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Geothermal resources are a type of sustainable and green energy, which can play an
important role in emission peaks and carbon neutrality. Determining the best development
target area is key to resource development and geophysical methods are commonly used
for this purpose. Owing to serious human and industrial interference, the microtremor
survey method is often adopted for geothermal exploration in urban areas. It is a passive
source method, which is non-invasive and environmentally friendly. In this method, the
Rayleigh wave dispersion curve is extracted using spatial autocorrelation based on the
vertical component signal at the observation station. A genetic algorithm is used to invert
the dispersion curve of one survey point to obtain strata parameters such as layer
thickness, S-wave velocity, and density. It provides critical parameters for the cap layer
and reservoirs for geothermal exploration. For a chain microtremor measurement, a two-
dimensional (2D) apparent S-wave velocity section can be generated. The apparent
S-wave velocity is calculated from the phase velocity using the following empirical
method: the 2D apparent S-wave velocity section helps to identify the buried channel
for heat flow and track the irregular shapes of the reservoirs or cap layers. It has been
verified that the microtremor survey method is reliable and accurate compared with
borehole materials. As a newly developed non-invasive geophysical method, it can be
widely used in geothermal exploration.
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INTRODUCTION

High-frequency climate and environmental disasters push mankind to pay more attention to
protecting the environment. One of the best methods is energy conservation and emission
reduction. Switching from traditional fossil fuels to renewable and green energy decreases the
emission of carbon dioxide (CO2). Renewable and green energy mainly include solar, wind, biomass,
and geothermal energy.

Geothermal energy comes from the interior of the Earth, and is stable because it does not depend
on the weather. It originates from the decay of radioactive elements contained in the Earth. As a
result, the amount of geothermal energy is large, equal to 170 million times that of coal with a
potential exploitable resource of 4,948 trillion tons of standard coal equivalent. China is located in the
circum-Pacific geothermal belt and the Mediterranean–Himalayan geothermal belt, where
geothermal energy is abundant. Geothermal types include shallow geothermal energy, medium-
deep depth hydrothermal resources, and hot dry rock geothermal resources. It is used for various
proposed, such as generating power, heating, and cooling based on the different types of geothermal
resources. Identifying an excellent target for exploiting geothermal resources is the most important
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factor, which typically relies on geophysical methods to ensure
geothermal reservoirs and channels for heat flow (Kana et al.,
2015).

Geophysical methods can be divided into invasive and non-
invasive methods. Seismic methods, magnetic methods, and
gravity methods are non-invasive methods. Based on the wave
velocity difference of the strata, seismic methods can identify
strata with different rock properties and determine the location
and parameters of buried faults. Magnetic methods such as the
magnetotelluric method (MT), audiomagnetotelluric method
(AMT), and controlled source audio-frequency magnetotelluric
method (CSAMT), can explore the distribution characteristics,
properties, and geological fault occurrences and determine the
thickness and depth of cap layers. Gravity methods help to depict
the bedrock conditions, spreading of structures, and location of
faults. For example, a 3D seismic survey was conducted in
Saxony, Germany for geothermal exploration (Lüschen et al.,
2015), which is an indispensable tool for geothermal exploration,
even in crystalline basement rocks. To identify the geothermal
potential, seismic reflection imaging can provide amplitude
contrasts that may be related to volcanic rocks and possible
hydrothermal alteration fronts (Sena-Lozoya et al., 2020). MT
is an important method for the exploration of geothermal systems
(Rosenkjaer et al., 2015). Uchida and Sasaki (2006) developed a
stable inversion technique for the 3D interpretation of MT data
and applied it to a large-volume MT dataset obtained in the Ogiri
geothermal area, in southwestern Japan. CSAMT provides an
efficient means of delineating the shallow resistivity pattern above
a hydrothermal system (Sandberg and Hohmann, 1982). Di et al.
(2006) successfully applied the CSAMT method to geothermal
exploration in the Beijing area and accurately located geothermal
reservoirs deeper than 2 km. Gravity methods can help to
delineate the structural features that control the geothermal
system, such as the research on the Eburru geothermal system
in Kenya (Maithya et al., 2020). To understand the subsurface
structure and its relation to the observed geothermal
phenomenon, a land gravity survey was carried out in the
Kinigi geothermal field, Northwest Rwanda (Uwiduhaye et al.,
2018). In addition, joint inversion is typically adopted for
geothermal exploration. Zaher et al. (2018) used airborne
gravity and magnetic geophysical data to preliminarily explore
the geothermal potential in the Siwa Oasis, Western Desert,
Egypt. Joint inversion of gravity and surface wave data
constrained by MT highlighted unconventional geothermal
prospects in felsic basement (Ars et al., 2019).

Ambient noise tomography has also been adopted for
geothermal exploration (Planès et al., 2020). The microtremor
survey method (MSM) is a new, non-invasive geophysical
method used for geothermal exploration, which also uses
ambient noise as a signal. An observation array is typically
adopted to collect field data. The frequency–wavenumber
spectrum method F–K, (Capon, 1969), and spatial
autocorrelation method SPAC, (Aki, 1957), are commonly
adopted to extract the Rayleigh wave dispersion curve.
Compared with F–K, SPAC has more accurate results (Ohori
et al., 2002) with circular arrays. Bettig et al. (2001) presented a
modified SPAC, which allows the use of irregular, almost

carbitrarily shaped arrays. Okada and Ling (1994), Okada (2006)
proposed an extended SPAC method with arbitrarily shaped arrays.
Asten (2006) used the SPAC method to process the passive seismic
data from finite circular array. Owing to the fundamental assumption
of plane wave propagation of surface waves, attentionmust be paid to
the near-source effect in array-based microtremor surveys (Roberts
and Asten, 2008). Asten et al. (2019) developed a spatially averaged
coherency (krSPAC), which allows spatial averaging of spectra from
multiple pairs of sensors, irrespective of differences in spatial
separation of the pairs. Cho and Iwata (2021) examined the limits
and benefits of the SPAC microtremor array method. Microtremors
have been applied to various aspects based on different processing
methods. Roberts and Asten (2005) used microtremor array (SPAC)
measurements to estimate the S-wave velocity profile of Quaternary
silts. Chávez-García et al. (2007) adoptedmicrotremors to achieve the
S-wave velocity structure around the Teide Volcano. Stephenson and
Odum (2010) applied the SPAC to characterise the S-wave velocity in
the upper 300m of Salt Lake Valley, Utah. It is also possible in SPAC
observation to identify a 2D structure and interpret S-wave velocity
profiles in a deep and narrow valley environment (Claprood et al.,
2011). MSM has been used to determine soil characteristics (Ozer
et al., 2017), estimate the near-surface S-wave velocity structure at a
site exhibiting low to high impedance contrast (Setiawan et al., 2019),
and identify the sediment (Raptakis and Makra, 2010; Tian et al.,
2019; Tian et al., 2020a). Tian et al. (2016; 2017) applied the MSM
method to identify the parameters of different strata and ensure the
geothermal channel information. In addition, Tian et al. (2020b)
combined MSM with geothermal assessment to improve precision.
Using the regression method, the relationship between S-wave
velocity, density, and thermal conductivity was identified (Tian
et al., 2020c).

In this study, we investigated MSM, which can be widely
applied to geothermal development and utilisation. First, we
briefly introduce the observation array and the SPAC method.
For different exploration targets, MSM is classified into two
specific techniques: microtremor sounding and 2D
microtremor profile methods. The inversion results of the
dispersion curve provide layer parameters (depth, thickness,
S-wave velocity, and density) for the geothermal system. To
identify the geothermal channel, a 2D microtremor profiling
method was adopted, which contained several survey points in
a survey line. Our preliminary results appear to be useful for
studying geothermal systems.

FIGURE 1 | Regular triangular array for collecting the microtremor signal.
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MICROTREMOR SURVEY METHOD (MSM)

MSM is a passive surface-wave geophysical method.
Microtremor signals mainly contain surface waves and body
waves. The low-frequency waves (<1 Hz) arise from changes in
pressure, sea waves, and tides, while the high-frequency (>1 Hz)
waves originate from human sources and living activities. Based
on the SPAC requirements, the microtremor signal must be
collected by an array. Commonly, a regular triangular array
(Figure 1) is selected to record the microtremor signal. The
Rayleigh wave dispersion curve is extracted from the vertical
component signal using the SPAC method (Aki, 1957), which
assumes that the signal is stationary and random. Meanwhile,
the surface wave is mainly the fundamental mode (Okada, 2003;
Okada, 2006).

Usually, the frequency spectrum of the microtremor signal for
two observation points A (0,0) and B (r,θ) can be expressed as;

X(t, 0, 0) �∫
∞

−∞
∫

2π

0

exp {iωt}dς(ω, ϕ) (1)

X(t, r, θ) �∫
∞

−∞
∫

2π

0

exp{iωt + irk(ω) cos(θ − ϕ)}dς(ω, ϕ) (2)

where ω is the angular frequency, θ is the azimuth angle, k is the
wave number, and r is the distance (radius) between the two
stations.

The SPAC function between two stations is defined as

S(r, θ) �∫
∞

−∞
[∫

2π

0

exp{irk cos(θ − ϕ)}h(ω, ϕ)dϕ]dω

�∫
∞

−∞
g(ω, r, θ)dω (3)

Here, the spatial covariance function is defined as

g(ω, r, θ) � ∫
2π

0

exp[irk cos(θ − ϕ)]h(ω, ϕ)dϕ (4)

For the circular array, the azimuth average of the spatial
covariance function for the SPAC function and the phase
velocity can be obtained.

�g(ω, r) � 1
2π

∫
2π

0

g(ω, r, θ)dθ

� ∫
2π

0

[ 1
2π

∫
2π

0

exp[irk cos(θ − ϕ)]dϕ]h(ω, ϕ)dϕ

� J0(rk)∫
2π

0

h(ω, ϕ)dϕ � J0(rk) · h0(ω) (5)

Here, J0 is the zero-order Bessel function and h is the
average power.

Then, the SPAC coefficient ρ(ω, r) is defined in the angular
frequency ω.

ρ(ω, r) � �g(ω, r)/h0(ω) � J0(rk) (6)

As a result, we can obtain

ρ(f, r) � J02πfr/c(f) (7)

Using Eq. 7, the phase velocity can be calculated in distance r
and frequency f.

When the Rayleigh wave dispersion curve is extracted, it is
used to invert the S-wave velocity structure using theMonte Carlo
algorithm. In our research, a genetic algorithm was selected to
invert the geological structure. During the inversion, a initial
inversion model with layer’s parameters is assumed to begin the
inversion which is one horizontally stratified geological model. If
the observation array is located at the fractured strata, the results
of inversion has a relatively lower accuracy.

In some cases, it is not necessary to invert the S-wave velocity
structure during the detection of geological structures. The
relative change trend such as low velocity anomaly in the
S-wave velocity section can reveal the location and depth of
the structure accurately. The 2Dmicrotremor profiling method is
also based on the Rayleigh wave dispersion curve. It transforms
the phase velocity (Vr-f) to the apparent S-wave velocity (Vx-H)
using an empirical Eq. 8 for each survey point (Tian et al., 2017;
Tian et al., 2022). Then, the apparent S-wave velocity section is
obtained by horizontal interpolation and smoothing between
every survey point. The workflow of MSM is shown in Figure 2.

vx,i � (ti · v4r,i − ti−1 · v4r,i−1
ti − ti−1

)
1/4

(8)

Here, the Vx represents the apparent S-wave velocity of the ith
layer, t represent the time, Vr represents the phase velocity of the
ith layer.

DATA ACQUISITION, PROCESSING, AND
DISCUSSION

According to the exploration target, different techniques were
selected to determine geothermal geological parameters. This
section introduces three objectives for geothermal exploration.
Different observation parameters and inversion methods were
presented specifically to satisfy each item.

Determining the Geothermal System
Parameters
Geothermal cap layers and reservoirs are known for some
geothermal fields. Therefore, it is critical to determine the
corresponding parameters. Accurate parameters of all strata
are important for the different stages of geothermal
development. For example, during the feasibility step, the
estimation of the geothermal deposit and exploitation amount
depends on the reservoir thickness. In addition, the reservoir
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depth is a vital parameter for drilling, which may decide whether
the geothermal development is successful or not.

Data Acquisition
JingJiang, China is taken as an example where the geothermal
reservoir is Triassic limestone. Based on the probing depth
requirement, we deployed one survey point with four overlay
circular observation arrays (Figure 1) to record the microtremor
signals. The radii were 80–160–320–640 m. At every observation
point, a three-component MTKV-3C seismometer and Datamark
LS-8800 were used to record the microtremor signals. The main
frequency of the observation seismometer was 1 Hz. At the same
time, one cycle delay and amplifier circuit was adopted to achieve
lower frequency signal. At each survey point, a 30 minute
continuous signal was obtained.

Data Processing and Discussion
First, the original microtremor signal was processed by removing
the data mean and trend, normalization and spectral whitening.
Based on the original field data, the SPAC coefficients were
calculated for every two stations. Then, they were fitted to the
zero-order Bessel function for different frequencies and distances.
After the dispersion curve was extracted, a genetic algorithm was
adopted for inversion. The dispersion curve and inversion S-wave
velocity structures are shown in Figure 3.

Simultaneously, one borehole was drilled at this microtremor
survey point. A comparison between the inversion results and
borehole materials is shown in Table 1. The MSM distinguished
several subsurface layers based on the wave velocity differences.
In the same geologic age, it also distinguished different layers if
there was a wave velocity difference. The error was small when the
wave velocity difference was large. For example, it accurately
identified the interference between the Quaternary Neogene and
the Zhouchongcun Formation of the Triassic. However, the
probing error was slightly larger when identifying the
interference between two layers with small wave velocity
differences, such as the layer of cream mudstone, gypsum, and

layer of gypsum, creating mudstone. In general, the MSM can
provide accurate parameters for layers with different rocks.

Identifying the Buried Channel for Heat Flow
Convective geothermal resources are one resource type, which is
frequently chosen for development and exploitation, which relies
on channel formation for heat flow. Therefore, locating the buried
channel and determining the channel parameters are the primary
tasks for geothermal exploration. Faults (fracture zones) are
channels for heat flow. To identify buried faults, one 2D
section was the most intuitive and accurate method. In the
horizontal direction of the section, the lateral position was
determined. This section provided an accurate understanding
of the width and depth of the channel. It also showed the
fracturing degree of the fault by comparing the background
values.

Data Acquisition
A research area in Zhejiang Province, China was selected to
depict the ability of the MSM to identify the buried channel for
heat flow. To obtain a 2D section, one microtremor survey line
was deployed, including six survey points. The observation
system is shown in Figure 4. For each observation array, the
radii are 125–250–375–500 m using a 1 Hz main frequency for
the observation seismometer. The time was automatically
corrected using the GPS system among all seismometers. The
microtremor signal was recorded for 30 min in each
observation array.

Data Processing and Discussion
The field data were processed by removing the data mean and
trend, normalization and spectral whitening. For every survey
point, the dispersion curve was extracted using the SPACmethod.
All the dispersion curves are shown in Figure 5A. To achieve an
apparent S-wave, the dispersion curve was transformed to the
curve of the apparent S-wave velocity (Vx) and depth (H) using
Eq. 8. Using the results of Vx-H, the 2D apparent S-wave velocity

FIGURE 2 | Microtremor survey method (MSM) workflow.
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section (Figure 5B) was calculated using Kriging interpolation
and smoothing among all the survey points.

At the survey point located in the fault, the dispersion curve
showed a low phase velocity at a low frequency compared with
other dispersion curves. The apparent S-wave velocity section
clearly indicated a buried fault. The strata can be divided into
several layers. The depth of the first layer was 0–100 m, with a Vx
of 300–400 m/s. The Vx of the second layer varied from 600 to
900 m/s at depths of 100–350 m. The lithology barely changed in
this layer, and fracture zones developed in the third layer. An
obvious low-velocity anomaly was observed from 800 to 1,500 m
at distance of 600–650 m. The Vx values of the low-velocity
anomaly and normal layer were approximately 1,600 m/s and

3,000 m/s, respectively. This anomaly is named Fault F1, and its
width is approximately 50 m. Compared with the fracture zone,
the surrounding rock is intact with high wave velocity.
Geothermal resources are strongly related to this fault, which
breaks and cuts off the fresh bedrock, resulting in fracture zones.
This provides an excellent channel for heat flow.

The 2D microtremor profiling method has relatively high
precision for probing geological structures. In the section of
apparent S-wave velocity, the strata that are stably deposited
(uniform colour) could be continuously traced laterally. Areas
with obvious lithology changes, such as fault fracture zones,
showed low-velocity anomalies because of the underestimation
of phase velocity using SPAC. The obvious low-velocity anomaly

FIGURE 3 | Dispersion curve (A) and inversion S-wave velocity structure (B).

TABLE 1 | Comparison between the inversion result and borehole materials.

Borehole Inversion results of MSM Error of
Depth(m)Strata Lithology Depth

(m)
No Vs

(km/s)
Thickness

(m)
Depth
(m)

Density
(g/cm3)

Quaternary -Neogene Clay, fine sand, coarse sand,
gravel

213 1 0.302 88 88 1.784 -

2 0.574 130 218 1.909 5

Zhouchongcun Formation of
Triassic

Linestone 750 3 0.874 530 748 2.029 2
Cream mudstone and gypsum 1,026 4 1.950 250 998 2.335 28

Gypsum and Creaming
mudstone

2,101 5 2.275 1,100 2098 2.408 3

FIGURE 4 | Observation system for a microtremor survey line. In this figure, R represents the observation radii and D represents the distance between two survey
points.
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can be used to interpret and identify buried faults (fracture zones)
and other geological structures in the apparent S-wave velocity
profile.

According to the comparison study and analysis of the
detection results of the 2D microtremor profiling method and
drilling results, it can be seen that the buried fracture zone
displayed an obvious low-velocity anomaly in the 2D apparent
S-wave velocity profile, which is an important indicator
explaining the buried geothermal structure. Using the 2D
micromotion profiling method to detect the thermal control
structure and exploit the convection-type geothermal
resources, the detection accuracy was high, and the measured
effect was good. There were obvious lithologic differences on both
sides of the normal fault plane, and the detection effect was good.

Tracking Irregular Strata Shapes
Estimating the amount of geothermal energy and exploiting
geothermal resources requires a comprehensive understanding
of the upward and downward trends of strata. The diagenetic

environment of different geological periods and the function of
tectonic movement in the test area resulted in complex geological
structures. As a result, the strata were not homogeneous.
Geophysical sections imaged the subsurface to generate a
prospective stratigraphic structure. For conductive geothermal
resources, information on reservoirs helps to calculate the total
reserves of geothermal resources and locate the best drilling
position.

Data Acquisition
Here, one research area in Shandong Province, China, is taken as
an example to track the shape of different layers using a 2D
apparent S-wave velocity section. This research area mainly
exploits shallow geothermal resources above 150 m. The
microtremor survey line included four survey points. The
observation radii were 5–10–20–40 m. The main frequency of
the observation seismometer was 2 Hz. The microtremor signal
was recorded for 50 min in each observation array.

Data Processing and Discussion
The processing workflow for extracting the Rayleigh wave
dispersion curve was the same as that for the above two
sections. All the dispersion curves of the survey points are
shown in Figure 6A. In addition, the dispersion curve of every
survey point was transformed into Vx-H. The section was plotted

FIGURE 5 |Dispersion curve of all the survey points (A) and 2D apparent
S-wave velocity section to identify the buried channel for heat flow (B).

FIGURE 6 |Dispersion curve of all the survey points (A) and 2D apparent
S-wave velocity section to track the irregular shapes of the cap layers or
reservoirs (B).
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using lateral Kriging interpolation and smoothing of the survey
points.

Figure 6A shows that the phase velocity of survey points
RW1-4 is larger than that of the others. The dispersion curves of
RW1-1 to RW1-3 exhibit the same spreading trend. The apparent
S-wave velocity section shows that the strata are complex and
variable (Figure 6B). Soil and mudstone develop from 0 to 10 m
near survey point RW1-3. It only develops around survey point
RW1-3 and stretches approximately 100 m horizontally. The Vx
of the soil and mudstone was approximately 350–390 m/s. In the
depth range of 25–40 m, a low-velocity layer was developed,
which disappeared at a horizontal distance of 270 m with a Vx
of 300–350 m/s. In this research area, weathered granite was
developed to different degrees. The strongly weathered granite
had a Vx of approximately 600 m/s leading to wide dispersion.
Below this layer, medium-weathered granite also developed
widely. Its thickness is approximately 40–50 m and the Vx is
approximately 900–1,000 m/s. The Vx of the fresh granite was
approximately 1,100–1,200 m/s. Below a depth of 125 m, the
bedrock is intact, and the Vx was greater than 1,400 m/s.

At survey point RW1-3, drilling to a depth of 102 m was
emplowed to verify the effectiveness of theMSM. The rock core of
this borehole included soil, mudstone, strongly weathered
granite, medium-weathered granite, and granite. Based on the
correlation with these drilling materials, the 2D microtremor
profile method could distinguish weathered granite with different
degrees. In addition, it accurately determined the bedrock. Using
the 2D apparent S-wave velocity section, we could track the
developing trends of different rock layers, including geothermal
reservoirs and cap layers. Meanwhile, it provided geological
information on the bedrock, which plays an important role in
the development of shallow geothermal resources.

CONCLUSION

Geothermal resources have received much attention because of
the requirement for energy conservation and emissions
reduction. As one kind of green energy that comes from the
Earth’s interior, it is stable and sustainable. Geothermal amounts
above 3 km of, subsurface and generating power, can be widely
used for geothermal resources, such as warming, cooling, and
generating power. Geophysical methods are usually adopted to
provide essential information to search for an excellent
developing target area.

TheMSM is a new approach that has been successfully applied
to geothermal exploration. It adopts ambient noise as a signal to
avoid the inconvenience of an artificial signal source. In addition,
the observation array for recording the field data is independent.
Compared with traditional geophysical methods, the MSM is
flexible and economical. In particular, it can be deployed under

the interference of human and industrial activities. Because most
of the development and utilisation of geothermal resources is
located in cities or towns, this method is regarded as one of the
most effective.

According to different exploration purposes, MSMs can be
classified into two types: microtremor sounding methods and 2D
microtremor profiling methods. The microtremor sounding
method uses a genetic algorithm for inversion. It provides the
parameters of the different rock layers and the S-wave velocity,
layer thickness, and density are obtained from the inversion. In
some research areas, cap layers and reservoirs are known. For
geothermal exploration, it is necessary to provide the depth,
thickness S-wave velocity, and density. The microtremor
sounding method can accurately identify the related
parameters of the different layers. The 2D microtremor
profiling method must deploy several survey points to achieve
an apparent S-wave velocity section. It can be used to identify the
location and depict the developed characteristics of the buried
channel. In addition, it can track the irregular shapes of cap layers
or reservoirs. Based on the comparison between the results of the
MSM and borehole, it is verified that this method is accurate and
reliable for geothermal exploration. The development of clean
and green energy is a new approach for geothermal exploration.
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