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Artificial intelligence and machine learning algorithms have an increasingly pervasive
presence in all fields of science due to their ability to find patterns, model dynamic
systems, and make predictions of complex processes. This review aims at providing the
researchers in the mineral processing area with structured knowledge about the
applications of machine learning algorithms to the leaching process, showing the
applications of techniques such as artificial neural networks (ANN), support vector
machines (SVM), or Bayesian networks (BN), among others. Additionally, future
perspectives are indicated, emphasizing both the generalization of the algorithms and
the productive potential of the application of modeling, simulation, and optimization of the
tools studied to industrial processes.
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INTRODUCTION

World copper mine production decreased slightly to an estimated 20 million tons in 2020 from 20.4
million tons in 2019, mainly due to the COVID-19 blockages in April and May. These disruptions
significantly affected production in Peru, the second largest copper mining producer, where
production through July 2020 was down by nearly 250,000 tons (23%) from the same period in
2019. World refined copper production increased slightly to an estimated 25 million tons in 2020
from 24.5 million tons in 2019, when production in several countries was affected by temporary
smelter shutdowns for maintenance and upgrades (Flanagan, 2021). Then, copper production in
Chile in 2020 was around 5.73 million tons, which is disaggregated into 3,058 million tons of
concentrate, 1,468 million tons of SX-EW cathodes, and 1,206 million tons of smelter copper
(Consejo Minero, 2021).

Most of the copper ores on the planet correspond to sulfides and a small part to oxides
(Hernández, 2013). The mining industry has traditionally operated in two ways, pyrometallurgy
in the case of sulfide ores, consisting of flotation, smelting and electro-refining processes. While
hydrometallurgical processes have worked mainly with oxidized ores, composed of leaching, solvent
extraction and electrowinning (Schlesinger et al., 2011). Both workingmechanisms have proven to be
profitable in the industry, however pyrometallurgy has the disadvantage of generating SO2 emissions
to the atmosphere, generating serious environmental problems (Sosa et al., 2013). However, it is
expected that the implications of the technological revolution in mining will contribute to mitigate
the negative effects of mining on the environment (Wood et al., 2021).
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Considering the above, and the significant number of mining
sites operating hydrometallurgical processes in Chile, the study of
processes such as leaching, and the search for tools that
contribute to improve their efficiency and effectiveness
through modeling, simulation and/or optimization, either
through mathematical models or based on machine learning,
could have the potential to contribute to achieve a better
understanding of the dynamics of the process and improve
production indicators.

Leaching processes can be defined as the selective removal
and/or extraction of metallic values from an ore by causing a
suitable solvent or leaching agent to leach into and through a
mass containing the ore (Ghorbani et al., 2016). In the present
work, a comprehensive analysis of scientific modeling techniques
of the leaching process using machine learning techniques is
developed. Models are of vital importance in many scientific
contexts, which spend a great deal of time building, testing,
comparing and revising models, and much journal space is
devoted to interpreting and discussing the implications of such
models (Roman and Hartmann, 2006).

A generic definition of a scientific model is that they are
representative models, which represent a particular part or aspect
of the world, which is the target system, and a tangible result of
philosophical engagement with models is a proliferation of
recognized types of models in the philosophical literature
(Roman and Hartmann, 2006). A scientific model is then a
physical and/or mathematical and/or conceptual representation of
a system of ideas, events, or processes. Scientists seek to identify and
understand patterns in our world by drawing on their scientific
knowledge to offer explanations that predict patterns. The models
created by scientists must be consistent with our current
observations, inferences, and explanations. However, scientific
models are not created to be factual statements about the world.
Therefore, the most important results of developing a mathematical
model of a chemical engineering system (such as heap leaching) is
the understanding gain of what actually makes the process “work”.
This information allows to remove the many extraneous
“confounding factors” from the problem and get to the heart of
the system by identifying the cause and effect relationships between
variables (Benenati, 1973).

Therefore, the aim of this review is to identify the advances of
applications of artificial intelligence algorithms to the mineral
leaching process, for which the process is generally described in
Leaching Process Section, the findings of applications of ML
techniques to the leaching process are described in Modeling
of the Mineral Leaching Process Section and, finally the future
perspectives at industrial level and conclusions are presented in
Concluding Remarks and Future Works Section.

LEACHING PROCESS

Leaching is defined as the ‘treatment of complex substances, such as
an ore, with a specific solvent to separate its soluble parts from the
insoluble ones’ (CED, 2021). One of themost widespread applications
is the mineral leaching on an industrial scale through the heap
leaching technology, which was developed in the United States,

and substantially improved in Chile, achieving industrial
applications on a large scale in hydrometallurgical processes.

As part of the process of shaping and processing the pile, the
crushed material is transported (generally by conveyor belts) to the
place where the pile will be formed. On this route, the material is
subjected to an initial irrigation with a solution of water and H2SO4,
known as the “curing process”, with the aim of initiating the
sulphation process of the copper contained in the oxidized or
sulphide minerals [cured with mixed solutions of sulphuric acid
and chlorides (Dutrizac and MacDonald, 1971; Watling, 2013)]. At
its destination, the ore is unloaded using a spreader, which deposits it
in an orderly way, forming a continuous 6- to 8-m high
embankment: the leaching heap. A drip irrigation system and
sprinklers are installed on top of this pile, covering the entire
exposed area. Under the heaps to be leached, an impermeable
membrane is previously installed on top of which a system of
drains (slotted pipes) is installed to collect the solutions that
infiltrate through the material, as shown in Figure 1(Domic, 2001).

Additionally, the bibliometric analysis indicates that all the
available information on mineral leaching in the Web of Science
reference database shows that there is no significant relationship
between machine learning algorithms and leaching, which does not
indicate that there are no papers on the subject, but rather that the
number of target papers is not large. The visualization of the network
indicates the existence of different clusters focused on leaching,
process kinetics and mineralogy. However, it is worth highlighting
the existence of themathematicalmodels’ node (see Figure 2), which
considers the works found in the literature referred to both
phenomenological and machine learning-based modeling.

MODELING OF THE MINERAL LEACHING
PROCESS

Research and development in the field of artificial intelligence has led
to the use of tools such asmachine learning in various fields, due to its
ability to model complex systems, learn from observations, identify
trends and make recommendations in decision making processes. By
implementingmachine learning in production processes, through the
generation of digital twins of processes such as leaching, it is possible
to understand the dynamics of the process, identify variables of
interest and optimize responses in an industry that will incorporate
end-to-end technologies in its production chain, improving the
efficiency and control of processes such as fragmentation, leaching
or any subprocess of the production model, incorporating highly
selective, efficient, flexible and clean methods of mineral processing
and mining (Dunbar and Klein, 2002).

Applications of machine learning techniques applied to
mineral leaching modeling can be found in Golmohammadi
et al. (2013), where a quantitative study based on partial least
squares (PLS) and artificial neural network (ANN) is developed
for the prediction of ferric iron precipitation in the bioleaching
process, and in Xie et al. (2016), an alumina leaching rate
prediction model is established by integrating a kinetic model,
and an error compensation model of the kinetic model based on
kernel extreme learningmachine (KELM) (Huang et al., 2012), an
algorithm that introduces kernel leaning into extreme learning
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machine (ELM) in order to improve the generalization ability and
stability. The verification of the model obtained from the parallel
connection of the kinetic model with the compensation model
was verified using industrial data, indicating that the integrated
model has high accuracy and can successfully predict the leaching
rate and its changing trend, and can be used as a basis for
simulation and/or optimization.

Subsequently, Niu and Liu (2017) use a least-squares support
vector machine (LS-SVM) based on the just-in-time (JIT) algorithm
to build the leaching rate prediction model, when multivariate
multimode nonlinear characteristics of the hydrometallurgical
leaching process are considered, showing that the proposed
method has high accuracy in predicting the leaching rate.

In Leiva et al. (2017), a soft computing framework is used to
model copper recovery in the heap leaching process, using regression
models (linear, quadratic and cubic) and ANN’s. Then, in Flores
et al. (2020), artificial intelligence algorithms based on Random
Forest (RF) are used to predict copper recovery by leaching, which is
extended in Flores and Leiva (2021), where a comparative analysis is
made between threemachine learningmodels (RF, SVM and ANN),
to predict copper recovery by heap leaching, concluding that the
model based on artificial neural networks has a better performance
when representing nonlinear models such as the one studied.

Some applications examples in mineral processing where RF is
used, is in leaching modeling (Demergasso et al., 2018; Lillington
et al., 2020), or mineral prospectivity (Parsa and Maghsoudi, 2021).

FIGURE 1 | Conventional heap leach pad and high-level operating dynamics.

FIGURE 2 | Visualization of networks between keywords of consulted bibliography.

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 8167513

Saldaña et al. Leaching Modeling Through Machine Learning

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


In Lillington et al. (2020) machine learning is applied to predict the
behavior of static glass leaching from large data sets, corroborating
the power of the algorithm to correlate large-scale leaching process
data, while Demergasso et al. (2018) model the industrial-scale heap
bioleaching process, developing a systematic approach using
machine learning tools (classification/decision tree model) for
high-dimensional feature space analysis to provide experience-
based learning to serve as a basis for optimal production
planning and operational decision making in the presence of
inherent process variations.

Then, in He et al. (2019), a gold cyanidation leaching process
characteristic (GCLP) change recognition system is developed using
principal component analysis (PCA) for mismatch detection of the
GCLP process function, and SVM to recognize the type of process
characteristic change, provide guidance for its treatment and help
make corrections to the model.

In contrast to the methods indicated above, in Saldaña et al.
(2019b), stochasticmodeling of the heap leaching process is developed
by generating a Bayesian network, a tool that, in addition to describing
themineral recovery as a function of the independent variables, allows
the identification of the dependence or causal relationships between
the explanatory variables. Another interesting point to highlight in the
work developed by Saldaña et al. (2019b) is the ability of Bayesian
networks to infer the response or generate estimates based on partial
knowledge of the input variables. Additionally, and in the same line of
Flores et al. (2020), Saldaña et al. (2021) uses the RF algorithm to
develop an inference engine to represent the dynamics of the process,
together with predicting how the stack operates. In Shoppert et al.
(2020) an ANN-based model (specifically a multilayer perceptron) is
applied to model the effect of leaching conditions on the efficiency of
fly ash desilication (FA). The aim of the study was to show the
possibility of increasing the degree of SiO2 extraction from fly ash
desilication by NaOH leaching while reducing NaOH loss with solid
residue by keeping Al2O3 in the leach.

On the other hand, Spijker et al. (2021) developed a machine-
learning-based modeling framework to predict nitrate leaching
fromDutch agricultural soils, using the Random Forest algorithm
as a prediction and interpolation method. The use of ML
algorithms allows the spatial variability of nitrate
concentrations to be identified, however, it should be noted
that the algorithm used can only be used as a predictive tool
in areas where data are available, given its lack of robustness in
extrapolation. Subsequently, Bailey et al. (2021) use a machine-
learning-based approach to segment X-ray computed
tomography data sets using ML techniques to investigate
phosphoric acid leaching in high temperature polymer
electrolyte fuel cells. The segmentation performed by Bailey
et al. (2021) aimed to classify digital images using ilastik
(Sommer et al., 2011), software that uses a RF classifier in the
learning step, where the neighborhood of each pixel is
characterized by a set of generic (nonlinear) features.

Finally, it is only worth highlighting the potential of the tools
generated by the digital revolution and artificial intelligence in the
transformation of production processes, including better visualization,
transparency, integrated planning and execution for the optimization
of the value chain, resulting in smarter production (Steyn et al., 2019).

CONCLUDING REMARKS AND FUTURE
WORKS

Mineral leaching is a solid-liquid extraction process, where a
liquid in the presence of a solvent extracts one or more soluble
components, resulting in a rich liquid substance. The high-level
modeling of the process has been carried out by several authors,
mainly using mathematical or phenomenological models (Dixon
and Hendrix, 1993a; Dixon and Hendrix, 1993b; Dixon and
Hendrix, 1993c), and adjustments of these have been used to
integrate intelligent recommendation systems to support decision
making (Demergasso et al., 2018; Saldaña et al., 2019a, 2021).

Artificial intelligence algorithms have demonstrated their
superiority in the modeling of complex systems, being widely
applied in mineral processing, as evidenced by the works of
Rodriguez-Galiano et al. (2015), McCoy and Auret (2019), and
Jung and Choi (2021). Machine learning is revolutionizing the
way of modeling, simulating and optimizing production
processes, due to its ability to predict non-conformities, reduce
downtime, improve efficiency by identifying bottlenecks and
suboptimal operating states, and increase efficiency and
productivity, among others.

Then, modeling of mineral leaching should advance to generate
digital twins that consider a greater amount of information in the
feed (more independent variables), with the objective of reliably
abstracting the real dynamics of the process, for which, in addition to
adjust different algorithms, such as clustering, neural networks,
decision trees or derivatives, Bayesian networks (stochastic
modeling), it could incorporate the model assembly method, or
combined methods (not developed or applied to mineral leaching in
the literature so far), which help to improve the performance of
machine learning models by improving their accuracy. Ensemble
methods are methods by which several machine learning models are
built, and once combined or aggregated, used to solve a particular
problem, such as modeling, simulation and optimization of the
dynamics of the mineral leaching process.

Finally, the application of innovations such as the tools
provided by advances in artificial intelligence (either through
the generation of exploratory or predictive models) has the
potential to optimize hydrometallurgical operations in the
mining industry.
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