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The uplift pattern of the southeastern Tibetan Plateau is strongly related to the topographic
evolution stemming from the India–Eurasia collision. However, whether strain is localized
along major faults that bound large tectonic blocks or is accommodated across regions
has been strongly debated. In this study, we used stream power incision models to obtain
the distribution pattern of the channel steepness indices to understand the rock uplift
pattern across the area, as increased channel steepness indices often correlate with the
rock uplift rates. In this study, the river longitudinal profiles were analyzed to obtain the
distribution of the channel steepness indices in the Central Yunnan subblock. The results
suggested very weak correlations between the steepness indices and the lithology,
precipitation, sediment flux, or channel concavity indices. Along the Xiaojiang
strike–slip fault and the interior subblock, the uplift rate was slower, while the northern
part had uplifted faster and was controlled by thrust fault systems. The channel steepness
increased gradually from south to north. Thus, the distribution pattern of the normalized
channel steepness, ksn, index within the Central Yunnan subblock provides notable
support for the argument for the thrusting transformation-limited extrusion model of the
Tibetan Plateau.

Keywords: stream power incision model, channel steepness index, the Central Yunnan subblock, river longitudinal
profile, rock uplift

INTRODUCTION

The Tibetan Plateau is one of the most studied natural laboratories for examination of the
relationship between continental collision and landscape evolution (Clark et al., 2005; Clark,
2012; Allen et al., 2013; Zheng et al., 2013; Liu et al., 2008; Molnar and England, 1990; Liu-
Zeng et al., 2018; Wang et al., 2019). Although there has been much work done in the region, it is still
poorly understood how the southeastern margin of the Tibetan Plateau responded to the
India–Eurasia continental collision. Additionally, whether the strain is mainly localized along the
boundary faults of large blocks (Tapponnier, 2001) or accommodated within the block (Houseman
and England, 1993; Royden et al., 1997; Clark et al., 2005; Clark et al., 2004; Wang et al., 2017) has
been strongly debated.

Research on the bedrock channel fluvial systems has examined the relationships between climate
variations, surface processes, and tectonic evolution (Raymo and Ruddiman, 1992; Hartshorn et al.,
2002; Dibiase and Whipple, 2011; Ferrier et al., 2013; Dibiase, 2014; Finnegan et al., 2014; Pan et al.,
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2015; Kirby and Ouimet, 2011; Kirby et al., 2007; Lave and
Avouac, 2001) and has been used to interpret the relationships
between topography, elevation, and denudation rates (Pritchard

et al., 2009; Schwanghart and Scherler, 2020). In this study, we
selected the Central Yunnan subblock as our study area
(Figure 1). We extracted longitudinal river profiles from 320

FIGURE 1 | Topographic map of the Central Yunnan subblock. (A) Location of the study area. (B) Topography, major faults, and rivers in the southeastern Tibetan
Plateau. XxF, Xianshuihe–Xiaojiang Fault; AnF, Anninghe Fault; LxF, Lijiang–Xiaojinhe Fault; MlF, Muli Fault; JqF, Jinhe–Qinghe Fault; LzjF, Lvzhijiang Fault; YmF, Yimen
Fault; PdF, Pudu Fault; XjF, Xiaojiang Fault; RrF, Red River Fault.

FIGURE 2 | Normalized channel steepness calculated for a reference concavity (θref = 0.45) plotted against the actual concavity (θ) of the profile. The streams
extracted for river profile analysis and the steepness and concavity indices of each segment are in the Supplementary File.
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rivers and calculated the channel steepness indices and
concavities to determine the uplift patterns in this area (e.g.,
Kirby and Whipple, 2001; Whipple, 2004; Wobus et al., 2006;
Oskin et al., 2014; Su et al., 2016) based on the digital elevation
model data of the 90-m Shuttle Radar Topography Mission
(downloaded from http://srtm.csi.cgiar.org/) by ArcGIS 10.2
and MATLAB R2015b. Thereafter, the influence of lithology
resistance, precipitation, and sediment flux on channel
steepness indices was analyzed to obtain the distribution
pattern of the rock uplift within the subblock.

Regional Setting
The Sichuan–Yunnan rhombic block is located in the
southeastern margin of the Tibetan Plateau. The
Lijiang–Xiaojinhe Fault cuts the block into two parts: the
Central Yunnan subblock in the south and the northwestern
Sichuan subblock in the north (Xu et al., 2003) (Figure 1). In this
paper, we mainly studied the Central Yunnan subblock.

The average elevation of the Central Yunnan subblock is
about 2,000 m. The geotectonic location belongs to the
southeastern margin of the Tibetan Plateau. It is adjacent to
the Simao block in the south and the Caledonian fold belt in
southeastern Yunnan to the east (Huangfu and Qin, 2006; He
et al., 2009; Wang et al., 2015). For most parts of the area, annual
rainfall ranges from 600 to 1,100 mm and gradually increases
from north to south. Owing to the abundant rainfall, the study
area has developed a dense river network, with many large rivers
originating in the area (e.g., Longchuan River, Red River,
Nanpan River, Pudu River, Anning River, and Xiaohedi
River) (Figure 1).

The lithology of the central region of the subblock is relatively
homogenous (consisting of Cretaceous–Jurassic sandstones and
mudstones), while the lithology of the border region of the
Central Yunnan subblock is complex (including Paleozoic
shales, schists, and gneiss, Cambrian limestones and dolomites,
and Triassic phyllites and mudstones). The subblock is

FIGURE 3 | Spatial pattern of the normalized channel steepness across the Central Yunnan subblock. AnF, Anninghe Fault; LxF, Lijiang–Xiaojinhe Fault;MlF, Muli
Fault; JqF, Jinhe–Qinghe Fault; LzjF, Lvzhijiang Fault; YmF, Yimen Fault; PdF, Pudu Fault; XjF, Xiaojiang Fault; RrF, Red River Fault; AnR, Anning River; LcR, Longchuan
River; PuR, Pudu River; LzR, Lvzhi River; NpR, Nanpan River; RrR, Red River; JsR, Jinsha River; LtR, Litang River.
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constrained by the Xiaojiang Fault, Lijiang–Xiaojinhe Fault, and
the Red River Fault. The northern region of the block is cut by a
series of thrust faults (the Jiulong, the Muli, and Jinhe–Qinghe

thrusting faults) (Figure 1). The central region of the block is cut
by a series of strike–slip faults (the Xiaojiang, Lvzhijiang, and
Yimen strike–slip faults) (Figure 1).

FIGURE 4 | Channel steepness of representative river profiles. Black crosses are knickpoints.
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FIGURE 5 | Stream profile analysis for the trunk rivers of the five large drainage basins. The colored curve is a river profile with variable lithologies.

FIGURE 6 | Stream profile analysis for the four middle-scale rivers. The colored curve is a river profile with variable lithologies.
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In the Cenozoic, most of the fault zones and orogenic belts of
the Tibetan Plateau were active due to the strong collision
between India and Eurasia (Wang et al., 2012; Shen et al.,
2016; Zhang et al., 2016; Zhang et al., 2017; Liu-Zeng et al.,
2018). The Xianshuihe–Xiaojiang Fault is a very large left lateral

strike–slip fault (e.g., Xiang et al., 2002; Li and Zhang, 2013; Yan
and Lin, 2015; Xu et al., 2007). In the Late Cenozoic, the
Xianshuihe–Xiaojiang Fault offset the NE–SW Longmenshan
thrust fault by as much as 60 km, splitting it into the north
Longmenshan (NLM) and south Longmenshan (SLM) thrust

FIGURE 7 | (A) Map of local channel steepness values calculated under an elevation interval of 100 m. (B–D) Geological cross-sections and swath profiles of the
elevation and local channel steepness indices along the section in (A): swath profile 1 (B); swath profile 2 (C); and swath profile 3 (D). The maximum, minimum, mean
elevation, and topographic relief are shown in orange, green, blue, and red, respectively. Major faults and rivers are as follows: RrR, Red River; LtF, Litang Fault;MlF, Muli
Fault; JqF, Jinhe–Qinghe Fault; JsR, Jinsha River; LtR, Litang River; LcR, Longchuan River; LzR, Lvzhi River; PdR: Pudu River; XjR, Xiaojiang River. Average local
steepness indices are shown in black.
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belts (Burchfiel et al., 1995; Wang et al., 1998). The SLM includes
the Muli Fault, Lijiang–Xiaojinhe Fault, and Jinhe–Qihe Fault
(Yin et al., 2020; Wang et al., 2012).

The uplift history and the expansion of the southeasternmargin
of the Tibetan Plateau have been studied intensely using several
methods. Analysis of the 18O isotopes of carbonate rocks in
Cenozoic sedimentary basins (Li et al., 2015; Tang et al., 2017;
Hoke, 2018) interpreted that the palaeo-elevation of the

southeastern margin of the plateau reached its present height
prior to the Eocene. In addition, episodic periods of uplifts have
occurred in the region since the Late Cenozoic, determined
through various thermochronometers (e.g., Xu and Kamp, 2000;
Chen et al., 2006; Wilson and Fowler, 2011;Wang et al., 2012; Tian
et al., 2013, Tian et al., 2014, Tian et al., 2015; Shen et al., 2016;
Zhang et al., 2016; Zhang et al., 2017; Liu-Zeng et al., 2018; Wu
et al., 2020).

FIGURE 8 | Comparison of normalized channel steepness (ksn) to lithologic variability in the Central Yunnan subblock. AnF, Anninghe Fault; LxF, Lijiang–Xiaojinhe
Fault; MlF, Muli Fault; JqF, Jinhe–Qinghe Fault; LzjF, Lvzhijiang Fault; YmF, Yimen Fault; PdF, Pudu Fault; XjF, Xiaojiang Fault; RrF, Red River Fault; AnR, Anning River;
LcR, Longchuan River; PuR, Pudu River; LzR, Lvzhi River; NpR, Nanpan River; RrR, Red River; JsR, Jinsha River; LtR, Litang River.
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METHODS

The stream power incision model relates rock uplift and river
incision over time along the longitudinal profile of the channel
(Howard and Kerby, 1983; Howard et al., 1994), and it can be
represented by Eq. 1:

zz

zt
� U − KAm(zz

zx
)

n

(1)

where z represents the channel elevation, x represents the
upstream distance, t represents time, U is the rock uplift rate,
and K is the bedrock erodibility and is related to the channel
width, the water discharge, the sediment load, and the lithologic
resistance (Howard and Kerby, 1983; Howard et al., 1994).m and
n are constant exponents, and A is the drainage area.

For a steady state, channel elevation at a particular point does
not change, and then zz/zt equals 0. From this, we can obtain
Eq. 2.

dz

dx
� ksA

−θ (2)

Ks � (U
K
)1/n

(3)

θ � m

n
(4)

where ks and θ are the channel steepness and concavity indices,
respectively. Generally, θ oscillated between 0.3 and 0.6 (Snyder
et al., 2000; Snyder et al., 2006; Whipple, 2002; Kirby et al., 2003;
Wobus et al., 2003). Ks is usually proportional to the rock uplift
rates (Eq. 3). Although the longitudinal profile analysis was

FIGURE 9 |Comparison of normalized channel steepness (ksn) to annual precipitation in the Central Yunnan subblock. The precipitation data (timescale: from 1970
to 2019) were downloaded from http://data.cma.cn. The tributary catchments (white boundary) were selected randomly for correlation analysis between channel
steepness with precipitation and drainage area. AnF, Anninghe Fault; LxF, Lijiang–Xiaojinhe Fault; MlF, Muli Fault; JqF, Jinhe–Qinghe Fault; LzjF, Lvzhijiang Fault; YmF,
Yimen Fault; PdF, Pudu Fault; XjF, Xiaojiang Fault; RrF, Red River Fault; AnR, Anning River; LcR, Longchuan River; PuR, Pudu River; LzR, Lvzhi River;NpR, Nanpan
River; RrR, Red River; JsR, Jinsha River; LtR, Litang River.
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developed under steady-state assumptions, it has been extended
to transient systems as well (e.g., Pan et al., 2015; Wang et al.,
2017; Wang et al., 2019; Ma et al., 2020), and several studies (e.g.,
Snyder et al., 2000; Kirby et al., 2003; Wobus et al., 2003; Hu et al.,
2010; Burbank and Anderson, 2011; Kirby and Whipple, 2012)
showed that Ks is a useful index for denoting rock uplift rates at
transient states.

θ can be gained by a log transformation to Eq. 2 by Wobus
et al. (2003).

log(dz
dx

) � −θ · log(A) + log(Ks) (5)

The concavity and steepness indices are the slope and intercept
of Eq. 5, respectively. Ks can be gained using Eq. 6 (Perron and
Royden, 2013).

z � zb + ( U

KAm
0
)

1
n

· χ (6)
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x

0

( A0

A(x’))
m
n

dx′ (7)

where A0 is the area factor and zb is the channel elevation at river
outlets (x = 0). A0/A(x)’ is dimensionless. Setting A0 = 1 m2, the
slope of Eq. 6 is ks.

We first used the ArcGIS 10.2 and MATLAB 2015b scripts
(www.geomorphtools.org) to derive the concavity indices
(Figure 2), steepness indices (Figure 3), and the longitudinal
profiles (Figures 4–6). The steepness indices were determined
using logS–logA plots according to the methods described by
Wobus et al. (2003). Then, we interpolated the normalized
channel steepness, ksn, values of the river basins in the Central
Yunnan subblock and created three swath profiles of the elevation

and local steepness (Figure 7) (the profiles are E/W-directed,
220–350 km long and 20 km wide), finally presenting a
distribution pattern over the Central Yunnan subblock. Due to
the strong dependence of ks on θ, a fixed reference concavity of 0.
45 (a typical value used in many studies, e.g., Wobus et al., 2003;
Hu et al., 2010; Perron and Royden, 2013) was used to generate
x–z plots and to calculate the ksn indices in order to compare the
channels and channel segments of varying drainage areas
(Whipple and Tucker, 1999). We resampled the elevation data
at 20-m contour intervals with a 250-m smoothing window to
decrease data noise (e.g., Wang et al., 2017).

RESULTS

In the Central Yunnan subblock, the 320 extracted river profiles
had a mean concavity of 0.28 ± 0.063 (1σ), with a total range of
0.014–0.63 (Figure 2). In this section, however, we just described
the most representative stream longitudinal profiles in the
subblock (Figures 3–7). The detailed results are depicted in
the Supplementary Material (Supplementary Figure S1 and
Supplementary Table S1). Furthermore, the ksn and θ values are
also listed in the Supplementary Material (Supplementary
Figure S1 and Supplementary Table S1).

In the northern areas controlled by a series of NE–SW thrust
faults (such as the Jiulong and Muli thrust fault belts and the
Jinhe–Qinghe thrust fault zone), these rivers had higher ksn values
(Figure 3), which can also be found from profile 1 (Figure 7B).
The upper reaches of the Anning River also had high ksn values,
which may stem from their close proximity to areas of thrust
faults (Muli Fault and Jinhe–Qinghe Fault) (Figure 3).

However, in the south areas controlled by the strike–slip faults
and within the block, the rivers had lower ksn values (Figures 3,

FIGURE 10 |Bi-variant linear regression of channel steepness (ksn)–annual precipitation (A), channel steepness–catchment area (B), mean sediment load–channel
steepness (C), and sediment load–drainage area (D).
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7). The lower reaches of the Anning River near the Xiaojiang
strike–slip fault zone had low ksn values. Similarly, the Pudu River
and Lvzhi River and the Red River, which are close to the Pudu
River Fault and Lvzhi River Fault, respectively, also had lower ksn
values in this area. From swath profiles 2 and 3, we can see that
the ksn values were low on both sides of the Xiaojiang fault zone,
the Lvzhijiang Fault, and the Red River Fault and exhibited little
change across the area (Figures 7C, D).

Based on the distribution pattern of the ksn indices along the
Central Yunnan subblock (Figure 7A), an approximate trend of
change has been outlined, in which the average ksn indices
showed a general and gradual decrease from north to south.

DISCUSSION

The Ksn values were higher in the northern region controlled by
the thrust faults and on both sides of the Jinsha River and were
lower within the block and near strike–slip faults. The results
suggest that the longitudinal river profiles correlated strongly
with the underlying tectonic regime and may be used to make
inferences regarding the tectonic setting or structure. However, if
we want to attribute the variation of ksn to the rock uplift rates, the
influence of the lithology, precipitation, and sediment flux should
be excluded.

Lithology
Channel bedrock erodibility is largely controlled by the lithologic
resistance (Stock and Montgomery, 1999; Palumbo et al., 2010;
Wang, 2014; Wang et al., 2018). As river incision through more
resistant rocks (low K) requires greater stream power compared
to less resistant rocks (high K), knickpoints are usually observed
near the contact between rocks, with higher ksn values in areas
underlain by harder units (Duvall et al., 2004). Therefore, we
analyzed the relationship between nine representative rivers with
different lithologies (Figures 5, 6) and their ksn values to assess
the influence of lithologic resistance.

Although the knickpoints observed along the Longchuan
River (large-scale river, basin area > 104 km2), C23 and Lz9
(middle-scale river, 103 < basin area < 104), are located near
lithologic boundaries (Figures 5, 6), the influences of variable
lithologies on the channel profiles were weak. Along these rivers,
the extracted ksn values did not match the mapped lithologies
(Figure 8). For example, in the lower reaches of the Anning River,
although the lithology varied, we did not find an obvious
knickpoint (Figure 5). But an obvious knickpoint was
extracted from H20 (Figure 6), where the bedrock lithology of
these channels is uniform.

Therefore, regional lithology does not appear to be a major
influence on the channel profile of the subblock.

Precipitation
The effect of climate (mainly precipitation) on the channel
profiles must be examined, as increased rates of rainfall often
lead to increased river discharge and erosion of the bedrock
beneath the channel. Ultimately, increased rainfall rates will
decrease channel steepness, as channel steepness is often

inversely proportional to the erodibility (Eq. 3). Here, the
monthly precipitation data of 15 meteorological stations
were collected from the China Meteorological Data
Network (timescale: 1970–2019; downloaded from http://data.
cma.cn) (Figure 9). These data were interpolated to derive the
spatial distribution of average precipitation across the Central
Yunnan subblock. The annual rainfall in the study area decreased
from >1,200 mm (close to the Red River fault zone in the south)
to <500 mm (close to the Lijiang–Xiaojinhe fault zone in the
north) (Figure 9). This may be related to monsoons from the
Indian Ocean being blocked by the Himalayas, promoting
increased southeastern compared to northwestern rainfall.
Increased runoff can be seen in the numerous river channels
that have developed in Southwest China, such as the Yarlung
Zangbo River Grand Canyon, the Lancang River Valley, the
Jinsha River Valley, and other south-to-north valleys (Nie,
2018; Li, 1999).

From these data, there were two reasons to exclude
precipitation as having a key role in controlling the ksn values
in the subblock. Firstly, by extracting the ksn values from a small
watershed in the study area, we found that the ksn values in the
northern part of the study area were higher than those in the
southern part of the subblock (Figure 7). However, the rainfall in
the southern part of the study area is higher than that in the
northern part, which is inconsistent with our observation results
of ksn values (Figure 9). Secondly, we selected catchment basins
with approximately 200 tributaries to quantify the relationship
between rainfall and ksn values. Rainfall in these basins ranges
from 600 to 1,100 mm (Figure 10A), and the ksn values had a
wide range from 10.5 to 207 m0.9. Figure 10A shows that the
correlation between the ksn values and precipitation was very
weak (R2 = 0.0719). As such, precipitation did not seem to control
the distribution of ksn values.

Sediment Flux
Abrupt changes in drainage area, water discharge, and sediment
flux at tributary junctions might trigger knickpoint initiation.
This behavior has been suggested in theoretical river incision
models that included a dual sediment flux dependence (e.g.,
Gasparini and Brandon, 2011). In these models, the efficiency
of bedrock incision increased with additional sediment flux up
until the point when the increasing sediment no longer
functioned as a tool to abrade the bed, but rather covered and
armored the bed from further incision. The sediment flux in
rivers mainly depends on the interplay between the actual total
sediment flux (ATSF) and the river sediment capacity (RSC)
(Willgoose, 1994; Tucker and Slingerland, 1996; Slingerland et al.,
1997; Sklar and Dietrich, 2001; DiBiase et al., 2010). If
ATSF < RSC, the materials carried by the river will erode the
base of the river and increase the erosion rates (Wang et al., 2019).
If ATSF > RSC, the material carried by the river will be deposited
on the river bottom, thus protecting the riverbed from further
erosion (Whipple, 2002) and lessening the rate at which the
knickpoints move headwaters (Wang et al., 2019). As a result, the
channel will become flatter and have a low concave.

Knickpoints along the Anning River (Figure 8) are located at
the transition from the base of the channel, being characterized by
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sediment characterized by bedrock. However, the ksn values
across the Central Yunnan subblock are not controlled by
sediment flux.

We compared the ksn and concavity values extracted for each
class of lithology through a statistical analysis derived from
Figure 2. Comparison of the concavity and ksn values showed
no linear relationship. In a normalized height–distance
coordinate system, the concavity indices are close to a
constant and represent similar channel shapes (Whipple and
Tucker, 1999; Duvall et al., 2004; Kirby and Whipple, 2012).

The records of sediment load and drainage area were fromQin
et al. (2019) and Pan (1997). Channel steepness values are shown
in Figure 6.

We also found no systematic change of the ksn values with
varying sediment concentrations and the basin area. We obtained
the sediment load data (including bed load, suspended load, and
solute) from hydrological stations and hydroelectric stations of
the Central Yunnan subblock and calculated the ksn values of the
channel portions downstream of the knickpoints (Table 1) (Pan,
1997; Qin et al., 2019). The soil erosion modulus of the Jinsha
River basin in Yunnan is 1,530 t/km2 (Huang et al., 2006), and the
calculated sediment transport capacity is far greater than the
actual sediment transport capacity. We found no obvious
relevance between the watershed area and the ksn values in the
tributary catchments (R2 = 0.0182) (Figure 10B). The calculated
sediment transport capacity is far greater than the actual
sediment transport. Therefore, ksn should increase with the
increase of the mean sediment load, but the trend cannot be
seen from Figure 10C. Despite limited data, the sediment loads
increased with the watershed area (R2 = 0.4793) (Figure 10D).

Therefore, sediment flux did not appear to have dominant
control on the ksn value in the channel profile.

Patterns of Rock Uplift
Non-tectonic factors (e.g., lithologic resistance, precipitation, and
sediment flux) could not fully explain the ksn distribution. The
most active areas of the interpreted uplift are scattered in the
region controlled by the NE/SW-trending thrust faults in the
north of the Central Yunnan subblock. Therefore, the distribution
of the ksn values is likely tectonically controlled.

The Xianshuihe–Xiaojiang Fault accommodates the shortage
from the India–Eurasia collision by the left lateral strike–slip
motion (e.g., Molnar and Tapponnier, 1975; Molnar et al., 1987;
Deng et al., 2002; Xu et al., 2003; Wen et al., 2003). Since 13 Ma,
the maximum slip rate of the north part of the Xiaojiang fault

system has reached up to 10 mm/annum (Xu et al., 2003), and
this rate has decreased progressively southward. At the south end
of the Xiaojiang Fault, no obvious slip can be found (Wang et al.,
1998). In the growthmodel for the Tibetan Plateau of Tapponnier
et al. (1982) and Tapponnier (2001), the strain was mainly
localized along the boundary faults of large blocks
(Tapponnier, 2001). Fast erosion rates in the adjacent zone of
the strike–slip fault belt can be found (Wang et al., 2017; 2021);
however, the ksn values were low on both sides of the strike–slip
faults and exhibited little change across the area (Figure 7A). This
may be due to the limited vertical slip and fast strike–slip rate
(Molnar and Tapponnier, 1975; Molnar et al., 1987; Deng et al.,
2002; Xu et al., 2003) in the strike–slip fault zone (Zhang, 2008;
Wu et al., 2014).

Along the transition between the Xianshuihe Fault and Xiaojiang
Fault, some active thrust faults with a NE trend were cut by this
Xianshuihe–Xiaojiang Fault and propagated southwestward
(Figure 1). Slip vector analyses argued that the sinistral slip rates
from west to east across these thrust faults have decreased (Xu et al.,
2003). Their loss has been considered to be transformed into local
crustal shortening perpendicular to the active thrust faults. As a
result, the distribution pattern of ksn along the Xiaojiang Fault,
obtained in this study, is in good agreement with the thrusting
transformation-limited extrusion model of the Tibetan Plateau.

The slope–area regression of the longitudinal profiles revealed
that the rock uplift in the interior of the block is lower compared to
the north part controlled by a series of NE–NW thrust faults (such as
the Jiulong, Muli, and Jinhe–Qinghe thrust faults) where rivers have
high ksn values and contain several knickpoints along their profiles,
suggesting that the tectonic signals have propagated upstream in the
landscape by knickpoint recession. This process resulted in higher
indices in the downstream, along trunk and tributary channels
(Wang et al., 2017; Zhang et al., 2020). The lower part of the
Jinsha River trunk also showed high channel steepness, and the
region east of the Xianshuihe Fault also had high channel steepness,
although distant from the thrust faults, which appears to be the
products of the knickpoint recession (Zhang et al., 2022).

We postulated that, in the interior of the block, the rivers
experienced successive base-level uplifts that have migrated
upslope, reaching the headwater (e.g., Clark et al., 2005;
Schoenbohm et al., 2006; Royden et al., 2008; Wang et al.,
2017). The distribution of lower ksn values at the headwaters,
the unperturbed reaches with a tight slope–area regression with
low ksn values, suggest that, in the growth model for the Tibetan
Plateau of Tapponnier et al. (1982) and Tapponnier (2001), the

TABLE 1 | Locations of the hydrologic stations shown in Figure 7

Hydrologic station
(hydropower station)

Drainage basin
name

Sediment load
(104 t annum−1)

Drainage area
(km2)

Record history Channel steepness
(m0.9)

Tongzilin Yalong 3,420 128,363 1954–1987 135
Xiaohuangguayuan Longchuan 426 5,560 Multi-year average 146
Jiasa Red River 2,772 28,816 Multi-year average 76.6
Wantan Anning 973 11,037 1954–1987 81.3
Jiayan Pudu 488.8 11,752 Multi-year average 160
Shigu Jinsha 2,180 232,651 1954–1987 310
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great crustal shortening between the Indian and Eurasian plates
was mainly absorbed by a series of strike–slip fault systems and
the related thrust faults.

CONCLUSION

In this study, we calculated the distribution pattern of normalized
channel steepness by the stream power incisionmodel of 300 rivers
in the Central Yunnan subblock. The distribution pattern has been
clearly observed to represent a general increase in value from north
to south in this subblock. Higher ksn values were associatedwith the
NE/SW-trending Cenozoic thrust faults (including the Muli Fault,
Lijiang–Xiaojinhe Fault, and Jinhe–Qihe Fault). Lower ksn values
were found on both sides of the Xiaojiang fault zone and the Red
River fault zone. The influences of non-tectonic factors were
discussed and excluded. We suggested that very weak
correlations were found between the steepness indices and the
lithology, precipitation, sediment flux, or channel concavity
indices. Along the Xiaojiang strike–slip fault and the interior
subblock, the uplift rate was slower, while the northern part
had uplifted faster and was controlled by thrust fault systems.
The channel steepness increased gradually from south to north.
Thus, the distribution pattern of the Ksn index within the Central
Yunnan subblock provides notable support for the argument for
the thrusting transformation-limited extrusion model of the
Tibetan Plateau.
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