification of Cloude scattering components—89.3% (kc =
0.83) and 91.1% (kc = 0.85) for RADARSAT-2 and Gaofen-3
datasets, respectively (Table 3).

Classification of Scattering Components Retrieved
From TerraSAR-X Dataset
As shown in Table 3, the classification of Pauli scattering
components presented an O.A. of 64.8% (kc = 0.41), the roll-
invariant scattering components of Barnes decomposition
displayed an O.A. of63.6% (kc = 0.39), and the Cloude scattering
components presented an O.A. of 65.1% (kc = 0.42).

The Pauli,Barnes, and Cloude decomposition models
demonstrated the least reliable scattering information to
identify the target for TerraSAR-X datasets. Eventually, the
classification of scattering components presented the least
overall accuracy in the classification. The Pauli decomposition
displayed an underestimation of the volume scattering
mechanism for vegetation structure. The Barnes

decomposition underestimated surface scattering response for
the water region. The Cloude decomposition misinterpreted the
vegetation structure as a smooth scatterer. Therefore, the error
was highest for each class (Table 3) due to the misinterpretation
of the targets.

Classification of Scattering Components Retrieved
From Compact-Pol RISAT-1 Dataset
The Raney decomposition model showed suitable scattering
information about the orthogonal urban structure and
vegetation region. However, it underestimated the surface
scattering mechanism for the smooth scatterer (waterbody)
and double-bounce scattering response for oriented urban
structures. Hence, the accuracy of water and the urban class
was low due to misinterpretation of the target. The Raney
scattering components presented an O.A. of 70.2% (kc = 0.48)
in the classification.

The coherent decomposition models are suitable for the
study of “pure targets” or homogeneous targets within a single
resolution cell, and incoherent decomposition models are
favorable for the study of “distributed targets” or
heterogeneous targets. The classification of Cloude and
Barnes scattering components showed higher O.A. than
Pauli scattering components (Figure 11). All the
decomposition models overestimated the volume scattering
mechanism for oriented urban structure, which led to the
misclassification of the urban pixels into vegetation class.
Therefore, the omission error was highest for the urban
class, and the commission error was highest for the
vegetation class in the output LULC images. The water class
presented the lowest error in the classification because all the
decomposition models appropriately described the surface
scattering mechanism for the waterbody (Table 3).

The roll-invariant Barnes and Cloude decomposition
models demonstrated a relatively better double-bounce
scattering mechanism for orthogonal structure using
C-band datasets than L-band (Figures 7B,C). Therefore, the
C-band dataset displayed higher accuracy for the urban class
than the L-band datasets (Figure 12A) in the classification.
The roll-invariant Barnes decomposition provided desirable
scattering information for the characterization of vegetation
structure using C-band datasets (Figure 6B), presenting good
accuracy for the classification of the vegetation class
(Figure 12B).

CONCLUSION

The main objective of this study was to use multifrequency
spaceborne SAR data that were acquired over San Francisco
City from the years 2008–2017. This study explored and
compared the classification outputs of multifrequency
spaceborne PolSAR data. The classification schemes were
performed for scattering-based characterization of LULC
using multifrequency SAR sensor’s ALOS-1 PALSAR-1,
ALOS-2 PALSAR-2, RADARSAT-2, Gaofen-3, TerraSAR-X,
and RISAT-1 dataset. The coherent-based Pauli
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decomposition model demonstrated reliable scattering
information for “pure target” within a single cell such as a
homogeneous waterbody and orthogonal urban structures.
The roll-invariant Barnes decomposition provided fruitful
scattering information for vegetation and urban structure.
The eigenvalue–eigenvector-based Cloude decomposition
model described a favorable scattering mechanism for the
characterization of urban and waterbody. These
decomposition modeling approaches failed to provide
reliable scattering information to characterize oriented
urban structures. The CP Raney decomposition provided
desirable scattering information for vegetation and
orthogonal urban structure. The classification of Raney
scattering components presented 70.2% (kc = 0.48) O.A.
The Pauli, Barnes, and Cloude decomposition models
presented better scattering information for C-band datasets
than L-band datasets. Therefore, the O.A. for the classification
was higher for C-band than the L-band datasets. The highest
O.A. was achieved from the classification of Cloude scattering
components, i.e., 89.3% (kc = 0.83) and 91.1% (kc = 0.85) for
the RADARSAT-2 and Gaofen-3 datasets, respectively. The
decomposition models showed the least reliable scattering
information for the TerraSAR-X dataset. Therefore, the
classification of scattering components presented the least
O.A. The Barnes scattering components had shown the least
O.A., i.e., 63.6% (kc = 0.39) for the TerraSAR-X dataset. The
decomposition models misinterpreted the oriented urban
structure as vegetation that caused misclassification. This
work aimed to implement a machine learning algorithm for
LULC classification from polarimetric parameters of PolSAR
multisensor data. The findings of this work show the
significance of machine learning algorithms on
multisensor, multifrequency, and multi-polarization data
as compared with the classification work done in the
previous study. By analyzing the results of polarimetric
decompositions, it is also observed that there is a

requirement of rotationally invariant scattering elements
based on a higher-order decomposition model to achieve
higher accuracy with classification results.
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