AUTHOR=Kelvin Michelle , Whiteman Elizabeth , Leybourne Matthew TITLE=Characterization of Particulate Matter Generated at a Nickel Smelter Using Quantitative Mineralogy JOURNAL=Frontiers in Earth Science VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2022.817759 DOI=10.3389/feart.2022.817759 ISSN=2296-6463 ABSTRACT=
Activities performed at mineral processing operations are capable of producing significant quantities of dust. To ensure that regulatory compliance is maintained throughout operation, dust levels are monitored by routine analysis of air filter samples. Determining the quantity and type of particulate matter present in dust allows for the operation to identify the sources of dust and where warranted, implement a dust suppressant strategy. Conventional methods of analysis, such as chemical assay, are unable to rigorously differentiate between phases containing the same elements and may result in ambiguity related to the identification of dust sources. By incorporating Quantitative Evaluation of Materials by Scanning Electron Microscope (QEMSCAN) into their routine monitoring programs, the Sudbury INO smelter has greatly improved characterization of the Ni and Co dust emissions generated at the operation. To determine specific activities responsible for emissions, bulk particulate matter was sampled from several key locations at the smelter that regularly produce dust. QEMSCAN was able to distinguish between critical subspecies of Ni and Co and mineralogical, and chemical signatures in the dust that are representative of locational activity were established. An apportionment of elements contributed by each source was calculated based on this information. The results of the characterization study assisted personnel in developing strategies to mitigate dust emissions that originate from the Smelter operations, and have general implications to occupational hygiene and environmental risk assessment.