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Identifying appropriate seismic events is the primary precondition for conducting
meaningful analysis in seismological research. The successful creation of a method to
automatically identify earthquakes from large amounts of data has become increasingly
vital, especially with the construction of seismic stations, the collection of extensive seismic
data, and the development of earthquake early warning (EEW) systems. To accurately
identify seismic events, a combined model based on a generative adversarial network
(GAN) and a support vector machine (SVM) is proposed to distinguish between
earthquakes and microtremors. We first use 52,537 strong ground motion records
from Japan to train a GAN and extract the characteristics of P waves and then use an
SVM to discriminate seismic events in the testing set, thereby transforming the complex
seismic event identification into a simpler binary classification of earthquakes and
microtremors. The results illustrate that the combined model can achieve accuracies of
99.74% for P waves and 99.93% for microtremors, which represents an increase in
accuracy of 14.13% compared with the traditional short-term averaging/long-term
averaging (STA/LTA) method. Additionally, 98% of the local seismic events in the Great
East Japan earthquake were identified. Therefore, the combined model has a wide range
of applications in EEW and earthquake monitoring.
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INTRODUCTION

Seismic event identification is the primary precondition for conducting meaningful analysis in
seismological research, especially in earthquakemonitoring and earthquake early warning (EEW). At
present, the characterization of seismo-acoustic sources and the identification of earthquakes is
predominantly performed by human analysts trained to cross-link diverse types of information,
especially for microtremors, namely, weak nonearthquake-induced vibrations that occur perpetually
at the Earth’s surface. They are uninterrupted and imperceptible ambient vibrations at a given site
due to disturbances caused by natural factors (rain, wind, ocean waves, and meteorological
perturbations, etc.) and human activity (transportation, machinery operation, etc.) (You et al.,
2021). With the evolution and growing density of geophysical monitoring networks, the number of
events that need to be analyzed has been increasing rapidly, making it impractical to fully rely on
human analysts. Therefore, efficient, high-precision, and universal automatic seismic detection
algorithms are desirable. Such algorithms could improve the critical decision-making process of an
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EEW service. This is crucial to inform society about an unraveling
geophysical hazard in a timely and correct manner.

Substantial progress in the automatic identification of seismic
events has been achieved with traditional seismic detection
algorithms, including the STA/LTA detection method (Allen,
1978), the AR-AIC picker (Sleeman and Van Eck, 1999), and the
PAI-S/K method (Saragiotis et al., 2002). However, since only
some of the waveform characteristics are used in the picking
process, the identification accuracy is often lower than that of
manual processing. Alternatively, the waveform autocorrelation
method (Brown et al., 2008) and the template matching method
(Peng and Zhao, 2009), proposed based on waveform similarity,
have a high detection accuracy, but detection accuracy depends
on the number of templates used. Although a majority of
elaborating methods try to reduce the number of templates by
principal component analysis (Benz et al., 2015) or locality-
sensitive hashing (Yoon et al., 2015), they are still restricted by
the detection of repetitive signals, making it difficult to use these
algorithms in real-time processing of seismic data.

Recently, artificial intelligence (AI) and methods such as
machine learning (ML) and deep learning (DL) have become
increasingly popular. Their successful application in several
geophysical contexts has demonstrated great potential,
including the identification of seismic events (Kong et al.,
2016; Li et al., 2018; Ross et al., 2018; Mousavi et al., 2020;
Yang et al., 2021). Compared with traditional earthquake
detection algorithms, ML can extract features that are more
closely related to the essence of the data. Li et al. (2018)
combined a generative adversarial network (GAN) with a
random forest (RF) classifier to distinguish P waves from
impulsive noise, successfully recognizing 99.2% of P waves and
98.4% of noise. Based on the different characteristics of human
behavior and seismic events, Kong et al. (2016) used an artificial
neural network (ANN) to identify 98% of the seismic records
within 10 km of the Myshake system, thereby efficiently and
accurately identifying earthquakes (Kong et al., 2016). Zhu and
Beroza (2019) trained the PhaseNet model using 780,000
waveforms from the Northern California Seismic Network
(NCSN) based on the U-Net (Ronneberger et al., 2015),
detecting earthquakes and picking P-wave arrivals with high
precision and generalization (Huang et al., 2020). Majstorović
et al. (2021) developed a deep learning pipeline for earthquake
detection, localization, and characterization using only one
station’s raw data, and the robust pipeline is detecting the
earthquakes among the random noise with the accuracy of
97%. It is able to determine the events that are close to the
station (<10 km) with 94% accuracy as well as identify their
belonging to four magnitude classes with a 68% accuracy. Such
approaches may allow EEW algorithms to be triggered only by
waveforms exhibiting the general characteristics of direct seismic
body waves rather than any impulsive signal (Meier et al., 2019).

To identify seismic events, we transform the complex seismic
identification problem into a simple binary classification
problem, and a combined model is proposed to distinguish
earthquakes from microtremors in an EEW context. It is
based on a GAN and a support vector machine (SVM). A
GAN is an unsupervised ML algto a simple binary

classification problem, and a combined model is proposed to
distinguish earthquakes frommicrotremors in an EEW context. It
is based on a GAN and a support vector machine (SVM). A GAN
is an unsupervised ML algorithm (Goodfellow et al., 2014) that
can automatically extract waveform features and simplify the
training process. An SVM serves as a linear classifier with the
largest interval defined in the feature space (Webb, 2003) that can
use the features extracted by the GAN to distinguish between
earthquakes and microtremors and improve the accuracy of the
results. The results of this combined model show that this
algorithm can accurately identify 99.74% of P-waves and
99.93% of microtremors. Compared with the traditional STA/
LTA (short-term averaging/long-term averaging) method, the
accuracy is improved by 14.13%. It also provided perfect
performance at local stations of the Great East Japan
earthquake. Therefore, the proposed combined model can
achieve state-of-the-art performance in the identification of
seismic events for EEW.

DATA

2In this paper, we use 79,762 vertical strong-motion records
from the Kyoshin Network (K-NET) and the Kiban Kyoshin
Network (KiK-net) (39,097 and 40,665 records, respectively)
for magnitude (M) ranges between 3 and 8 (3≤M≤ 8)
throughout Japan, from October 2007 to September 2017
to build the training set. All the data are complete waveforms
with a duration from 60 s (a few) to 120 s (most). The sample
rate of most data is 100 Hz, and a small part is 200 Hz. After
automatically picking P-wave arrivals based on the detection
algorithm of Allen (1978), we choose P waves whose
epicentral distances are within 800 km and whose signal-
to-noise ratios (SNRs) are larger than 5, where the SNR is
defined as the signal power ratio within a 2-s window before
and after the picked arrival. Furthermore, it is required that
the standard deviation of the amplitude of the 1-s waveform
after the P-wave arrival be greater than it was before (Li et al.,

FIGURE 1 | Examples of 4-s waveform data used in this study: (A) a P
wave; (B) a microtremor. The point where the abscissa is 0 is the time of the
P-wave arrival. The data in Figure 1 have been normalized.
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2018). Before the training of the GAN, we apply the following
preprocessing scheme to the dataset: 1) remove the prearrival
mean; 2) apply a second-order causal Butterworth high-pass
filter with a corner frequency of 0.075 Hz; 3) cut the waveform
from 1 s before to 3 s after the P-wave arrival to isolate earthquake
P waves; 4) cut the waveforms from the beginning of the record to
the P wave arrival and randomly select 4 s waveforms to obtain
microtremor signals; 5) normalize each waveform by its absolute
maximum amplitude. After this procedure, there are 52,537 4-s
P-wave records (Supplementary Table S1) (see the example in
Figure 1A) and 52,537 microtremors (to keep the data balanced, we
randomly selected the same number of microtremors) (see the
example in Figure 1B). The locations of the stations and

epicenters are shown in Figures 2A,B, respectively. We randomly
select one-sixth of the training set as validation samples and adopt
the model with the lowest validation loss. The magnitude and
epicentral distance distributions are depicted in Figure 3A.

The testing set is different from the abovementioned data,
which includes 7,774 K-NET vertical ground motion records
throughout Japan from January 2020 to June 2020. All the
data are complete waveforms with a sample rate of 100 Hz.
The duration of most data is 120 s, and a small part is 60 s.
After applying the same selection and preprocessing scheme,
we obtain a testing set consisting of 5,373 P waves
(Supplementary Table S2) and 5,373 microtremors. The
locations of the corresponding stations and epicenters are

FIGURE 2 | (A) Locations of the stations in the training set in this study. (B) Locations of the epicenters (open circles, size in proportion to magnitude) in the training
set. (C) Locations of the stations in the testing set. (D) Locations of the epicenters in the testing set.
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shown in Figures 2C,D, respectively, and the magnitude and
epicentral distance distributions are depicted in Figure 3B.

In addition, to verify the results of the combined model for
practical applications, we chose the Great East Japan earthquake
as an earthquake example, which occurred in the northeastern
region of Japan on 11 March 2011 with a magnitude of 9.0 (Aoki
et al., 2012). This earthquake was one of the largest earthquakes in
Japan’s history. It caused substantial damage, killing tens of
thousands of people and damaging hundreds of thousands of
houses. Due to the large magnitude of this earthquake and the
broad extent over which it was felt, researchers often use it as an
earthquake example. We select 701 K-NET records and 525 KiK-
net records during the earthquake, and the epicentral distances
are from 120.83 to 1,336.74 km. After applying the same selection
and preprocessing scheme for P waves, we obtain a testing dataset
with 692 vertical-component records (Supplementary Table S3).

MATERIALS AND METHODS

Training the Generative Adversarial
Network
A GAN is an unsupervised ML algorithm proposed by
Goodfellow et al. (2014); it consists of a generator (G) and a
discriminator (D) (Goodfellow et al., 2014). Figure 4 shows the
basic training process of a GAN. The black dotted line is the real
data (pdata). The green solid lines are the generative distribution
(pg). The blue dashed line is the discriminative distribution. The
lower horizontal line denotes latent samples (z). The upper
horizontal line is part of the domain of x. G contracts in
regions with a high pg density and expands in regions with a
low pg density. At the beginning of training (see Figure 4A), pg is
similar to pdata, and D is a partially accurate classifier. As the
training continues, D is trained to discriminate samples according

FIGURE 3 | (A) Magnitude and epicentral distance distribution of the training set; (B) Magnitude and epicentral distance distribution of the testing set.

FIGURE 4 | The basic GAN training process, which is reprintedwith permission fromGoodfellow et al. (2014). (A) The beginning of training GANs; (B,C) The training
is in progress; (D) The end of training.
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to D(x) � pdata(x)
pdata(x)+pg(x) from the real data in the inner loop of the

algorithm (Figure 4B) and guide G to flow toward regions that
are more similar to the real data (Figure 4C). After several steps
of training, when G and D have enough capacity (pg � pdata)
(Goodfellow et al., 2014), the training is over (Figure 4D).
Currently, D(x) � 0.5.

In this study, the flowchart depicting the training of a GAN is
shown in Figure 5A. G takes the input of a 50-element vector
drawn from a normal distribution and outputs a 4-s generated
waveform (see the left box in Figure 5A). G is composed of two
fully connected (FC) layers, in which there are 128 and 400
neurons. FC layers can map the distributed feature representation
learned by a GAN to the space of sample labeling. In other words,
the neurons in an FC can fit the distribution of real data, and the
multilayer FC layers can solve the problem of nonlinear fitting.
Every FC layer is followed by a leaky rectified linear unit (leaky
ReLU), and the activation function of the last FC layer is given by
a tanh function. Both tanh and leaky ReLU are activation
functions. Because the output of neurons is the weighted sum
of all inputs, the neural network is a linear model. The activation
function increases the nonlinearity of the model; if the output of
each neuron is passed through an activation function, the neural
network can fit various distributions. The difference between the
two layers is that a leaky ReLU is a nonsaturated activation

function, which can effectively prevent problems such as gradient
disappearance or gradient explosion, so it is often used in the
hidden layer of neural networks. The output of tanh can be
normalized to (-1, 1), which is convenient for input to D, so it is
often used in the last layer. Additionally, we add a Reshape layer
at the end of G to ensure that the generated data are acceptable for
D. For D, the input is a 4-s waveform (either real data or
generated data), and the output is the probability of the input
waveform being a real record, as shown in the right box in
Figure 5A. If the input waveform is from a real ground motion,
the output is 1; if the input waveform is a generated waveform, the
output is 0 (Li et al., 2018).

D consists of a convolutional (Conv) layer, an average pooling
(AvePool) layer, and two FC layers. The Conv layer can extract
waveform features through the forward propagation of
convolution filters, which is the key to classification with D.
Because forward propagation includes translation and flipping of
convolution filters, it will produce a large number of training
parameters. The AvePool layer can compress the input features,
which not only simplifies the calculation complexity but also
facilitates the extraction of the main features. The Conv layer has
16 filters, and the parameters of the other layers follow the default
settings. The first FC layer has 128 neurons, followed by a leaky
ReLU. The second FC layer has only 1 neuron to output the

FIGURE 5 | The training process of the combined model in this paper. (A) The training of GANs; (B) The identification of seismic events.
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probability, and has a sigmoid activation function. The advantage
of the sigmoid is that the output is between 0 and 1, which can
serve as the probability of the output layer. Therefore, this
function can not only predict the classification but also
provide an approximate probability. We summarize these
training settings in Table 1 and Table 2.

Moreover, we utilize Adam with learning rates of G and D of
0.0001 and 0.0002, respectively, thereby maintaining the balance
of the data during training. Adam is a simple, computationally
efficient, and low-memory optimizer that is used to update and
calculate the parameters to minimize the loss function. In the
training process of machine learning models, massive datasets
often cannot be input into the model all at once, so researchers
often input data in batches. In addition, it is usually not sufficient
to train the model only once, and the epoch is the number of
times the model is trained. In our study, training stopped when
validation loss did not improve for 100 consecutive epochs and a
batch size of 64; thus, G had 58,128 parameters and D had
203,073 parameters. These are all trainable parameters.
Additionally, to achieve the purpose of classification, the loss
functions of G and D are both binary cross entropy. We found
that when D is trained for 5 iterations for each G iteration, the
learning process achieves balance. These parameters are inherited
from other GANs (Arjovsky et al., 2017) and are explored in this
study to produce stable results. We select the model with the
smallest validation loss as our final neural network model.

Identification of Seismic Events
Because the input of the GAN consists solely of real ground
motions, the trained D can only distinguish between real data and
generated waveforms. Therefore, we only use the GAN to extract
P wave features and then use an SVM to identify P waves. An
SVM is a binary classification model; its basic model is a linear
classifier with the largest interval in the feature space (Webb,
2003). In other words, the principle of an SVM is to use a line or a
manifold to divide various types, and the largest boundary is the
optimal solution of the model. These characteristics make an
SVM among the most powerful ML algorithms available today.
When combined with a GAN, it can make full use of the P wave
features extracted by the GAN for classification. Moreover, as the
input to the SVM, microtremors can participate in the training of
the combined model. Using the SVM as a classifier, rather than D
itself, not only makes up for the shortcoming that microtremors
cannot serve as input into the GAN but also leads to a much
higher classification performance.

After the GAN training is complete, we remove the last FC
layer of D and form the remaining part into a P-wave feature
extractor, as shown in the red circle in Figure 5A. Assuming that
after an extended period of training, D acquires the ability to
distinguish real seismic waves, and the P-wave feature extractor
serves to extract the key features of real earthquakes (Creswell
et al., 2018). In this way, we can extract 105,074 waveform
features, including 52,537 training P waves and 52,537 training
microtremors, and input these into the SVM for classification, as
shown in Figure 5B. It should be noted that the wave feature is a
128-dimensional vector. After the training of the SVM, the
combined model can obtain the final classification results; that
is, if the input is a P wave, the output is 1; if the input is a
microtremor, the output is 0. We followed the initial settings in
Scikit-learn for the training process of the SVM (Pedregosa et al.,
2011). In addition, the parameter “model.predict_proba” of the
Keras module in Python is used to provide an output probability
(Pedregosa et al., 2011) serving to reflect the confidence in the
decisions and thus assess the performance of the
combined model.

RESULTS

The Testing Set
After training, the well-trained model successfully identifies 5,359
P waves and 5,369 microtremors from the dual sample sets
compromised of 5,373 records each. In other words, the
combined model can achieve 99.74% accuracy for P waves and
99.93% accuracy for microtremors on the testing set. Table 3
shows the identification results, and Figure 6 shows examples of
these four classifications, where the meanings of the four labels
are as follows:

• A true positive indicates that a P wave is predicted to be a
P wave.

• A true negative indicates that a microtremor is predicted to
be a microtremor.

• A false positive indicates that a microtremor is mistaken as a
P wave, which is a false alert in EEW.

• A false negative indicates that a P wave is mistaken as a
microtremor, which is a missed alert in EEW.

We can see that D is highly accurate for classifying P waves
and microtremors. In Figure 6, the misclassified P waves

TABLE 1 | Summary of the parameters of the G.

Layer Parameters

FC neurons = 128
leaky ReLU alpha = 0.3
FC neurons = 400
leaky ReLU alpha = 0.3
activation tanh
solver Adam

TABLE 2 | Summary of the parameters of the D.

Layer Parameters

Conv filters = 16, kernel size = 3, strides = 2, activation = “relu”
AvePool pool size = 3, strides = 2
Flatten —

FC neurons = 128
leaky ReLU alpha = 0.3
FC neuron = 1
activation sigmoid
solver Adam
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generally have either relatively peculiar waveform shapes or
nonsignificant onsets. In comparison, the misclassified
microtremors have a relatively enduring wave train, which is

similar to authentic P waves. Moreover, because the percentage of
false positives in Table 3 is 0.07%, it is confirmed that this
algorithm can effectively reduce the number of false alerts

TABLE 3 | Identification of results on the testing set.

True positive True negative False positive False negative

Number 5,359 5,369 4 14
Percentage (%) 99.74 99.93 0.07 0.26

FIGURE 6 | Examples of the 4 classifications. (A) True positive; (B) False negative; (C) True negative; (D) False positive. The point where the abscissa is 0 is the
P-wave arrival. The data in Figure 6 have been normalized.

FIGURE 7 | (A) The relationship between the percentage and output probability for the testing set. The earthquake data are concentrated in the 0.9–1.0 interval,
and the microtremor data are concentrated in the 0–0.1 interval. Note that only half of the ordinate values are marked in the figure, including microtremor data with an
output probability of 0–0.5 and seismic data with an output probability of 0.5–1.0. (B) The relationship between the epicentral distances and magnitudes of true positive
records and false negative records with an epicentral distance ≤200 km for the testing set. The blue dots represent true positive records, and the red crosses
represent false negative records.
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caused by microtremors. We go on to provide an output
probability to analyze how confident the combined model is in
the results. The output probability is a probability between 0 and
1, where 1 represents a P wave and 0 represents a microtremor.
Therefore, the closer the output probability is to 1, the more likely
it is that the testing data is a P wave. We count all the percentages
of the test size with output probabilities in each interval (intervals
are set to 0.1). Figure 7A shows the relationship between the
output probabilities and the percentages of the testing data. The
values at the two ends of the curves can evaluate the robustness
of the identification ability of the algorithm. As shown in
Figure 7A, 99.52% of microtremors and 99.37% of P waves in
the testing set are concentrated on the two ends of the
probability proxy, indicating that the combined model
exhibits extremely high confidence in the results.
Conventionally, probabilities of 0.1 and 0.9 are chosen as
the decision boundary in this study; this threshold can be
tuned at individual EEW stations (Li et al., 2018).

Since most research on EEW is particularly interested in
local earthquakes, we further analyze the discrimination
performance for records whose epicentral distances are
within 200 km, which is actually the distribution of true
positives and false negatives on the epicentral distance.
There are 5,373 P waves in the testing set; among them,
5,241 records have an epicentral distance of no more than
200 km. After training, 12 records are mistaken as microtremor
signals. In other words, the proposed model can achieve 99.77%
accuracy for local earthquakes. Figure 7B shows the
relationship between the epicentral distances and
magnitudes of the 12 mistaken records. The performance for
small and medium earthquakes may be better than that for
large events. Test data are more abundant for events with small
magnitudes, but the mistaken waveforms are comparable to
those of large earthquakes, indicating that the proposed model
is more accurate in identifying small and medium earthquakes.

This may be because the number of these earthquakes in the
training set is relatively large, which gives the model more
opportunities to extract features and make decisions.

To further explore the sensitivity of the combined model to
different earthquake magnitudes, we next analyze the dependence
of the identification performance on the magnitude, as shown in
Figure 8A. The accuracy for all earthquakes is over 97%, and the
performance for other magnitudes is surprisingly more than 99%
except for those with 6≤M< 7. Then, we focus on the
identification performance of these earthquakes. There are 263
earthquakes with 6≤M< 7, and Figure 8A shows that the
classification accuracy is 97.72%; that is, the combined model
misidentifies 6 earthquakes as microtremor signals with
6≤M< 7. Table 4 shows the information of these 6
earthquakes, and the red crosses in Figure 8B reflect the
relationship between their epicentral distances and
magnitudes. The epicentral distances of these records all
exceed 100 km, and 3 of them exceed 200 km. Since most
studies in EEW focus on local earthquakes, the
misclassifications of these 6 records are all allowable.
Consequently, this algorithm can maintain a desirable result of
local records in identifying seismic events.

FIGURE 8 | (A) Dependence of the performance on earthquake magnitudes. The colors of the columns are the number of test waveforms in the bins. (B) The
relationship between the epicenter distances andmagnitudes of earthquakes with 6≤M < 7 for the testing set. The blue points are the true positives, and the red crosses
are the false negatives.

TABLE 4 | Information about the misclassified earthquakes (false negative) for the
testing set.

No. Record name Magnitude Epicentral distance (km)

1 KGS0032005032054.UD 6.2 196.01
2 KGS0212005032054.UD 6.2 182.48
3 KNG0072006250447.UD 6.2 156.10
4 MYG0152006250447.UD 6.2 290.57
5 NGN0142006250447.UD 6.2 254.20
6 TKY0242006520447.UD 6.2 124.07
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The Great East Earthquake
For the Great East earthquake, we input the dataset into the
combined model and analyze the identification performance.
Unfortunately, the well-trained model can only identify 287
records, corresponding to a considerably low accuracy of
41.47%. However, an examination of epicentral distances
reveals that most misclassified waveforms are from regional
stations (that is, epicentral distances over 200 km). Figure 9A
shows the dependence of the identification performance on the
epicentral distance, illustrating that the main reason why the
accuracy is low is because of the poor performance for regional
records; in contrast, the accuracy for local records (that is,
epicentral distances within 200 km) is 98%. Therefore, for the
purpose of EEW, we focus on analyzing the performance for local
earthquakes. Among the 692 records in the dataset, only 50
records have an epicentral distance within 200 km. Figure 9B
presents a schematic diagram of the discrimination results for
these 50 records, revealing that only 1 local record is mistaken.
Combined with Figure 9A, this finding demonstrates that
although the overall performance of the proposed model drops
considerably, the poor performance is predominantly due to
regional records, whereas the performance for local stations is
satisfactory. In other words, the proposed model can maintain
perfect performance for local records during large events.

Comparison With the Short-Term
Averaging/Long-Term Averaging Method
To highlight the superiority of this algorithm over traditional
methods in identifying seismic events, we compare it with the
STA/LTA method, which is currently the most widely used
P-wave arrival picking algorithm. It is an energy method

proposed by Allen (1978), which mainly uses the long-short-
time ratio of the P-wave phase characteristic function to pick up
the first arrival. The calculation formula used in this article is as
follows.

LTA(i) � 1
long

∑
i+long

j�i
CF(j) (1)

STA(i) � 1
short

∑
i+long+short

j�i+long
CF(j) (2)

STA

LTA
(i) � STA(i)

LTA(i)≥ λ (3)

Here, i is the sampling time. “Long” represents the length of
the long-time window, “short” represents the length of the short
time window, and λ is the trigger threshold. CF(j) is the P wave
phase characteristic function (Allen, 1978; Allen, 1982), which
characterizes the amplitude and energy changes of the data:

CF � xud(k)2 + [xud(k) − xud(k − 1)]2 (4)
After P wave arrivals, the amplitude of the record will change

greatly. This algorithm continuously calculates the average values
of the absolute amplitude of a seismic signal in two consecutive
moving-time windows. The short time window (STA) is sensitive
to seismic events, while the long-time window (LTA) provides
information about the temporal amplitude of the seismic noise at
the site. When the ratio of both exceeds a preset value, an event is
said to be “declared”; at this time, the data are recorded in a file
(Trnkoczy, 2009). In this article, we used time windows of 0.5 and
30 s for the STA and LTA, respectively, and λ was set to 6. The
parameters of the STA/LTA technique were selected to maximize
the results.

FIGURE 9 | (A) Dependence of the combined model performance on the magnitudes for the Great East Japan earthquake dataset. (B) Locations of the true
positive and false negative records with epicentral distances ≤200 km in the Great East Japan earthquake dataset. The red star represents the epicenter, and the
triangles represent the locations of the triggered stations. Black indicates a true positive, and red indicates a false negative.
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Due to the relatively long-time window of 30 s, the calculation
process of the STA/LTA method requires at least 30 s of ground
motion records. As a result, we do not cut the input waveform for
this method. In other words, we only perform the first three steps
of preprocessing here. Moreover, this method does not require a
training process, so we only need to input the test data into the
STA/LTA method to obtain the final result. Because the output is
the exact times of P-wave arrivals, not the results of the binary
classification problem, we mark the result within 1 s before to 3 s
after the actual P-wave arrival time as an earthquake
identification success (that is, the output is 1). The remaining
times are identification failures (that is, the output is 0).

Table 5 shows the comparison results of the two algorithms.
Among 5,373 test earthquakes, the STA/LTA method can
accurately identify 4,600 records. In other words, it can
identify 85.61% of the test data. Compared with this
traditional method, the combined model in this paper
demonstrates a 14.13% increase in the identification accuracy
of seismic events, indicating that our model is an accurate and
reliable algorithm for seismic event identification. Nevertheless,
due to the massive dataset, the combined model requires a long
training and testing time, so it is slightly inferior to the STA/LTA
method in terms of computational efficiency. In the future, we
will continue to optimize the model to improve training efficiency
and shorten the training and testing times.

DISCUSSION

With the goal of identifying seismic events from microtremors, we
propose a new identification algorithm based on a combined ML
model. We train a GAN based on 52,537 vertical strong ground
motions from Japan and use a P-wave feature extractor to identify P
waves from microtremors. After an SVM classifies the features to
obtain a final result, we successfully transform the complex problemof
identifying earthquakes into a simple binary classification problem of
earthquakes andmicrotremors. The test results illustrate that the well-
trained model can achieve accuracies of 99.74% for P waves and
99.93% for microtremors, which represents an improvement in
accuracy of 14.13% compared with the traditional STA/LTA
method. The results confirm that this algorithm can achieve state-
of-the-art performance in discriminating between earthquakes and
microtremors for EEW. Verification using a dataset from the Great
East Japan earthquake indicates that the combined model can
maintain a robust performance for local records at large
magnitudes. Compared with manually labeling specific features
associated with P waves, the algorithm can automatically extract
the features that characterize P waves, thereby simplifying the training
process and saving training costs.

Idea of Transformation
The main ideological innovation of this paper is to transform the
identification procedure of seismic events into a binary classification
problem between earthquakes and microtremors. The identification
of seismic events is a very complex problem, and is made especially
challenging due to a low SNR caused by the monitoring situation
interfering with natural and anthropogenic seismicity activity, which
can partially coincide in terms of magnitude, space, and time (Yang
et al., 2021). However, ML methods can transform this issue into a
binary classification problem. As a result, the combined model in this
paper is confined to handling data in the feature space, which requires
precise maneuvers and abundant field knowledge to construct a
feature descriptor that can convert the raw data into a suitable
representation. Subsequent machine learning then provides raw
data for a model to automatically detect some unique features
adopted for recognition. These approaches divide the identification
process into two steps: 1) feature extraction and 2) classification. For
our paper, although the GANonly uses a certain type of data as input,
it can fully capture the statistical distribution of P waves, thereby
automatically extracting those detailed features that can highly
represent the data. In other words, the GAN can judge whether
the data is a P wave. The SVM is a very practical binary classification
model that can further purify the output of the GAN, thereby
facilitating even more accurate judgments. Through this
transformation, the problem of seismic event identification
becomes simple and obvious and will not be affected by low
SNRs. Consequently, the practicality of the algorithm has been
enhanced, while the accuracy remains satisfactory.

Role of the Generative Adversarial Network
and Support Vector Machine
A key purpose for using a GAN is to find an implicit or explicit
representation of real data (Creswell et al., 2018). Specifically, theGAN
captures the statistical distribution of P waves. D defines some form of
similarity metric, and training narrows the gap between the generated
and real data. Therefore, a well-trained GAN can grasp the key
features of the real data. However, we did not directly use D to
distinguish between P waves and microtremors because the
microtremor data do not participate in the training of the GAN,
and the classification results may not be convincing. Therefore, D is
transformed into a P-wave feature extractor to extract specific
patterns, which then allows for an SVM to identify seismic events.
In this way, the microtremor data, which are part of the input to the
SVM, also participate in the training process of the combined model.
After a large amount of training, the SVM can automatically learn the
differences in the waveform characteristics of the two types of data,
allowing it to accurately distinguish between P waves and
microtremor signals.

TABLE 5 | Comparison of the results with the STA/LTA method.

Algorithm True positive (%) False negative (%) Training time (s) Testing time (s)

GAN + SVM 99.74 0.26 7,751 27
STA/LTA 85.61 14.39 0 802
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Performance on Specific Earthquakes
According to the performance of the model for local records and
large earthquakes, it is evident that the combined model achieves
a higher accuracy in identifying small and moderate earthquakes
with magnitudes less than 6. One possible reason is that there is a
high frequency of small and medium earthquakes, so the larger
sample size helps the model extract features and make decisions.
However, although the performance for large earthquakes is
inferior to those of small and moderate magnitudes, it is still
highly skillful. This could be caused by large earthquakes
exhibiting longer-lasting waveforms and richer long-period
components, so the combined model is still able to maintain
high accuracy. Moreover, the results of local records are much
more desirable than those of regional records, which coincides
with EEW research. When we apply to the Great East Japan
earthquake dataset, the performance is deemed sufficient for local
records, indicating that the proposed algorithm is extremely
robust for local stations.

Limitations
Although the proposed algorithm can accurately distinguish
between earthquakes and microtremors, it still suffers from
many shortcomings. First, the proposed algorithm pertains
only to microtremors, and thus, further research must be
performed to develop a method such as that of Li et al. (2018)
that is capable of distinguishing between earthquakes and other
types of noise. Second, the training of this algorithm is relatively
complicated. Compared with other machine learning algorithms,
such as convolutional neural network (CNN), it can only achieve
the purpose of identifying seismic events. Hence, this algorithm
needs to be combined with an automatic detection algorithm,
such as Allen (1978), to accurately identify earthquakes.
Integrating earthquake detection, localization, and
characterization is our future work, such as Majstorović et al.
(2021). Moreover, the dataset we used for this study is highly
selective (only composed of strong groundmotion and clean, pre-
P microtremors), so this is a proof-of-concept test of machine
learning for identifying P waves. The current training and testing
times are long, further illustrating that the training efficiency
needs to be improved. Finally, as a byproduct (Creswell et al.,
2018), the simulated waveform generated by G participates in the
internal loop of the training of the GAN and has not yet been
specifically applied. We are not sure whether the generated
waveform can truly reflect the characteristics of real
earthquakes. We will continue to improve the combined
model identification performance and data optimization, as we
expect that the idea of transforming identification problems into
binary classification can enjoy broad applications that are beyond
the scope of this study.

CONCLUSION

In this study, we propose a new identification algorithm based on
a combined model of a GAN and SVM, which transforms the
complex problem of identifying earthquakes into a simple binary
classification problem of earthquakes and microtremors. With

the proper training parameters, our well-trained model can
achieve accuracies of 99.74% for P waves and 99.93% for
microtremors, which is an increase in accuracy of 14.13%
compared with the traditional STA/LTA method, confirming
that the proposed algorithm can achieve state-of-the-art
performance for EEW seismic event identification. The results
obtained for waveform records from the Great East Japan
earthquake show that the proposed model can achieve a
robust result for local records of large earthquakes. Hence, the
proposed algorithm could have broad applications in EEW and
earthquake monitoring.
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