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The seismic instrumentation of structures in order to assess their condition and to track it
over long periods or after representative events has proven to be a topic of large interest,
under continuous development at international level. The seismic hazard of Romania
poses one of the most dangerous threats for the country, in terms of potential physical and
socio-economic losses. In recent years, taking advantage of the new scientific and
technological advances, among which the exponential growth in computational
resources, significant improvements have been made in extending the seismic
networks for structural monitoring and using the data as input for products and
services addressed not only to the research community but also to stakeholders. The
paper covers focused aspects of the topic for Romania, referring to past developments of
the most important institutions and seismic networks in the country and the current status,
including the research and regulatory gaps. Currently, three main research and academic
institutions perform structural health monitoring of twenty-two buildings in Romania. As the
number of monitored buildings grows and new actors in the private sector start to get
involved in the process, the need for data standardization and a regulatory framework
increases. Ongoing national and international projects (PREVENT, SETTING, TURNkey)
address these issues and outline the roadmap for future actions of the main institutions
responsible for seismic risk reduction, including authorities, research and academia.
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earthquakes

INTRODUCTION

An essential activity for seismic countries is the monitoring and tracking of the condition of the
building stock, aiming to ensure the safety of the population and quick recovery after extreme events.
This endeavor has proved important not only for preparedness, mitigation and decision-making in
emergency situations, but also for opening and supporting a wide range of multi-disciplinary
research approaches. The condition assessment of aging structures and infrastructures is becoming a
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more and more critical issue, especially when developing life
extension and replacement strategies. A cost-effective
maintenance strategy should aim for minimizing the total life-
cycle cost of a structure, considering the costs for preventive
maintenance, inspection, monitoring, repair, and failure losses
(Bergmeister et al., 2003). The importance and the benefits were
analyzed, by assessing the Value of Information (VoI) for
structural health monitoring (SHM) systems, by Pozzi and Der
Kiureghian (2011) and Kamariotis et al. (2022).

The main objectives of SHM are to assess the structural
condition and to rapidly detect the changes that could reveal
damage occurrence, based on vibration recordings. The research
in the field of SHM was initiated with a special focus on the
aerospace, nuclear power and gas exploration industries
(Doebling et al., 1996; Sohn et al., 2004). The following
decades witnessed a large and diversified development of SHM
approaches and methods, supported by the progress of sensing
technology, computer hardware and software and leveraged by
the need of integration of SHM in earthquake early-warning
(EEW) systems (Cosenza et al., 2010; Wu and Beck, 2012; Su
et al., 2020; Iaccarino et al., 2021; Sivasuriyan et al., 2021).

In Romania, a country affected by recurring earthquakes
originating from various shallow and intermediate-depth
sources (Radulian et al., 2000), a large percentage of the
building stock dates from before 1963 (Lungu et al., 2008;
Pavel et al., 2016), the year of the enforcement of the first
mandatory seismic design code, with many of them being
highly vulnerable. According to data from the latest National
Census (2011), more than 40% of the residential building stock in
the whole country and more than 44% in the capital city
Bucharest were erected before 1963. The significant losses
generated by the 1977 Vrancea earthquake (when almost
33,000 buildings were partially or completely damaged),
highlighted the need for an improved seismic design of
buildings and for extending seismic instrumentation.

The extensive implementation of SHM systems and rapid
damage assessment tools is nowadays essential for assisting
decision-makers to set up strategies for the retrofit of the
vulnerable building stock. Several countries have already
elaborated specific guidelines and standards for the seismic
instrumentation of buildings (Çelebi, 2000) and SHM (ISIS
Canada, 2001; Mufti, 2002—Canada; Teshigawara et al.,
2004—Japan; Moreu et al., 2018; Yang et al., 2017—China;
Porter et al., 2004; Rücker et al., 2006). At present, no detailed
regulations for SHM exist in Romania, even though several
buildings and infrastructures are monitored and several
research projects in the field have been completed or are in
progress.

The article presents an overview of the evolution and
current status of the seismic instrumentation of building
structures in Romania, with reference to the international
research and regulatory framework and to the national
implementation. It covers a broad perspective, from long-
term SHM under operational conditions to seismic
monitoring of structures under weak-to-moderate Vrancea
earthquakes. The current research gaps regarding the
seismic instrumentation of structures in Romania are

discussed, as well as potential future actions to overcome
these issues, including the improvement of the national
legislation in the field.

EVOLUTION OF THE SEISMIC
INSTRUMENTATION OF BUILDING
STRUCTURES IN ROMANIA
In Romania, seismic monitoring of buildings started in the 1960’s,
when buildings in several cities were instrumented, mainly for
scientific purposes, by the National Institute for Building
Research, INCERC1 (Georgescu et al., 2010). By the time the
MW 7.4, 4 March 1977, Vrancea earthquake occurred, four
accelerographs were installed at the top and in the basement
of two reinforced concrete (RC) buildings, located in the cities of
Bucharest (RC shear walls, 11 stories) and Galati (RC frames, 12-
story) (Berg et al., 1980; Balan et al., 1982). The first reference also
mentions partially instrumented multistory buildings, with
accelerographs installed, at that time, either in the basement
or near the top, located in Bucharest (RC frames, 13 stories),
Bacau (RC shear walls) and Focsani (masonry, 3 stories). In
addition, in the years before the 1977 earthquake, an extensive
campaign was conducted to determine the dynamic
characteristics of various buildings, by ambient vibrations
measurements. The database compiled from these
measurements was used, after the earthquake, as a reference to
assess modifications of natural periods for 47 residential buildings
in Bucharest, with various structural systems and numbers of
stories ranging from 8 to 18 (Balan et al., 1982). The availability of
the reference values was crucial for later seismic vulnerability
assessments, given that a large part of the mentioned buildings
was based on standardized designs. It was shown that an increase
of the natural period of vibration of the buildings with less than
20–25% was associated with low damage, percentages of 25–50%
corresponded to light damage, while multiple, systematic or local
and significant damage was observed for percentages higher
than 50%.

The seismic network of INCERC evolved significantly after the
1977 earthquake, when new strong motion accelerographs were
used for the instrumentation of multistory residential buildings,
hotels, public and administrative buildings (Craifaleanu et al.,
2011). The height of the monitored buildings ranged between 4
and 11 stories, with the recording equipment typically placed in
the basement and at the top floor. In 2010, the seismic network of
URBAN-INCERC consisted of over 100 stations, with 11
instrumented buildings (Georgescu et al., 2010). A database of
seismic records obtained on buildings instrumented by INCERC
during strong earthquakes (MW 7.1, 30 August 1986; MW 6.9, 30
May 1990, and MW 6.4, 31 May 1990), was compiled (Borcia
et al., 2013, 2014, 2015; Craifaleanu and Borcia, 2015). The
seismic data recorded in buildings were analyzed by Popescu

1Today a branch of the National Institute for Research and Development in
Constructions, Urban Planning and Sustainable Spatial Development, URBAN-
INCERC
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and Demetriu (1994, 1994b, 1996) and by Demetriu and Borcia
(Demetriu and Borcia, 2001; Demetriu, 2002). For the data
recorded on a RC building during the 1986 earthquake,
Popescu and Demetriu (1994) identified five vibration modes
on each direction by running a system identification algorithm
based on fitting of multivariate autoregressive model (MAR),
assuming a multi-input single-output system. Popescu and
Demetriu (1994) reported the initial (35–40 s) nonlinear
behavior of a 12-story RC building during the 1986
earthquake, based on recorded acceleration components.

Two buildings in the Bucharest area and an experimental
building at INCERC were instrumented in 1996–1998 in the
framework of the Collaborative Research Center “Strong
Earthquakes: A Challenge for Geosciences and Civil
Engineering” project SFB 461 (Wenzel, 1997), with the
National Institute for Earth Physics (INFP), the Technical
University of Civil Engineering Bucharest (UTCB) and
INCERC as partners (Aldea et al., 2004b). In 2003, for
3 months, one pair of strong motion instruments was
deployed in a 11-story RC building, headquarters of the
Institute of Atomic Physics (TURN), to study the influence of
the building structure on the seismic waveforms. The monitoring
was conducted within the framework of the Urban Seismology
(URS) project (Ritter et al., 2005), having as partners the
University of Karlsruhe and INFP.

Another structure of interest, instrumented by National
Centre for Seismic Risk Reduction (NCSRR2), was the Faculty
of Civil, Industrial and Agricultural Buildings (FCCIA) of UTCB,
a RC frame, low-code building. The experimental data recorded
during ambient vibration monitoring campaigns were used to
validate its numerical model. In addition, the soil-structure
interaction (SSI) analysis revealed slight interaction effects,
however with no significant numerical impact (Demetriu et al.,
2012).

The progress in the seismic instrumentation of buildings
occurred in the broader context of the general development of
the seismic networks in Romania. In addition, it should be
mentioned that distinct monitoring is performed, by other
organizations, for dams, bridges or for the subway lines in
Bucharest. These construction categories are, however, beyond
the scope of this paper.

CURRENT STATUS OF STRUCTURAL
HEALTH MONITORING FOR BUILDINGS IN
ROMANIA. RECENT PROJECTS
With the enforcement of the 2006 and 2013 editions of the
Romanian seismic design codes, P100-1/2006 (UTCB, 2006)
and P100-1/2013 (UTCB, 2013), both drafted by UTCB, the
seismic monitoring of structures has gained additional
momentum. The in force code state mandatory
instrumentation for importance-exposure class I buildings, as

well as for buildings higher than 45 m above ground level, located
in areas with peak ground design acceleration values equal or
greater than 0.25 g. In addition, since 2005, a Ministerial Order
(OMTCT/OMAI No. 1995/1160 from 2005/2006) requires all the
public and private buildings to be instrumented, if they have more
than 16 stories (or are more than 50 m-high) or have a developed
area larger than 7,500 m2. At present, INFP, URBAN-INCERC
and UTCB monitor twenty-two buildings in Romania (Figure 1
and Table 1). Information on instrument types and
representative photos are provided in the Supplementary
Material.

At URBAN-INCERC, the National Network for the Seismic
Monitoring and Protection of Building Stock is the department in
charge of the operation of the seismic network, including the
instrumented buildings (Dragomir et al., 2015a; Dragomir et al.,
2015b; Dragomir et al., 2016; Dragomir et al., 2021). Currently,
URBAN-INCERC monitors, mainly for research purposes, eight
buildings with various functions and occupancies, located in
Bucharest (7) and Iasi (1); six of these are connected online to
the Data Center of the Institute. The instrumentation of these
buildings consists of at least two sensors (ground floor/basement
and top); two of them also have sensors close to the building, in
free-field conditions. Other buildings have at present only
ground-level sensors installed, complete instrumentation being
envisaged in the future. In addition, short-term building vibration
monitoring is being conducted, generally focused on actions
induced by industrial or transportation activities. In a study
conducted by Dragomir et al. (2017b), the fundamental period
(0.18 s) of the Biotechnology Faculty building (BTH) was
experimentally determined based on the Fourier Spectra (FS)
of several recordings and validated with the values from the
design code (0.15 s) and by using the Operational Modal Analysis
tool of the ARTeMIS Modal Pro software3 (0.19 s). Dragomir
et al. (2017a) estimated the fundamental frequency for two other
buildings, a 10-story RC shear walls apartment block (BLA) and a
15-story RC shear walls office building (APL), using noise and
earthquake data. Applying the FS, they found fundamental
frequencies of fx = 1.73 Hz and fy = 2.05 Hz for the first
building, and fx = 1.5 Hz and fy = 1.3 Hz for the second
building, respectively. Moreover, there is an ongoing
experimental project for real-time damage detection in
buildings (Dragomir et al., 2019; Dragomir et al., 2020) using
ARTeMIS and an extensive campaign, in the framework of the
ECOSMARTCONS project, for the seismic instrumentation of
the premises of national research institutes all over the country.
Starting with 2022, the Data Center of URBAN-INCERC has
implemented SeisComP4.

Significant progress in seismic instrumentation was made
within the Japan International Cooperation Agency (JICA)
Technical Cooperation Project “Reduction of Seismic Risk for
Buildings and Structures”, in which the NCSRR instrumented
four representative buildings in Bucharest (Aldea et al., 2004a;
Aldea et al., 2007a; Aldea et al., 2007b): the Romanian National

2NCRRS functioned between 2003 and 2010. The seismic instrumentation installed
by NCRRS continued to be operated by URBAN-INCERC and at present by UTCB

3https://svibs.com
4https://www.seiscomp.de
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Television (TVR), the BRD-SG Tower (BRD), and two residential
multistory buildings (BLD1 and BLD2). Several detailed analyses
of the modal frequencies, based on ambient vibration and
earthquake data, were performed on the BRD-SG Tower, a
newly constructed RC office building (Demetriu and Aldea,
2006). The SSI effect was investigated based on free-field and
borehole data by Aldea et al. (2007c). For the same building,
Perrault et al. (2013) proposed a methodology to reduce the
uncertainty of the single-building fragility curve using
experimental data. First, a linear MDOF model was adjusted
for experimental modal analysis using a Timoshenko beammodel
(Boutin et al., 2005) and based on Anderson’s criteria (Anderson,
2004). Then, the structure’s response to a large set of
accelerograms simulated by the SIMQKE software (Gasparini
and Vanmarcke, 1976) was computed and, for the final step, the
fragility curves were constructed by comparing numerical inter-
story drift with the threshold criteria provided by the Hazus
methodology (FEMA, 2003) for the slight damage state. Recent
research on SHM, performed by UTCB, widened the scope of
previous studies, approaching heritage buildings, such as the
minaret of the Royal Mosque in Constanta (Aldea et al.,
2018), and traditional Romanian timber framed masonry
houses (Aldea et al., 2020).

In 2011, a heritage building of the University of Economic
Studies (ASE), located in Bucharest, was retrofitted using seismic
isolators and viscous dampers, the first action of this kind in
Romania. INFP was in charge of SHM and of the efficiency
assessment of this innovative solution, by placing accelerometers
under and above the seismic isolators. Data recorded during two
seismic events (MW 5.5, 28 October 2018 and MW 4.8, 31 January
2020) revealed a reduction of the acceleration amplitude by a factor
ranging from 2.0 to 3.8, for the two horizontal components. The
same promising results were reported for the same earthquakes on
another heritage structure equipped with earthquake-protection
system in Bucharest, the Arch of Triumph (ARC), with reductions
of acceleration amplitude by a factor up to 4.5 (Balan et al., 2020).

INFP is currently monitoring 10 buildings, with 36 sensors
(Table 1). The instrumentation setup consists of strong motion
sensors located mainly at the ground (or basement) level, at an
intermediate floor and at the roof level. New low-cost sensors
(Raspberry Shake5 RS3D and RS4D) are tested to extend the
building monitoring network in the framework of the TURNkey6

FIGURE 1 |Map of the seismic stations installed in buildings, by INFP (10 buildings, 36 sensors), URBAN-INCERC (8 buildings, 20 sensors) and UTCB (4 buildings,
13 sensors) and free-field, and the seismic zonation from the Romanian seismic design code P100-1/2013, indicating the main seismic sources (red text) (A), the timeline
of the installation year for the 22 currently instrumented structures, for each institution (B), and a detailedmap of Bucharest with the instrumented structures and free-field
stations (C).

5https://raspberryshake.org
6https://earthquake-turnkey.eu
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and PREVENT7 projects. Low-cost sensors (Micro-
electromechanical systems - MEMS accelerometers) have
proven useful and provided promising results when used for
early-warning systems (Nof et al., 2019), small local earthquake
detection (Cascone et al., 2021) or even initial ground-motion
assessment (Holmgren and Werner, 2021). However, their
usability and reliability for SHM has not yet been extensively
studied. The very high level of digital noise is masking any type of
low-amplitude ambient vibrations. This type of sensors should be
of paramount importance in case of earthquakes with MW > 6.0,
given the amount of data they can provide from a larger number

of instrumented structures, when compared to professional
equipment, within the same monitoring expenses.

The data from all stations are transmitted in real-time to the
Romanian National Data Center (RONDC) of INFP. For data
acquisition, quality control and recording, real-time data
processing and exchange, network status monitoring,
automatic and interactive event detection and location,
waveform archiving and distribution, INFP has run, since
2008, SeisComP, in parallel with Kinemetrics Antelope8

(Marmureanu et al., 2021).

TABLE 1 | Characteristics of the instrumented structures.

Institution Station
code

Construction
year/period

Structure type Number of
storiesa

No. of
sensors

Location of
sensors

Instrument codeb

URBAN-INCERC APL 2008 RC Shear walls 2B + GF + 14S 3 B, 4th S, 14th S GRN + EPI
SMU 1978/retrofitted in

1996
RC Shear walls B + GF + 13S 3 GF, 6th S, 14th S K2 + EPI

IGS1&2 1968 RC Frames B + GF + 7S +
partial story

2 GF, partial story ETNA2

MEC1&2 1969 RC Frames B + GF + 6S +
mechanical floor

2 B, mechanical floor ETNA2

BLA2&3 1971 RC Shear walls B + GF + 10S 2 B, 10th S GRN; ETNA
BTH 2016 RC Frames and shear walls B + GF + 2S 3 B, partial story +

free-field
GRN + EPI

VNS 2000s RC Shear walls 3B + GF + 14S +
mechanical floor

2 3rd B, roof ETNA

IAS7 1985 RC Frames GF + 3S 3 GF, 3rd S + free-field GRN + EPI

UTCB BLD1 1980s RC frames B + GF + 10S 4 1st S, 5th S, 11th S,
12th S

K2 + EPI

BLD2 1960s RC frames B + GF + 6S 4 B, 4th S, 7th S +
free-field

K2 + EPI

TVR 1960s RC frames B + GF + 13S 3 B, 14th S, 15th S K2 + EPI
BRD 2003 RC dual 3B + GF + 18S 2 3rd B, 19th S K2 + EPI

INFP ARC 1922/retrofitted in
2016

RC 27 m 3 GF, top + free-field TSA-SMA; K2 + EPI

ASE 1905/retrofitted in
2011

Masonry B + GF + 2S + attic 2 GF K2 + EPI

TURN 1973/retrofitted in
the 1990s

RC shear walls B + GF + 9S 10 B, 1st S, 3rd S, 6th S,
7th S, 10th S

IDAS + TSA-100S;
RS4D; RS3D

FOCR 1971 RC frame GF + 8S 3 B, 4th S, 8th S TSA-SMA
EFR 2008 RC frame B + GF + 2S 3 B, GF, 3rd S RS4D
DRG 1982 Large panel structure

(precast shear walls
structure)

B + GF + 8S 3 B, 5th S, 8th S RS4D

BAL before 1963 (<1940) Unreinforced Masonry B + GF + Attic 2 B, attic RS4D
DRT before 1963 Large panel structure

(precast shear walls
structure)

GF + 8S 3 GF, 5th S, 9th S RS4D

TIT 1963–1977 Large panel structure
(precast shear walls
structure)

B + GF + 10S 3 GF, 5th S, 10th S RS4D

LAS 2008 RC frame 3B + GF + 11S 4 3rd B, GF, 5th S,
11th S

RS4D

aB—basement story; GF—ground floor; S—story/stories.
bThe instrument type and representative photos are presented in Supplementary Table S1—Supplementary Material.

7https://prevent.infp.ro 8The Boulder Real-Time Technologies, Inc. (BRTT) https://brtt.com
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Recently, Tiganescu et al. (2020) analyzed the dynamic
characteristics (fundamental period and damping ratio) of
the three representative high-rise buildings from Bucharest,
based on ambient vibration data recorded during a two-day
measurement campaign. The fundamental periods obtained
using FS analysis, Random Decrement Technique (Cole, 1973)
and Transfer Function were validated against results
computed using empirical formulas from the design code
corresponding to each building. The values were consistent
for both the fundamental period and the damping ratio of the
buildings, regardless of the method and of the measurement
day. However, small diurnal and weekly variations were
reported for the two parameters, due to small differences in
atmospheric conditions and building occupancy at different
moments of data acquisition.

Preliminary analysis of earthquake data recorded on structures
during the latest moderate magnitude Vrancea seismic event (MW

5.5, 28 October 2018) highlighted different behaviors and trends,
depending on the structural characteristics and of the existence of
earthquake-protection system. Amplification and reduction of
motion on different frequency ranges were revealed, with clear
peaks corresponding to the dynamic characteristics of the
buildings (Tiganescu et al., 2019).

The Bighorn module, an extension of the Antelope package,
is also used at INFP to perform seismic monitoring of
structures. The system computes near real-time response
spectra and issues alarms, depending of the level of
exceedance of a preset limit spectra. This procedure was
tested for Bucharest using the 28 October 2018 earthquake
data (Balan et al., 2019). The reporting service is currently
performed in an offline environment, on request. The
permanent seismic stations installed in buildings were used
in a recent study conducted by Grecu et al. (2021) to assess the
effect of the COVID-19 related restrictions on the level of
high-frequency content of the ambient vibrations generated by
human activity. Significant noise reductions (40–80%) on the
15–40 Hz frequency range for stations in and near buildings
were associated to the mobility restrictions of people working
inside the office buildings and with the shift to online classes
for educational units.

In the context of other studies highlighting the influence of
atmospheric conditions on the dynamic parameters of structures
(Clinton et al., 2006; Herak and Herak, 2009; Mikael et al., 2013;
Guéguen and Tiganescu, 2018), a case-study building (TURN)
was instrumented with both seismic sensors and a meteorological
station (Tiganescu et al., 2021a), in the framework of the
PREVENT project. A fundamental frequency variation analysis
was conducted on a 72-h dataset of ambient vibration and
earthquake data, using the Frequency Domain Decomposition
method (Brincker et al., 2001). Small variations of the
fundamental frequency were observed in the ambient vibration
regime, while for the forced vibrations (earthquake) the variation
was larger (drop of 10%) and followed by a recovery. Moreover,
correlation of the atmospheric and environmental conditions
(mainly air temperature, relative humidity and wind speed) with
the building’s natural frequency was tested, but with no sharp
conclusions due to limited timespan.

DISCUSSION

A large number of buildings, representing different typologies
(construction period, structural system, material, height,
exposure to earthquakes, vulnerability) were previously and are
currently instrumented in Romania, as a need for acquiring pre-,
during and post-event vibration data. From the point of view of the
coverage of areas of interest considering seismic hazard levels and
building exposure, there is still a need to instrument and monitor
structures that could be affected by crustal earthquakes
(Figure 1A), in seismic zones such as Banat, Fagaras-
Campulung, Crisana-Maramures or nearby Shabla, Bulgaria.

The effort is ongoing by means of national and international
projects involving seismic instrumentation of structures and the
development of web platforms for data and metadata inventory
(SETTING9 or TURNkey) and waveform acquisition, processing
and visualization (PREVENT). Data standardization for easy
integration in international infrastructures such as European
Plate Observing System - EPOS (Luzi et al., 2016; Astorga
et al., 2020) and for use in international research projects is
another objective that the Romanian research and engineering
community working on SHM is envisaging.

In addition, the low and narrow-band frequency content of the
ground motion, observed in Bucharest for large-magnitude
Vrancea earthquakes (Lungu and Cornea, 1988; Lungu et al.,
1992; Craifaleanu, 2011), and its effect on different building
typologies (Ambraseys 1977), needs further investigations.
Outcomes of the seismic monitoring of structures can also
significantly help as input for refined rapid seismic loss
estimates, using already available systems such as SeisDaRo
(Toma-Danila and Armas, 2017).

There is also a crucial need to continuously develop and
upgrade the national guidelines regarding SHM, including
clear requirements for modern digital sensors, standard
installation procedures, data acquisition and processing.
Currently, there are no specific procedures for the elaboration,
checking and approval of the seismic instrumentation plan. A
better definition of the technical specifications of the digital
accelerometers is needed, regarding their minimum sensitivity,
the maximum amplitude that can be recorded, the frequency
sampling, the storage, and the time precision. Moreover, online
access should be mandatory ensured for easy maintenance and
periodical checks on the system operational status. The data
processing and results interpretation should be performed by
specialists, using well-established routines and algorithms, to
obtain reliable results and to avoid any artefact errors or
uncertainties that can arise and propagate during the signal
processing stage.

In the recent years, the collaboration between Romanian
institutions involved in the health monitoring of structures
(URBAN-INCERC, UTCB and INFP) has been enforced by joint
research projects and publications (Tiganescu et al., 2021a; Tiganescu
et al., 2021b; Tiganescu et al., 2021c; Marmureanu et al., 2021). A
system integrating URBAN-INCERC’s SHM system and INFP’s

9https://setting.epos-ro.eu
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EEWwas proposed byDragomir et al. (2016). The SETTINGproject,
as well as the Romanian consortium10 contributing in the EPOS
research infrastructure11 aim to provide a national research platform
consisting of a standardized inventory of organizations which could
provide data, products, and services relevant for the field of Earth
Sciences—including SHM relevant categories. The platform will be
designed to meet the needs of various user communities (research,
academia, industry and general public). The effort to strengthen the
collaboration with local and central authorities has gained
momentum, as well, as several researchers from the three
institutions are participating in the elaboration of a national
strategy for the seismic risk reduction of the building stock, and
in the development of a national emergency procedure in case of a
strong earthquake. A special SHM section will be held at the third
European Conference on Earthquake Engineering and Seismology
(Bucharest, 2022), as a step towards bringing together the significant
actors in the field and bridging the gap between research, academia
and industry.
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