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Gas adsorption and desorption capacities and ad-/desorption hysteresis in coal are
important for carbon capture and storage (CCS) and coalbed methane (CBM)
development. To investigate the impact of fractal features on gas adsorption and
desorption capacities and ad-/desorption hysteresis in coals, five coal samples were
collected and carried out methane (CH4) and CO2 isothermal ad-/desorption experiments.
Small angle X-ray scattering (SAXS) was applied to characterize the fractal features of the
coal pore structure. The results show that five coal samples show surface fractal features,
represented by surface fractal dimension (Ds). The adsorption and desorption capacities of
CO2 are stronger than those of CH4. In the adsorption stage, Ds and Langmuir adsorption
volume (VL-ad) show a positive relationship for CH4 and CO2, due to the van derWaals force
and available adsorption sites. In the desorption stage, Ds and Langmuir desorption
volume (VL-de) show a positive relationship for CH4 and CO2, because most adsorbed gas
molecules can desorb and diffuse out of the pores when gas pressure decreases. No
obvious correlation was found between Ds and Langmuir adsorption pressure (PL-ad) as
well as between Ds and Langmuir desorption pressure (PL-de) for CO2 and CH4. An
improved hysteresis index (IHI) was adopted to characterize the degree of gas ad-/
desorption hysteresis. The IHI values of CO2 vary from 12.2 to 35.2%, and those of CH4

vary from 8.9 to 50.3%. The curves of Ds vs. IHI for CO2 and CH4 are like an irreversible “V”
shape, which yields to be further studied. This work further extends SAXS application in
exploring the impact of coal pore structure on gas adsorption related phenomena, which is
beneficial for CCS technology and CBM development.
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INTRODUCTION

In the context of carbon emission peaks and carbon neutral in
China, carbon capture and storage (CCS) has become a research
hotspot (Budinis et al., 2018; Fan et al., 2018). International
Energy Agency (IEA) pointed out that if the warming rate by the
end of this century is about to achieve 1.75°C, the CCS technology
needs to contribute 32% of CO2 emission reduction (IEA, 2017).
Coalbed methane (CBM) is a typically geological gas mainly
consisting of methane (CH4), which contains huge energy and
thus serves as an emerging energy resource (Wang et al., 2014;
Zhang et al., 2016). In 2020, CBM production is 58.2 × 108 cubic
meters, which is of great significance to ensure energy security
and reduce foreign dependence on natural gas (Xu et al., 2021).
Gas in coal has three occurrence states: dissolution state,
adsorption state, and free state, respectively, and the majority
of gases are in the adsorption state (Cui et al., 2004). Ad-/
desorption isotherms can quantitatively reflect the gas
adsorption and desorption capacities in coal; meanwhile, it has
been observed that it exists a positive difference between the ad-/
desorption isotherms for CH4 and CO2, which is termed as
adsorption–desorption hysteresis (Wang G. et al., 2016),
sorption hysteresis (Ekundayo and Rezaee, 2019; He et al.,
2020), desorption hysteresis (Ma et al., 2012), and degree of
irreversibility (Zhang and Liu, 2017) and so on in different
literature. In this work, the authors adopted the term—ad-/
desorption hysteresis—to describe this difference for the sake
of unification. For CCS technology, coal reservoirs have been
proven to be a viable CSS geological body, with a CO2 storage
ability of 12 Gt (Liu et al., 2005). As is well known, CO2

adsorption and desorption features are closely related to the
amount and stability of CO2 storage (Sun et al., 2018).
Similarly, in CBM industry, CH4 adsorption and desorption
properties directly affect CBM production, the larger the
amount of CH4 that can be desorbed is, the higher the
recovery rate is, whereas the ad-/desorption hysteresis can
hinder the recovery rate (Ma et al., 2012).

The pore structure is one of the key factors affecting gas
adsorption, desorption, and ad-/desorption hysteresis in coal
(Tan et al., 2018; Yin et al., 2019; Zhou et al., 2020) because the
pore structure is where the gas is adsorbed and desorbed. Fractal
dimension is a parameter that can comprehensively reflect the
features of coal pore structure (Liu and Nie, 2016). In recent years,
some scholars just tentatively began to adopt fractal theory to
explore the intrinsic mechanism of gas adsorption-related
phenomena. Li et al. (2015) stated that based on the fractal
dimension tested by N2 adsorption, the CH4 adsorption
capacity enhances with surface fractal dimension increasing but
weakens with pore fractal dimension increasing. However,
similarly based on the N2 adsorption method, Sun et al. (2015)
drew a conclusion that is not fully consistent with Li et al. (2015),
reporting that the CH4 adsorption capacity increases with the
increase of surface fractal dimension, but there is no obvious
relationship between CH4 adsorption capacity and pore fractal
dimension. Niu et al. (2019) applied three different measurement
methods, including N2 adsorption, SAXS, and scanning electron
microscopy to research the effect of fractal dimension on CH4

adsorption behavior, and found that Langmuir adsorption pressure
shows a negative relationship with fractal dimension. He et al.
(2020) applied CO2 and N2 adsorption methods to calculate the
fractal dimension and analyzed the relevancy between the fractal
dimension and methane sorption hysteresis in coal, and found that
there is a potential positive correlation between the methane
sorption hysteresis and the coal heterogeneity. In summary,
even though if any, research on the combination of fractal and
gas adsorption related phenomena remains to be scarce and
unsystematic; meanwhile, the characterization of fractal
dimension in previous studies mainly relies on traditional gas
adsorption methods.

As a non-destructive testing technology, synchrotron radiation
Small Angle X-Ray Scattering (SAXS) has been extensively applied to
measure the pore structure of multiporous materials (Mares et al.,
2009; Syed et al., 2018); it can concurrently measure both open and
closed pores in its testing scope (Pan et al., 2016; Zhao et al., 2019).
As a relatively novel and innovative method for pore structure
measurement, SAXS application has gradually extended to the field
of coal fractal feature characterization. Zhao and Peng, (2017) used
SAXS to test the fractal of six coal samples with different ranks, and
found that coal samples show surface fractal at the region of low q
value and pore fractal at the region of high q value. Song et al. (2014)
found that the surface fractal dimension of coal tested by SAXS
increases with the increase in deformation extent. Nie et al. (2021)
found that when gas adsorption occurs in coal, the transformation of
the coal pore structure can be characterized by fractal dimension
tested by SAXS. Xie et al. (2019) conducted SAXS fractal experiments
on bituminous coal and stated that the bituminous coal shows
surface fractal features throughout the carbonization process. Wang
et al. (2021) conducted SAXS fractal experiments on anthracite coal
and demonstrated that with the development of carbonization, the
fractal feature of the coal pore structure varies between pore fractal
and surface fractal. However, research on the correlation between the
fractal dimension on the basis of SAXS fractal theory and gas
adsorption related phenomena in coal is relatively scarce.
Accordingly, it is greatly necessary to enhance and expand the
application of SAXS fractal theory to the investigation of gas
adsorption and desorption and ad-/desorption hysteresis in coal.

In this work, five coal samples were performed on SAXS
experiments and adsorption and desorption isothermal
experiments. Their surface fractal dimensions were calculated
based on the SAXS fractal theory, their adsorption and desorption
capacities were quantified by Langmuir constants, the degrees of
their ad-/desorption hysteresis were quantified by a hysteresis
index, and the impact of coal fractal features on gas adsorption
and desorption capacities and ad-/desorption hysteresis was
investigated.

EXPERIMENTAL SETUP

Sampling and Sample Preparation
In this work, five experimental samples were collected from five
different mines. Sampling sites and properties of coal samples
were listed in Table 1. The mean maximum vitrinite reflectance
(Ro,max) is from 0.68 to 4.33%, covering low-rank, middle-rank,
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and high-rank coals. The moisture content (M) ranges from 0.58
to 1.60%, the volatile content (V) ranges from 9.51 to 32.83%, the
fixed carbon content (Fc) ranges from 51.87 to 76.79%, and the
ash content (A) ranges from 8.71 to 20.84%. The mineral content
of sample #2 (17.5%) is the highest and that of sample #5 (1.5%) is
the lowest, the vitrinite group content of sample #5 (91.0%) is the
highest and that of sample #1 (36.4%) is the lowest, and the
exinite contents of samples #3, #4 and #5 are 0.

For SAXS experiments, the first step is to process samples into
round slices with a thickness of 0.5 mm and a diameter of 9.5 mm,
as shown in Figure 1, and then a sample chamber, which was
specifically covered by Kapton film, was used to contain the
processed samples for the following experiment.

For gas isothermal ad-/desorption measurements, samples
were pulverized into 60–80 meshes (180–250 μm), and about
10 g of pulverized samples was selected to be degassed at 30°C for
24 h and heated 1 h to fully remove the moisture inside samples.

Synchrotron SAXS Experiments
Beijing Synchrotron Radiation Facilities (BSRF) were applied to
conduct SAXS experiments in this work. The authors have

described the parameters of BSRF in detail in our previous
research (Zhao et al., 2014).

For SAXS experiments, the chamber loaded with samples was
placed on the sample table, 1,650 mm far away from the detector,
and then the SAXS device was started to record the photodiode
readings and collect SAXS images; this process lasted for about
5 s. And then the FIT2D software was applied to convert the
SAXS images into one-dimensional scattering data (Hammersley
et al., 1996). The authors have given the details of SAXS image
processing in the FIT2D software in our previous research (Zhao
et al., 2019).

Gas Isothermal Ad-/Desorption
Experiments
An H-Sorb sorption device (Sun et al., 2020) was used for CO2

and CH4 adsorption and desorption experiments. The processed
samples were first loaded into an adsorption tank and evacuated,
and the remaining volume of the adsorption tank was measured.
Then, a certain volume of gas was charged into the adsorption
tank or discharged from the adsorption tank until the pressure in

TABLE 1 | Sampling sites and properties of samples.

Sample Number Sampling from Ro,max (%) Proximate analysis (%) Maceral content (%)

M V Fc A Vit. Ine. Exi. Min.

#1 No. 4 seam in Yanya mine 0.68 1.20 26.41 51.87 20.84 36.4 22.1 32.5 9.0
#2 No. 9 seam in Tangshan mine 1.12 1.60 32.83 56.88 8.71 61.6 19.3 1.6 17.5
#3 No. 2 seam in Hongling mine 1.77 0.58 18.57 73.24 9.48 73.5 24.1 0 2.4
#4 No. 3 seam in Yuwu mine 2.07 1.02 10.76 75.20 13.27 81.6 11.4 0 7.0
#5 No. 3 seam in Changzhen mine 4.33 1.18 9.51 76.79 14.15 91.0 7.5 0 1.5

Vit., vitrinite; Ine., inertinite; Exi., exinite; Min., mineral; M, moisture; V, volatile; Fc, fixed carbon; A, ash.

FIGURE 1 | Coal slices processed for SAXS experiments.
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each section reached an equilibrium state. At this moment, part of
gas was adsorbed, and part of gas was still in the remaining
volume in the free state. The volume of gas charged was known,
and the free volume after deducting the remaining volume was
the adsorption volume in samples. Repeat the above procedures
to obtain the adsorption volume in each pressure section. The
adsorption isotherms were obtained when the gas was charged
into the adsorption tank from low pressure to high pressure, and
the desorption isotherms were obtained when the gas was
discharged out of the adsorption tank from high pressure to
low pressure.

RESULTS AND DISCUSSION

Fractal Characterization by SAXS
Wijnen et al. (1991) have ever found that the power-law formula
can well express the SAXS intensity of a fractal object,

I(q) � I0q
−α, (1)

where α varies from 0 to 4, serving as the fractal parameter.
The fractal features of the coal pore structure are defined as

surface fractal and pore fractal based on the SAXS fractal theory,
which are represented byDs andDp, respectively. If α is between 3
and 4, the pore structure is of surface fractal feature, and the value
of Ds is Ds = 6-α. If α is between 0 and 3, the pore structure is of
pore fractal feature, and the value of Dp is Dp = α (Reich et al.,
1992).

Figure 2 shows the fractal curves of five coal samples. The
fractal dimensions were obtained by making a tangent to the
lnI(q)—lnq curves within linear ranges. The results show that the
α values range between 3 and 4, indicating that all samples show

surface fractal features. The Ds values vary from 2.34 to 2.93 with
sample #4 being of the highestDs value and sample #1 being of the
lowest Ds value, as listed in Table 2.

Determination of Langmuir Constants
In this work, the adsorption isotherms are determined by the
classic Langmuir formula (Langmuir, 1918) and the desorption
isotherms are determined by the modified Langmuir formula (Ma
et al., 2011) since it exists residual adsorption volume under a lack
pressure between adsorption and desorption isotherms, which is
to say that the gas volume is not zero when the pressure decreases
to zero in the desorption stage. Eqs 2, 3 represent these two
models, respectively,

V � PVL−ad
P + PL−ad

, (2)

V � PVL−de
P + PL−de

+M, (3)

where P stands for the equilibrium gas pressure in the adsorption
or desorption stage, MPa; V is the adsorbed gas volume when the
gas pressure reaches P, ml/g; VL-ad and VL-de are the Langmuir
adsorption and desorption volumes, which is equal to the
maximum monolayer adsorption and desorption values of gas,
ml/g; PL-ad and PL-de are the Langmuir adsorption and desorption
pressures, the pressure when the adsorbed gas volume is half of
VL-ad and VL-de, MPa; and M is the residual adsorption volume
under a lack pressure, ml/g.

Figure 3 shows the adsorption and desorption isotherms of
CO2 and CH4. Tables 3, 4 show the Langmuir constants of CO2

and CH4, respectively.
As is widely known, the Langmuir volume and Langmuir

pressure have a significant impact on gas adsorption and

FIGURE 2 | Fractal curves. (A) Sample #1, (B) Sample #2, (C) Sample #3, (D) Sample #4, and (E) Sample #5.
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desorption performance. The higher VL-ad is, the stronger the gas
adsorption capacity is, the higher PL-ad is, the harder the gas is
adsorbed to the coal pore surface; similarly, the higherVL-de is, the
stronger the gas desorption capacity is, the higher PL-de is, the
harder the gas is desorbed to the coal pore surface (Niu et al.,
2019). It can be seen from Tables 3, 4 that for the same sample,

the VL-ad and VL-de values of CO2 are greater than those of CH4,
demonstrating that the adsorption and desorption capacities of
CO2 are stronger than those of CH4, which is in line with previous
studies (Sander et al., 2016; Zhang et al., 2018). This is attributed
to the fact that CO2 owns a smaller kinetic diameter than CH4

does (CO2: 0.33 nm versus CH4: 0.38 nm); therefore, CO2 is much

TABLE 2 | Results of the pore structure properties of coal samples based on SAXS.

Sample #1 #2 #3 #4 #5

Fractal feature Surface fractal Surface fractal Surface fractal Surface fractal Surface fractal
α 3.66 3.34 3.25 3.07 3.18
Ds 2.34 2.66 2.75 2.93 2.82

FIGURE 3 | Adsorption and desorption isotherms of CO2 and CH4. (A-B) Sample #1, (C-D) Sample #2, (E-F) Sample #3, (G-H) Sample #4, and (I-J) Sample #5.

TABLE 3 | Langmuir constants of CO2.

Sample CO2 adsorption CO2 desorption

VL-ad (ml/g) PL-ad (MPa) VL-de (ml/g) PL-de (MPa) M

#1 21.42 0.95 20.11 1.30 3.02
#2 25.76 2.06 22.45 2.11 4.43
#3 32.31 0.40 27.63 0.93 8.68
#4 35.30 0.40 30.49 0.65 6.91
#5 33.47 0.75 30.07 1.56 8.02

TABLE 4 | Langmuir constants of CH4.

Sample CH4 adsorption CH4 desorption

VL-ad (ml/g) PL-ad (MPa) VL-de (ml/g) PL-de (MPa) M

#1 11.04 1.90 9.55 1.23 0.37
#2 11.88 5.67 7.03 1.42 1.11
#3 21.29 1.33 17.89 0.98 3.46
#4 25.08 0.96 21.73 1.20 3.64
#5 20.69 1.27 16.57 1.95 4.53

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 8243485

Zhao et al. Gas Sorption Capacities and Hysteresis

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


easier to diffuse into pores with smaller size (Hou et al., 2020),
and the affinity of coal matrix to CO2 is stronger than that of coal
matrix to CH4. Similarly, for the same sample, the PL-ad value of
CH4 is greater than that of CO2, indicating that CH4 is harder to
be adsorbed on the coal pore surface than CO2; nevertheless, there
is no obvious rule concerning the PL-de values.

Impact of Ds on Adsorption and Desorption
Capacities
Figure 4 shows Ds vs. Langmuir constants curves. It can be seen
from Figure 4A, in the CO2 adsorption stage,VL-ad increases with
Ds increasing, demonstrating that the largerDs is, the stronger the
CO2 adsorption capacity is. Figure 4E shows that in the CH4

adsorption stage, Ds and VL-ad show a positive relationship. VL-ad

increases with Ds increasing, demonstrating that the larger Ds is,
the stronger the CH4 adsorption capacity is, which is consistent
with studies by Niu et al. (2019) using SAXS and Li et al. (2015)
using N2 adsorption.

The gas adsorption in coal includes monolayer adsorption and
multilayer adsorption (Yang and Liu, 2019). In the monolayer
adsorption stage, there are two main factors affecting the gas
adsorption volume, one is the van der Waals force existing
between the pore surface and the gas molecules and the other
is the number of adsorption sites available on the pore surface. Ds

can represent the strength of the van der Waals force (Chen et al.,
2017). The van der Waals force is an indicator of the mutual
attraction strength between molecules.

In the adsorption process, gas molecules can diffuse into the
pores with a size larger than or equal to the average free path of
gas molecules under the effect of gas pressure. The coal matrix
can be regarded as organic solids composed of carbon atoms, the
gas molecules entered the pore structure can be attracted by the
carbon atoms on the pore surface, this is where the van der

Waals force works, thereby the gas molecules can earn a
tendency to move toward the pore surface. This tendency
grants the carbon atoms on the pore surface extra
energy—the surface free energy (He et al., 1996). The carbon
atoms on the pore surface are always trying to absorb other
substances around them to reduce their surface free energy.
Hence, the stronger the van der Waals force is, the stronger the
gas adsorption performance is. Meanwhile, Ds can also
represent the roughness and irregularity of the pore surface
(Yao et al., 2008; Niu et al., 2019). The higher Ds value indicates
the rougher pore surface, at which more sites are available for
gas adsorption (Wang Y. et al., 2016), further enhancing the gas
adsorption capacities. Hence, the fact that Ds and VL-ad show a
positive relationship can be explained from the perspectives of
the pore surface roughness and the van der Waals force.

However, with the increase of relative pressure, the monolayer
adsorption transits to the multilayer adsorption. During the
multilayer adsorption stage, more adsorption layers are
established, and the adsorbent interface becomes smooth. At
this time, the effect of the capillary condensation, which can
be represented by Dp, accounts for a leading position (Qi et al.,
2002). Unfortunately, SAXS failed to test the pore fractal in this
study, leading to counting for the gas amount of multilayer
adsorption mainly affected by the pore fractal when we discuss
the impact of Ds on the gas adsorption capacities. However,
according to Wang (2015), the Langmuir model is based on the
hypothesis of monolayer adsorption and its good application in
actual projects illustrates that the monolayer adsorption takes up
a leading proportion. Besides, since the gas pressure during the
adsorption and desorption at normal temperature is much higher
than the gas pressure range applicable to the multilayer
adsorption, the multilayer adsorption is generally considered
to be rather weak. Therefore, although the gas amount of
multilayer adsorption is counted into the total gas adsorption

FIGURE 4 |Relationship betweenDs and Langmuir constants. (A)Ds vs. VL-ad for CO2, (B)Ds vs. PL-ad for CO2, (C)Ds vs. VL-de for CO2, (D)Ds vs. PL-de for CO2, (E)
Ds vs. VL-ad for CH4, (F) Ds vs. PL-ad for CH4, (G) Ds vs. VL-de for CH4, and (H) Ds vs. PL-de for CH4.
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amount, it doesn’t actually affect the discussion of the impact of
Ds on the gas adsorption capacities.

As shown in Figures 4C, G, VL-de for CO2 and VL-de for CH4

exhibit an increasing trend with the increase of Ds. It can be
explained by the fact that VL-ad shows a positive relationship with
VL-de, as demonstrated by Figure 5. And as discussed above,
larger Ds values represent the rougher pore surface providing
more available adsorption sites and stronger van der Waal force
reinforcing the mutual attraction strength between the gas
molecules and pore surface, which enhances the total
adsorption volume in the adsorption stage. On the contrary,
in the desorption stage, the van der Waals force plays a role in
restricting gas molecules to escape from the pore surface; besides,
rougher pore surface produces stronger friction resistance
hindering the desorbed gas molecules to diffuse out of the
pore structure. However, the restricted effects caused by these
two factors are limited, most adsorbed gas molecules still can
desorb and diffuse out of the pores when the gas pressure
decreases. Therefore, the fact that VL-ad shows a positive
relationship with VL-de is reasonable; meanwhile, Figures 4A,
E show Ds shows a positive relationship with VL-ad, so it is no
wonder that VL-de increases with Ds increasing.

However, no correlation was found between Ds and PL-ad as
well as between Ds and PL-de according to the fluctuation
presented in Figures 4B, D, F, H.

Determination of Ad-/Desorption
Hysteresis and Impact of Ds on Ad-/
Desorption Hysteresis
Scholars in different fields, such as soil, rock, and high-
molecular polymer, have ever proposed various hysteresis
indexes for evaluating ad-/desorption hysteresis phenomenon
based on the Freundlich index, the equilibrium concentration of
solid phase, slope (Ran et al., 2003; Wu and Sun, 2010; Ding and
Rice, 2011); however, they are not quite applicable to gas
adsorption and desorption in coal (Wang G. et al., 2016).
Wang et al. (2014) put forward an improved hysteresis index
(IHI) based on the area formed by ad-/desorption isotherms,

which has been proved to be effective in quantitatively
characterizing the degree of gas ad-/desorption hysteresis in
coal (Wang G. et al., 2016; Sun et al., 2020). Hence, IHI was
adopted in this work, as shown by Eqs 4–9,

IHI � Ahy

Ahf
� Ade − Aad

Asf − Aad
× 100%, (4)

Aad � ∫Pf

0

VL−adP
PL−ad + P

dP � VL−ad ∫Pf

0
(1 − PL−ad

PL−ad + P
)dP

� VL−ad[Pf − PL−ad ln(1 + Pf

PL−ad
)],

(5)

Ade � ∫Pf

0
( VL−deP
PL−de + P

+M)dP � VL−de ∫Pf

0
(1 − PL−de

PL−de + P
)dP +MPf

� VL−de[Pf − PL−de ln(1 + Pf

PL−de
)] +MPf, (6)

Asf � Pf( VL−dePf

PL−ad + Pf
+M), (7)

Ahy � Ade − Aad, (8)
Ahf � Asf − Aad, (9)

where Aad and Ade stand for the zones below the adsorption and
desorption isotherms; Pf stands for the final equilibrium pressure,
MPa; Ahy represents the measured hysteresis area; and Ahf and Asf

represent the hysteresis area and the adsorption area in the fully
irreversible case, respectively.

Figure 6 shows the IHI calculation of CO2 and CH4, and the
results are listed in Table 5.

Jessen et al. (2008) have demonstrated that desorption
isotherms depend on the initial pressure at the beginning of
depressurization; therefore, when the final equilibrium
pressure set in Eqs 5–7 varies, ad-/desorption hysteresis
varies as well. To avoid the possible error caused by the
difference of the final equilibrium pressure of every sample,
the final equilibrium pressures of CO2 and CH4 were
uniformly set to 3.5 and 8 MPa for IHI calculation in this
work. It should be noted that desorption points at 0 MPa were

FIGURE 5 | Relationship between VL-ad and VL-de. (A) CO2, and (B) CH4.
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not measured in this work; to enable the adsorption and
desorption isotherms to form a closed interval with the y
axis and the vertical axis passed through (Pf, 0), the
desorption isotherms were extended to the (0, M) point
according to Eq. 3. Since the proposed IHI is calculated
based on the area instead of a single point, a slight change
at the end of desorption isotherms cannot significantly affect
the calculation results of the IHI value; thus, the process of
desorption isotherm extension is theoretically acceptable.

Figure 7 shows the relationship between Ds and IHI. It can be
seen that for CO2, IHI fluctuates with Ds changing. It first
increases from 18.0 to 32.6% when Ds increases from 2.34 to
2.66, and then decreases to 14.5%, followed with a slight bounce
to 16.1%, and finally drops to 12.2%. For CH4, IHI rises to the
maximum value of 50.3% when Ds increases from 2.34 to 2.66,
and keeps falling when Ds varies between 2.66 and 2.93. In

general, the curves of Ds vs. IHI for CO2 and CH4 are like an
irreversible “V” shape.

As mentioned in Determination of Langmuir Constants,
coal physical properties that can be directly reflected by Ds

are the van der Waals force and the pore surface irregularity.
Zhang et al. (2005) have reported that the adsorbed gas
molecules on the pore surface of coal require a certain
amount of energy to offset the van der Waals force so

FIGURE 6 | IHI calculation. (A), (C), (E), (G), and (I) represent CO2 IHI calculation; (B), (D), (F), (H), and (J) represent CH4 IHI calculation.

TABLE 5 | IHI Results.

Sample IHI (%)

CO2 CH4

#1 18.0 12.8
#2 32.6 50.3
#3 14.5 35.3
#4 12.2 8.9
#5 16.2 13.6

FIGURE 7 | Ds vs. IHI curves.
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that they can escape from the pore surface; therefore, the
desorption process will lag behind adsorption to varying
degrees. According to the viewpoint by Zhang et al. (2005),
the stronger the van der Walls force is, the more obvious the
ad-/desorption hysteresis is. Besides, Seri-Levy and Avnir
(1993) have studied the effect of the heterogeneity of the
pore surface on CH4 ad-/desorption hysteresis. He
demonstrated that the pore surface heterogeneity is
sufficient to induce an ad-/desorption hysteresis loop and
the degree of ad-/desorption hysteresis increases with the
pore surface heterogeneity increasing. According to the
statements by Zhang et al. (2005) and Seri-Levy and
Avnir (1993), Ds and IHI are also more likely to present
a positive relationship, but in this work, they present an
irreversible “V-like” shape, primarily caused by that the ad-/
desorption hysteresis in the sample with the Ds value 2.66 is
rather dramatical, but the intrinsic mechanism of the
irreversible “V-like” shape is hard to be explained by the
existing theories and yields to be further investigated.

CONCLUSION

Fractal features of five coals were characterized by SAXS, the
classic Langmuir model and the improved Langmuir model were
adopted to characterize the gas adsorption and desorption
capacities, and IHI was adopted to characterize the degree of
gas ad-/desorption hysteresis. The evidence leads to the following
conclusions:

1) Different samples show different surface fractal features with
Ds values varying from 2.34 to 2.93.

2) The VL-ad and VL-de values of CO2 are greater than those of
CH4, demonstrating that the adsorption and desorption
capacities of CO2 are stronger than those of CH4. The
PL-ad values of CH4 are greater than those of CO2,
demonstrating that CH4 is harder to be adsorbed on the
coal pore surface than CO2.

3) In the adsorption stage, Ds and VL-ad show a positive
relationship for CH4 and CO2, which is attributed to the
van der Waals force and available adsorption sites. In the
desorption stage, Ds and VL-de show a positive relationship
for CH4 and CO2 because most adsorbed gas molecules can
desorb and diffuse out of the pores when the gas pressure
decreases. No correlation was found between Ds and PL-ad

as well as between Ds and PL-de on a basis of SAXS fractal
theory.

4) The curves of Ds vs. IHI for CO2 and CH4 are like an
irreversible “V” shape, primarily caused by the fact that the
ad-/desorption hysteresis in the sample with the Ds value 2.66
is rather dramatical, but the intrinsic mechanism yields to be
further studied.
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