
Building Precise Local Submarine
Earthquake Catalogs via a
Deep-Learning-Empowered Workflow
and its Application to the Challenger
Deep
Xueshan Wu1,2,3, Song Huang1,2*, Zhuowei Xiao2,3,4 and Yuan Wang1,2

1Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing,
China, 2Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China, 3College of Earth and Planetary
Sciences, University of Chinese Academy of Sciences, Beijing, China, 4Key Laboratory of Mineral Resources, Institute of Geology
and Geophysics, Chinese Academy of Sciences, Beijing, China

Submarine active faults and earthquakes, which contain crucial information to seafloor
tectonics and submarine geohazards, can be effectively characterized by precise
submarine earthquake catalogs. However, the precise and rapid building of submarine
earthquake catalogs is challenging due to the following facts: (i) intense noise in ocean
seismic data; (ii) the sparse seismic network; (iii) the lack of historical near-field
observations. In this paper, we built a deep-learning-based automatic workflow named
ESPRH for automatically building submarine earthquake catalogs from continuous
seismograms. The ESPRH workflow integrates Earthquake Transformer (EqT) and
Siamese Earthquake Transformer (S-EqT) for initial earthquake detection and phase
picking, PickNet for phase refinement, REAL for earthquake association and rough
location, and HypoInverse, HypoDD for precise earthquake relocation. We apply
ESPRH to the continuous data recorded by an array of 12 broadband Ocean Bottom
Seismographs (OBS) near the Challenger Deep at the southern-most Mariana subduction
zone from Dec. 2016 to Jun. 2017. In this study, we acquire a high-resolution local
earthquakes catalog that provides new insights into the geometry of shallow fault zones.
We report the active submarine faults by seismicity in Challenger Deep which is the
deepest place on Earth. These faults are a significant reference for submarine geological
hazards and evidence for serpentinization. Hence, the ESPRH is qualified to construct
comprehensive local submarine earthquake catalogs automatically, rapidly, and precisely
from raw OBS seismic data.
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INTRODUCTION

Submarine seismicity and active faults are essential for the analysis and monitoring of submarine
geohazards. A local earthquake catalog can reveal the detailed geometry of faults, providing critical
insights into tectonics and earthquake disasters. However, seismic data is generally extensive, and it is
subjective and time-consuming to extract earthquake signals by human experts manually. Many
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traditional automatic earthquake detection methods have been
proposed to address this problem, such as short-term average/
long-term average algorithm (STA/LTA) (Allen, 1978),
autoregression with Akaike Information Criterion (AIC)
(Sleeman and van Eck, 1999). However, these methods are less
precise than human experts and rely on hyperparameters, limiting
their performance when processing complex seismic data with
different types of noise and variable signal-to-noise ratios. The
template matching method (Gibbons and Ringdal, 2006; Peng
and Zhao, 2009) is widely used for building earthquake catalogs
by exploiting the similarity of earthquakewaveforms between nearby
earthquakes using previously identified earthquake templates.
However, its computational cost is relatively high, and sufficient
templates are generally unavailable for the OBS network due to the
lack of historical observations.

Different from conventional methods that only utilize
several manually designed features, machine-learning-based
methods (Bishop, 2006), especially deep neural networks
(Lecun et al., 2015), can automatically extract rich features
from extensive seismic data. Recently, researchers have made
considerable progress in earthquake detection, and phase

picking via deep-learning-based methods (e.g., Perol et al.,
2018; Mousavi et al., 2019b; Mousavi et al., 2020; Pardo et al.,
2019; Ross et al., 2019; Wang et al., 2019; Wu et al., 2019; Zhou
et al., 2019; Zhu and Beroza, 2019). The Earthquake
Transformer (EqT) (Mousavi et al., 2020) model achieves
the state-of-art performance of ~99% precision, ~99%
recall rate, and ~0.01 s mean absolute error for picking P
and S phases on the STanford EArthquake Dataset (STEAD)
(Mousavi et al., 2019a), outperforming all the other popular
models. Xiao et al., 2021 proposed the Siamese Earthquake
Transformer (S-EqT) (Xiao et al., 2021) model to address the
false-negative issue in the EqT model. However, due to the
limitation of the training set distribution (e.g., 92% of
seismograms in the STEAD dataset are within 110 km
epicenter distance), the phase picking precision of both
EqT and S-EqT would decrease on seismograms with
epicenter distances larger than 110 km. Although Wang
et al. (2019) propose a neural network (PickNet) (Wang
et al., 2019) for regional seismic arrival picking with
epicenter distances up to ~1,000 km, their method does not
include earthquake detection and requires a pre-existing
regional earthquake catalog.

Thus, in our study, we utilize these methods to form a
practical workflow, named ESPRH, for building the
submarine earthquake catalog (Figure 1). The workflow
consists of three stages: The first stage is earthquake
detection and phase picking by EqT, S-EqT, and PickNet;
The second step is earthquake association and initial location
by REAL; The final stage is relocating detected earthquakes by
HypoInverse and HypoDD. We applied ESPRH to continuous
seismic data recorded by an array of 12 broadband OBSs
deployed at Challenger Deep, the deepest point in the ocean,
from Dec. 2016 to Jun. 2017. Challenger Deep is located in the

FIGURE 1 | Diagram of the ESPRH workflow.

FIGURE 2 | The location of the array of 12 OBS stations. The yellow
triangle is the location of the Challenger Deep. The bottom-left inset represents
the location of our study area.
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Mariana Trench, a subduction zone between the Philippine and
Pacific plates. The high seismicity and unique geographical
location make this data ideal for validating our workflow. As
a result, we obtained a catalog containing 1,383 relocated local
earthquakes, which is about two times larger than that of recent
work by Zhu et al. (2019) using the same data by template
matching. Our catalog reveals the detailed geometry of the faults
and seismicity in Challenger Deep and shows that the ESPRH
workflow is suitable for building local submarine earthquake
catalogs, and it may contribute significantly to the
understanding of the Earth’s interior.

DATA

The data used in this study is recorded by an array of 12 OBSs
(Figure 2) down to ocean depth greater than 8,000 m from the
Southern Mariana OBS Experiment (SMOE) from Dec. 2016 to
Jun. 2017. The OBS (STS-G60) equipped with a three-component
sensor was developed by the Institute of Geology and Geophysics,
Chinese Academy of Sciences. The OBS sensor is designed for a
low-frequency response of 30 s with a sampling rate of 100 Hz.
After time-correction, the data is treated differently in different
processing steps: it is filtered to 1–45 Hz when feeding to the EqT
and S-EqT models; it is unfiltered when providing to the PickNet
model; it is filtered to 0.2–10 Hz with instrument response

TABLE 1 | Layered 1-D velocity model used in this study. The velocity
corresponds to the value at the top of each layer.

Depth (km) Vp (km/s) Vs (km/s)

0.00 2.98 1.70
0.72 4.49 2.57
2.18 6.09 3.48
6.93 7.90 4.51
77.5 8.05 4.49
165 8.17 4.52

TABLE 2 | Earthquake number of ESPRH catalogs at different stages and
restrictions (Supplementary Material).

Method \ Catalog REAL HypoInverse HypoDD

EqT Only 469 262 173
EqT + S-EqT 3541 1270 1256
EqT + S-EqT + PickNet 3557 1285 1270

FIGURE 3 | Comparison of location results. (A–C) plot relocation result by of EqT only, both EqT and S-EqT, and the full process of ESPRH (EqT, S-EqT, and
PickNet), respectively. In the same way, (D–F) plot absolute location results. Seismic events are plotted in dots, with their depth coded by color. Reference locations of
sections Panel 5 are plotted in blue lines.
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removed when calculating the amplitude for magnitude
estimation.

METHODS

The ESPRH workflow is built based on serval pre-existing
methods (Figure 1). It consists of three stages: 1) the
earthquake detection and phase picking stage via EqT
(Mousavi et al., 2020), S-EqT (Xiao et al., 2021), and PickNet
(Wang et al., 2019) models; 2) the earthquake association stage by
REAL (Zhang et al., 2019) method; 3) the earthquake location
stage with HypoInverse (Klein, 2002) and HypoDD (Waldhauser
and Ellsworth, 2000) methods.

In the first stage, we apply EqT for the initial earthquake
detection and phase picking because it leverages the most
advanced deep-learning techniques, such as transformers,
residual connections, and achieves the state-of-art performance
on the STEAD dataset (Mousavi et al., 2019a), which is the
current largest public dataset. 92% of seismograms in STEAD are
with 110 km epicenter distance. The most passive OBS
experiments are within this range. Hence EqT is ideal for
initial earthquake detection and phase picking. Then we feed
the outputs of EqT to S-EqT to further reduce the false-negative

rate of the EqT model. S-EqT is a pair-wise deep-learning model,
which retrieves previously missed phase picks in low SNR
seismograms based on their similarities to other confident
phase picks in high-dimensional spaces. Then the outputs are
feed to PickNet, which is trained for phase arrival picking using a
dataset of seismograms with epicenter distances up to ~1,000 km
for phase arrival time refinement. Here “refinement”means the P
and S phase picks created by EqT and S-EqT are used to create
input time windows for PickNet. Because the PickNet model
predicts only one arrival time per time window, the refined picks
by PickNet are limited within a 2-s time range from those by EqT
and S-EqT to prevent it from refining one pick multiple times.
The threshold for earthquake detection, P, and S phase picking in
three models is 0.3, 0.1, and 0.1, respectively.

In the second stage, we utilize REAL to link these phases
through grid searching. The REAL method employs grid
searching, and it is rapid and reliable for these tasks. In the
REALmethod, the center of the searched area is at the station that
recorded the initiating P phase. The coarse location of events will
be at the grid point that has the maximum number of picks. If grid
points with the maximum number of picks are non-unique, the
grid point with the smallest residual will be chosen. We discard
the events associated with less than 3 P picks or less than a total of
4 P and S picks. The magnitudes of associated earthquakes are

FIGURE 4 | Comparison of location results in the sections which are identified in Panel 3. The three pictures from top to bottom on the left, (A–C) correspond to
Panels 3A–C, respectively. The three figures on the right (D–F) correspond to Panels 3D–F.
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estimated under the Richter magnitude scale (Richter, 1935)
using 50-second-long slices after P and S phases.

In the third stage, we use HypoInverse to improve the grid
search location results and then use HypoDD to enhance these
events’ relative locations further. HypoInverse is an absolute
localisation method based on gradient descent. HypoDD is a
double-difference hypocenter location method, which
significantly improves the relative location accuracy and
reveals concentrated seismic streaks. The 1D velocity model is
a combination of crust 1.0 and 2-D crustal P-wave velocity
models from Wan et al. (2019) and Zhu et al. (2019) (Table 1).

RESULTS AND DISCUSSIONS

To validate the ESPRH workflow, we apply it to OBS’s continuous
data of 12 stations from Dec. 2016 to Jun. 2017 and conduct ablation
study to deep learning models in the first stage. As shown in Table 2,
the combination of EqT and S-EqT detects ~7.5 times more
earthquakes in the REAL catalog than using EqT only. This shows
the necessity of S-EqT in the first stage. We only keep earthquakes
with both horizontal location errors and depth location errors less
than 20 km. Hence, the slight increment in earthquake number in
HypoInverse and HypoDD catalogs after applying PickNet to refine
phase indicts the arrival times are refined to higher precision.

Figure 3 show the results of HypoInverse and HypoDD
corresponding to Table 2. The shallow earthquakes in

catalogs, especially at the south side of the Challenger Deep,
increased significantly after applying S-EqT, which is important
for analyzing the change of seafloor topography and the coupling
relationship between seafloor and seawater. Figures 3C,F show
that the locations of these earthquakes coincide with the seafloor
topography, which demonstrates the reliability of the ESPRH
workflow.

As shown in profile A-B in Figure 4, most of the earthquakes in
the catalog producedwith only EqT in the first stage are shallow. Few
of them reach a depth of 60 km byHypoinverse, and all are less than
40 km by HypoDD. The combination of EqT and S-EqT detects
more deep earthquakes up to 100 km by HypoInverse and 80 km by
HypoDD. Figures 4C, 5F show the PickNet’s precise fine-tuning of
the initial detection results, where subtle differences in small areas
can lead to more precise positioning locations. In particular, after
relocation, it is possible to see the distribution of positions that are
fully consistent with the morphology of the subducting slab.

In this study, we analyze the seismicity based on the final
HypoDD catalog. The relative positions of these seismic events
can portray the geometric structure of the faults where the
earthquakes occur. As shown in Figure 6, a total of 1,270
earthquakes were relocated by HypoDD during the period of
OBS observation. These earthquakes are mainly distributed near
the OBS array. In addition to subduction slabs, these earthquakes
are distributed in the outer rise region, overriding plate and
subduction interface. Divided by the trench axis, the number of
earthquakes in the north is much higher than that in the southern

FIGURE 5 | Comparison of location result of ESPRH (blue dots) and Matched filtering (red dots) by Zhu et al. (2019) SWMR, Southwest Mariana rift.
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outer-rise region. As can be seen from the profile, the former has
some very deep earthquakes distributed up to 80 km.We consider
that these events outline the morphology of the subduction slab.
The depth of the latter earthquakes is less than 25 km. As shown
in the figure, these shallow seismic streaks can be corroborated in
the topographic map. We speculate that shallow outer-rise
earthquakes are normal faulting events. We also find a large
number of moderately deep earthquakes above the subduction
slab, which may reveal the ongoing influence of subduction
activity on the overriding plate.

We further evaluate the detection performance of ESPRH by
comparing it with the catalog of Zhu et al. (2019), which is based
on six OBS stations of our array and a station located in Guam. A
comparison with our results is shown in Figure 5.

Hence, we only compare the earthquake catalogs in the area
near the stations (Figure 5). In terms of the number of detected
earthquakes, we obtained 1,285 seismic events that were localized

by HypoInverse with both ERH and ERZ less than 20 km, which
is comparable to the number obtained by matched filtering. But
1,270 of these earthquakes can be relocated, which is almost three
times the number obtained by matched filtering. In terms of the
location of the earthquakes, we have a more balanced
distribution, which is consistent with the local earthquake
pattern. This can provide more reliable support for seismicity
as well as geohazard analysis. Although the catalog of earthquakes
obtained by matched filtering also contains a large number of
small seismic events not found in the USGS, these are clustered in
the SWMR at the south of the array, and near the trench.
Although the basic structure of the subduction slab can be
clearly outlined on the profiles of both catalogs. However,
Zhu’s catalog shows a denser aggregation pattern with gaps
near the trench. Earthquakes are also relatively rare in the
overriding area. Throughout the study area, the ESPRH
catalog allows for a more detailed and complete analysis of

FIGURE 6 | (A) Daily occurrence times of earthquakes. (The first day of the record date is 16 December) (B) The depth distribution. (C) Magnitudes.
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seismicity and a more robust outline of fault geometry. In
particular, the area between SWMR and Challenger Deep,
above the subduction slab, can be seen as a fault produced by
extrusion deformation. In overriding plates, the faults
represented by the seismic strips can also be found.

This is due to the limitations of the method. The basic idea of the
matching filter approach in building the catalog is to find similar
earthquake events with the template. It is very difficult to detect
earthquakes in blank areas in the template. Therefore, having a good
template is a prerequisite for getting a complete catalog, which relies
on preliminary observations. The matched filtering method can be
applied well and quickly in areas with abundant seismic
observations and has good performance in aftershock detection.

Most of the submarine areas lack historical near-field seismic
data. It is also not possible to predict the location of earthquake
occurrence when analyzing seismicity and submarine geohazards.
This situation shows the advantages of ESPRH,which has the regular
process: pick P&S arrivals, associate phases, and locate events.

We also analyzed the statical features of earthquakes (Figure 6).
Figure 6A shows the current frequent earthquakes still occurring in
the vicinity of the Challenger Deep, confirming the observation of
continued subduction of the Pacific plate. The depth distribution
showed that earthquakes mainly concentrate ~10 km, where
submarine geological hazards occur. The distribution of
magnitudes shows that most of the earthquakes are concentrated
in magnitude 3, which indicates the poor quality of the seabed data.

Our localization results provide some evidence for the geological
structure of the Challenger Deep. It is clear from the location of these
faults, and the depth of the earthquakes, that the faults extend into
themantle (Figure 7). Every subducting plate inevitably undergoes a
transition from horizontal to vertical motion as it passes through the
outer uplift zone of each subduction trench. If plate rupture occurs, a
positive fault is created, which can be observed by earthquake
localization. Seismic velocity models obtained from previous
surface wave imaging results show a significant low-velocity
anomaly in the subducted slab that extends to a depth of about
25 km inside the mantle, indicating that the southern Marianas
subducted slab carries a large amount of water into the Earth’s

interior (Zhu et al., 2021). Compared with central Mariana (Kato
et al., 2003), the velocity reduction of the southern arc-frontmantle is
not as obvious, suggesting that the degree of serpentinization of the
arc-frontmantle is lower in the south. The difference in the degree of
serpentinization of the southern and central Mariana arc-front
mantle may reflect the different geological processes and
development of the arc-front mantle in the two regions.

We marked the position of the faults in the subduction slab
as well as the outer rise by visual retrieval. Our catalog shows
that tectonic activity in the southern arc-front region is more
intense due to the expansion of the Mariana Trough and the
rapid retreat of the Pacific plate, and the southern-most
Mariana arc-front is strongly deformed with a large number
of parallel and vertical orthotropic and strike-slip faults,
suggesting that the southern arc-front is experiencing
strong strike and vertical tensioning along the trench. The
intense tectonic activity may prevent fluid focusing and affect
the degree of serpentinization in the pre-arc mantle. This
provides support for the conclusions obtained by previous
work with Rayleigh wave tomography.

CONCLUSION

In this study, we build a deep-learning-empowered fully
automatic workflow named ESPRH that can quickly build
regional earthquake catalogs with corresponding high-quality
P and S wave arrival times. By applying it to an OBS array in
the Challenger Deep, The ESPRH obtains a complete earthquake
catalog which provides novel insights into the geometry of the
faults and seismicity around the Challenger Deep and provides
evidence for serpentinization of the Pacific plate in the southern
Mariana Trench. Such application demonstrates that our pipeline
is practical to construct comprehensive local submarine
earthquake catalogs automatically, rapidly, and precisely. This
study presents a comprehensive local earthquake catalog around
the Challenger Deep and provides a powerful tool for future
seismic studies at submarine earthquakes.

FIGURE 7 | Distribution of normal faults (red line and arrow) in the section. The slab geometry (brown dotted line) in the southern Mariana is based on SLAB2.0
model (Hayes et al., 2018).
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