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Many active volcanoes exhibit Strombolian activity, which is typically characterized by
relatively frequent mild volcanic explosions and also by rare and much more destructive
major explosions and paroxysms. Detailed analyses of past major and minor events can
help to understand the eruptive behavior of volcanoes and the underlying physical and
chemical processes. Catalogs of these eruptions and, specifically, seismo-volcanic events
may be generated using continuous seismic recordings at stations in the proximity of
volcanoes. However, in many cases, the analysis of the recordings relies heavily on the
manual picking of events by human experts. Recently developed Machine Learning-based
approaches require large training data sets which may not be available a priori. Here, we
propose an alternative user-friendly, time-saving, automated approach labelled as: the
Adaptive-Window Volcanic Event Selection Analysis Module (AWESAM). This strategy of
creating seismo-volcanic event catalogs consists of three main steps: 1) identification of
potential volcanic events based on squared ground-velocity amplitudes, an adaptive
MaxFilter, and a prominence threshold. 2) catalog consolidation by comparing and
verifying the initial detections based on recordings from two different seismic stations.
3) identification and exclusion of signals from regional tectonic earthquakes. The strength
of the python package is the reliable detection of very small and frequent events as well as
major explosions and paroxysms. Here, it is applied to publicly accessible continuous
seismic recordings from two almost equidistant stations at Stromboli volcano in Italy. We
tested AWESAMby comparison with a hand-picked catalog and found that around 95% of
the seismo-volcanic events with a signal-to-noise ratio above three are detected. In a first
application, we derive a new amplitude-frequency relationship from over 290.000 seismo-
volcanic events at Stromboli during 2019–2020 which were detected by AWESAM. The
module allows for a straightforward generalization and application to other volcanoes with
frequent Strombolian activity worldwide. Furthermore, this module can be implemented for
volcanoes with rarer explosions.
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1 INTRODUCTION

The creation of volcanic event catalogs plays an important
role in the monitoring of volcanoes. For example, studies to
derive amplitude-frequency relations and inter-event time
characteristics from catalogs provide important insights in
understanding the eruptive behavior of volcanoes. These
catalogs not only enable the evaluation of volcanic hazard
but also the in-depth investigation of possible precursors
based on the historic instrumental data. Furthermore, these
studies are also essential to develop and test early warning
systems. Compiling these catalogs is time-consuming and
challenging for volcanoes with frequent explosive events as
it often involves manual work from experts. There are
numerous volcanoes which exhibit this type of activity,
often called “Strombolian” activity. For example,
Sakurajima in Japan, Semeru in Indonesia, as well as Yasur
in Vanuatu are Strombolian volcanoes, to name just a few
(Nishimura et al., 2016; Nabyl et al., 1997).

Seismological methods have long been used in volcano
monitoring as many types of volcanic activities also exhibit a
characteristic seismic signature (Wassermann 2012). There are
well-developed dense seismic networks around many volcanoes.
In particular, different kinds of seismo-volcanic events can be
observed at Strombolian volcanoes. Each of them has a
characteristic waveform with different frequency spectra.

Volcano-tectonic events, for example, are caused by
movements along tectonic fractures (Zobin 2014) and can be
recognized by the P- and S-phases. Other types of signals are long
period (LP) and very long period (VLP) events. These are
characterized by frequencies between 0.2–5 Hz (Clarke et al.,
2021) and 0.01–0.2 Hz (Ripepe et al., 2021) respectively.
However, these definitions are not univocally applied in the
literature. LP and VLP events are thought to be connected
with magmatic activity and fluid transport (Nabyl et al., 1997)
as well as pressure changes in the magma column (Legrand and
Perton 2022). At times, recorded signals exhibit properties of
multiple types. These are called hybrid events (Wassermann
2012).

The typical Strombolian activity is usually explained by the
coalescing and busting of gas bubbles (Nabyl et al., 1997), which is
often accompanied by LP and VLP signals. However, VLPs are
not always connected to visible explosions (Ripepe et al., 2021).
Another important type of event is volcanic tremor that is
characterized by durations from several minutes to months,
with a slower onset and decay. The spectral energy is usually
dominant between frequencies of 1–6 Hz (Langer and Falsaperla
1996).

At Strombolian volcanoes, all these events are mostly mild.
Violent events, such as major explosions and paroxysms, where
meter-sized blocks are ejected up to distances of 2.5 km from the
vents (Bevilacqua et al., 2020), can pose a serious threat to
residents and tourists. The total fallout volume of ejected
tephra can be more than 105 m3 (Métrich et al., 2021). At
Stromboli, for example, major explosions and paroxysms are
observed at irregular time intervals: the last three paroxysms
occurred in 2007 and then, after a long hiatus, in July and August

of 2019 (Giudicepietro et al., 2020; Bevilacqua et al., 2020;
Andronico et al., 2021).

Furthermore, not all types of volcanic activity exhibit a
seismic signature; for example some ground deformations
caused due to upward magma movement can only be
detected with precision using strainmeters (Wassermann
2012). On the other hand, it should also be noted that
earthquakes, landslides, anthropogenic sources can cause
ground movements, that are recorded by the seismic sensors
that can be misinterpreted as eruptive events.

In the following, we use the generic term “seismo-volcanic
event” for any local seismic event that is caused by volcanic
activity. Here, we do not discriminate among them and also do
not speculate about their source mechanism.

To monitor volcanoes, detecting these seismo-volcanic events
is of great importance. However, creating a large database of
detected seismo-volcanic events from the seismic data is a
challenge because, often, it relies on manual event picking
(Cortés et al., 2021). Several automatic methods to extract
seismo-volcanic events from seismic data have been described
previously. The short-term-average/long-term-average (STA/
LTA) algorithm (Allen 1978) is a classical phase and event
picking algorithm to detect sudden changes, and thus seismo-
volcanic events. The downside to this method is that it will not
work reliably for seismo-volcanic events with a slowly increasing
amplitude and its performance depends heavily on the choice of
the following three parameters: short-term and long-term
window length, as well as the trigger threshold.

Machine Learning based approaches, for instance, Support
Vector Machines (Masotti et al., 2006), Hidden Markov Models
(Benitez et al., 2009), and Deep Learning Models (Cortés et al.,
2021) may also be applied. The drawback of these methods is that
they require large labeled training, testing and validation datasets.
These datasets must be created by other means, which may be
time-consuming and labor-intensive. Another challenge for
methods based on Machine Learning is the reliable detection
of large seismo-volcanic events, since they are also extremely rare
in the training data sets.

In order to overcome these drawbacks, we introduce the
Adaptive-Window Volcanic Event Selection Analysis Module
(AWESAM) to generate catalogs of seismo-volcanic events
from recordings at a seismic station located in the proximity of
a volcano. The catalogs contain the maximum-amplitude and
corresponding time information of the seismo-volcanic events
during a certain period. Additional information, such as the
waveform or the duration of the event, can also be extracted.
Figure 1 gives an overview of the whole algorithm. The
strength of this algorithm is its ability to not only detect
rare, very large events but also the frequent, small events
based on seismic recordings only. This is possible due to an
adaptive filter algorithm, which we describe in sub-section
2.2.4. The package is optimized to detect events even when the
signal to noise ratio is relatively small. Also, the method is
easily adaptable to different volcanoes and it is, therefore,
beneficial for monitoring both volcanoes that are extensively
studied, such as Stromboli, as well as others where seismic
recordings are relatively sparse. Furthermore, the algorithm
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includes a method for validating the initially detected seismo-
volcanic events with the help of a second station. In this step,
which we call catalog consolidation, local disturbances that
only occur at one of the stations, and may lead to false
detections, are excluded by comparison with the recordings
at the second station. This step is also used to identify and
exclude tectonic earthquakes from the catalog. The different
steps are executed together in one workflow, i.e, the
application provides a combined implementation of all
functionalities.

Altogether, AWESAM is a powerful module to create more
complete seismo-volcanic event catalogs with the time and
amplitude information extracted from unlabeled raw seismic
waveforms. In this study, as a first major step, we focus on the
detection of as many seismo-volcanic events as possible. Further
classification and identification of possible source mechanisms
will be part of future work.

In this study, we focus on Stromboli volcano in the
Mediterranean Sea (Figure 2A). Several volcanic
monitoring activities are being carried out at Stromboli
which include the use of seismic stations, cameras,
tiltmeters and more. A catalog of VLP events is also
available (see e.g., http://eolo.ov.ingv.it/eolo/, (Auger et al.,
2006); http://lgs.geo.unifi.it/index.php/monitoring/
volcanoes/stromboli2). Furthermore, INGV counts
explosions in a weekly bulletin (https://www.ct.ingv.it/).
While this method is very accurate, it is also very labor-
intensive, time consuming and might not be applicable to
other volcanoes. The methods and code presented here save
time and are applicable to a number of additional volcanoes
to be investigated in future studies. Specifically, the module
can be applied to other Strombolian volcanoes, but also to
volcanoes with less frequent activity.

2 Compilation of Seismo-Volcanic Event
Catalogs
The different steps of the seismo-volcanic event detection
algorithm are outlined in the next sections. See Figure 1 for
an overview. AWESAM is implemented with the help of the SciPy
(Virtanen et al., 2020) ecosystem and obspy (Beyreuther et al.,
2010).

2.1 Data Sources - IST3 and ISTR on
Stromboli
AWESAM was developed with seismic data recorded at
Stromboli, one of the most active volcanoes. The volcano
forms a 3 × 4 km island that rises 924 m above sea level,
located north of Sicily as part of the Aeolian Islands. There
are typically 0 to 25 Strombolian explosions per hour. This
activity has been going on since about the 8th century AD
(Andronico et al., 2021). However, in our analysis we noticed
that the explosion rate varies greatly and can increase up to 60
explosions per hour. These explosions occur at multiple vents
located in the crater terrace and eject pyroclastic material up to
several tens of meters. The number and position of the vents can
change over time (Giudicepietro et al., 2020). As already
described in the introduction, this activity is also disrupted by
major explosions and paroxysms, which occur in irregular time
intervals.

The two seismic stations used by AWESAM are located on
opposite sides of the island and have approximately equal
distance to the crater area (1a). They are operated by the
Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the
data is accessible through the INGV Seismological Data Center

FIGURE 1 | Overview of the catalog creation process using AWESAM
including seismo-volcanic event detection, catalog consolidation and
earthquake classification.
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(INGV Data Centre 2006). The sampling rates are 100 Hz with
three channels per station (HHN, HHE, HHZ).

Figure 2B shows signals recorded at IST3 at randomly
chosen dates. Both the noise level and the frequency of the
eruptions vary greatly. The noise level, which is partly
induced by ocean waves and wind (Bormann 2015),
obscures some small-amplitude events, making them
difficult or impossible to detect. Hence it is a challenge for

the algorithm to recognize as many of these small seismo-
volcanic events as possible.

2.2 Seismo-Volcanic Event Detection
2.2.1 Complementing Channels
Channel HHN has the maximum amplitude for seismo-volcanic
events in almost all cases considered. The reason is that the
wavefield at the two stations is mainly horizontally polarized

FIGURE 2 | (A) IST3 and ISTR are the two almost equidistant seismic stations on Stromboli used for the detection of volcanic events (topographic data from
openstreetmap.org (OpenStreetMap 2017)). (B) Example seismic data with different noise levels and inter-event times recorded at station IST3, channel HHN.
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(Giudicepietro et al., 2020). Therefore it would be ideal to always
use the HHN-channel. However, there are relatively frequent
gaps in the recorded signals. In 2019 and 2020 (averaged over the
three channels) 1% (IST3 2012) and 11% (ISTR), respectively, of
the data are missing. It also turned out that gaps present in one
channel are not always present in the other channels. Therefore,
periods where HHN is missing are filled with data from HHE and
HHZ. Thereby, the HHE channel is advantaged, as it has the
second-largest amplitude. Hence, a stream with as few gaps as
possible is generated. In this step, the channels are just composed,
without scaling them with a factor.

2.2.2 Filtering
After a continuous signal has been obtained, local disturbances in
the data have to be excluded as best as possible. The source of the
disturbances is partly unknown. Some may be caused by electrical
malfunctions or maintenance/repair work. Figure 3A shows some
examples, including an earthquake signal (6.5 M, 500 km from
Stromboli). In the original signal, the disturbances may partially or
completely cover the volcanic signals, making it impossible to
detect them. However, the frequency spectrum of disturbances,
which often ranges from 5 to 40 Hz, differs significantly from that
of seismo-volcanic events (mostly 0.7–5 Hz, see Figure 3B).

Therefore we use a second-order bandpass filter between 0.7
and 5 Hz. Figure 3A visualizes the recovered volcanic signal.
Moreover, the earthquake signal has been filtered out as well.
Note that this only works for distant, high magnitude
earthquakes, because their frequencies are sufficiently low. The
remaining earthquakes are identified using the method described
in section 2.4. A disadvantage of this filter is that it may exclude
some type of events, e.g., VLP events that have a frequency below
0.7 Hz (0.01–0.2 Hz (Ripepe et al., 2021)). However, this filter

leads to a 10–40% change in the amplitude of eruptions.
Unfortunately, there is no clear correlation between the
filtered and unfiltered amplitude. For this reason, a slightly
modified passband (0.7–10 Hz) is used to extract the
amplitudes. This allows the resulting maximum amplitude to
match the amplitude of the original signal well.

Incidentally, filtering is often used for general denoising.
However, the seismo-volcanic events at Stromboli exhibit a
similar frequency range as the ambient noise, making this
method impractical. Therefore, the filtering is mainly used to
exclude the (local) disturbances. Some studies also propose more
complex filtering methods: for instance, all values in the time-
frequency spectrogram, below a certain threshold, are set to zero
(Mousavi and Langston 2016). Still, these algorithms also require
a sufficient difference in the frequency content of volcanic
eruptions and noise. Finally, Machine Learning models can be
used for denoising (Zhang et al., 2020; Weiqiang et al., 2019). In
this paper, we do not include a dedicated denoising step.

2.2.3 Squaring
As already indicates, one challenge to detect eruptions is the
varying noise level. Here, to reduce the noise level, the value of
each sample in the time series data is squared. This step
removes negative values in the data, but more importantly,
it increases the prominence of peaks drastically. In theory,
even higher exponents than 2 could be used. However, this
would also make it increasingly difficult to identify smaller
seismo-volcanic events.

2.2.4 Adaptive MaxFilter
Generally, detecting peaks in the data can be achieved by
applying a prominence threshold (Scipy 2021). At first, the

FIGURE 3 | (A) Local disturbances at Stromboli. Their source is partly unknown. Because they can completely obscure seismo-volcanic events, a band-pass filter
(0.7–5 Hz) is applied, which is effective in removing the disturbances in most cases. (B) Spectra of seismo-volcanic events with different signal amplitudes and noise
levels (averaged spectra for 100 signals each). The intensity of noise is largest for frequencies near 0.2 Hz, probably due to ocean microseisms (Ardhuin et al., 2011). The
main frequency range for explosive events is between 0.7 and 10 Hz.
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oscillations in the signal must be removed in such a way that
each seismo-volcanic event appears as a single peak. One
possible solution is to compute the envelope of the data.
However, events would still consist of multiple peaks. A
better method is the application of a MaxFilter to the data.
In this algorithm, a moving time window outputs the

maximum value in each time step. By fine-tuning the
window size (or filter size), this approach works reliably for
most seismo-volcanic events.

While this algorithm works well for seismo-volcanic events
of smaller amplitude, it remains difficult to detect larger
eruptions that have a substantially different shape and

FIGURE 4 | (A) Adaptive MaxFilter. The kernel size is adaptively computed from themean of the absolute data, which enables to reliably detect the seismo-volcanic
events of all amplitudes. (B) Catalog consolidation executed on example data to validate the generated catalogs with the signal from a second station. The arrows
indicate the closest seismo-volcanic events detected at both stations, from which the distance and probability are computed. The dashed arrows denote that the two
events do not correspond to each other. Note that the algorithm only uses the catalogs, the seismic data is just displayed for visualization.

FIGURE 5 | Seismo-volcanic event detection algorithm on example data. The adaptive prominence threshold and filter-size is shown.
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duration (i.e. usually the amplitude decay is much slower). To
address this problem, the Adaptive MaxFilter algorithm is
proposed; this uses a variable filter size. For large explosions,
the filter size automatically increases. Otherwise, the same event
would be detected multiple times. Figure 4A illustrates the
differences between the two methods.

The filter size is determined from the average of the data
in a surrounding time window (in this case with a length of
10 min). This approach results in kernel sizes between 300
and 2000 samples. If there is a paroxysm in the
corresponding window, it can even increase to up to
10,000 samples.

The stride, which determines the number of samples the
time window advances in each step, should be set to 1 to get the
best result. However, increasing the stride does not change the
outcome of the algorithm substantially. Therefore, a stride of
100 samples is used (resulting in a sample rate of 1 Hz),
causing a significant speed-up of the algorithm. Note that
only the filter size changes in the Adaptive MaxFilter algorithm
while the stride is kept constant. With this approach, we can
detect small seismo-volcanic events as well as large paroxysms
reliably.

2.2.5 Prominence Detection
In the last step, the time and amplitude of the seismo-volcanic
events are computed with a peak detection algorithm
(Figure 5). Here, data that were filtered with a 0.7–10 Hz
bandpass are used. We found that using the prominence of
peaks as the threshold criterion is the best method to
discriminate between eruptions and smaller peaks probably
originating from background noise (The prominence of a peak
is the difference between its height and the lowest point to the
next higher peak (Scipy 2021)).

The changing prominence threshold is necessary to
compensate for changes in the noise level and volcanic tremor.

It is computed for every 10 min time window (with the data from
the same 10 min time window):

T � α · μdata
σdata

· μMaxFilter (1)

where α = 1.5 is a hyper-parameter that defines how many small
peaks are detected and μMaxFilter is the average of the data after
applying the Adaptive MaxFilter algorithm in the corresponding
time window. The ratio of the absolute original data (μdata) to the
standard deviation (σdata) can be interpreted as the noise-to-
signal ratio.

The result of the prominence detection is an array with the
timestamps of all seismo-volcanic events. The amplitude of each
can be easily reconstructed from the adaptive MaxFilter-data
(after computing the square root, to undo the squaring).

This algorithm allows the creation of solid seismo-volcanic event
catalogs. However, some station-specific local disturbances that were
not filtered out and tectonic earthquakes are still included. To be able
to identify and remove these signals we developed the catalog
consolidation algorithm. Note that seismo-volcanic events with a
slow onset or amplitude variations related to volcanic tremor are
usually not detected. Here, we focus relatively short-term seismo-
volcanic events. Also, events that do not induce a seismic signature can
not be detected by the proposed method.

2.3 Catalog Consolidation
The goal of this algorithm is to identify local disturbances (which
occur at one single station) in a seismo-volcanic event catalog. The
idea is that all significant events that occur at both stations must be
non-local, thus being volcanic explosions or tectonic earthquakes.
However, the catalog consolidation is not necessary to create the final
catalog. It is just an additional step to further improve its quality.

As a basis, two catalogs (containing the time and amplitude of
volcanic explosions) from two different stations are used. These two
catalogs are computed independently with AWESAM’s seismo-

FIGURE 6 | Catalog consolidation test. Seismo-volcanic events that only appear at one of the two stations are assigned a small probability (that the source of the
signal is the volcano). Events that match in both catalogs have a probability close to 1.
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volcanic event detection algorithm (section 2.2). In our case, one
catalog is generated from the station IST3 (in the following called
principal catalog) and the other is obtained using data from ISTR (in
the following called complementary catalog). Note that the catalogs
can be interchanged, which would lead to minor differences in the
final catalog. In this algorithm, the catalog from IST3 is chosen to be
the principal catalog since it has generally fewer local interferences,
and gaps, as found by manual inspection.

In the main step, for each seismo-volcanic event in the
principal catalog, the “closest” entry (regarding a metric
defined in Eq. 2) in the complementary catalog is selected.
The closer this corresponding event is to the current event in
the principal catalog, the higher is the probability that its
source is the volcano (Figure 4B). If the distance is large, then
there is no corresponding event, which is an indication that
the signal is not of volcanic origin. The distance (d) between
two events is defined as:

d � gevent y( ) · Δt
Δy( )

��������
�������� (2)

gevent y( ) � 200/y 0
0 0.1/y( ) (3)

where Δt is the temporal difference and Δy is the difference in
amplitude. The metric g is a 2x2-matrix that gives weights to the
amplitude and time differences respectively. The metric was
determined empirically, to represent a meaningful distance.
For example, a 60 s difference in time should result in a
higher distance d than a 60 count difference in amplitude.

Furthermore, the metric is a function of the amplitude y of the
current event from the principal catalog, because time and
amplitude differences of corresponding events usually scale
with the amplitude. For example, a 20 s time difference for a
large seismo-volcanic event that lasts several minutes should not
have a crucial influence, while for a small event it would not be
negligible.

Thereby, the higher the distance, the lower the probability that
an event’s source is the volcano, and vice versa. This probability is
calculated with

p � exp −d( ) (4)
to normalize the distance to the interval [0, 1].

Lastly, gaps in the principal catalog are complemented as
best as possible with seismo-volcanic events from the
complementary catalog. Based on a gap table, which was
generated during the detection of eruptions, all events
from the complementary catalog that occurred during a
gap in the principal catalog are copied to the principal
catalog. Note that a gap is only considered if all three
channels are missing at the same time.

This complements most gaps in the data, because usually at
least one of the two stations delivers a signal in at least one
channel. For example, in 2020 there exists no period where both
stations have an outtake in all channels simultaneously.

Thereby, in all cases where only one station delivers a signal,
no probability is assigned to the seismo-volcanic events. This is

important to be able to distinguish events that could be
consolidated and ones where there is no additional
information available.

The catalog consolidation process, executed on example data,
is shown in Figure 6. If the amplitudes in both catalogs for
corresponding seismo-volcanic events differ (due to different
instruments, for example) a unit conversion is needed. For
Stromboli, however, this is not necessary, because the same
instruments [IST3 (2012); ISTR 2011] are used and the
stations have equal distance to the crater.

This algorithm effectively removes station-specific
disturbances from the catalogs. It can happen that, due to
different noise levels, smaller seismo-volcanic events are not
detected at one of the stations, and therefore are assigned a
low probability to be of volcanic origin. In most cases, however,
after filtering, the noise levels are very similar at both stations.
Still, if the algorithm is not correctly configured it may assign low
probabilities to events of volcanic origin. This only happens for
relatively small events that are only recognized in the principal
catalog.

2.4 Earthquake Classification
While local disturbances are accounted for during catalog
consolidation, tectonic earthquakes are not identified. As
shown in Figure 3A, bottom panel, only distant earthquakes
may be filtered out. To address the remaining cases, the official
earthquake catalog from INGV can be utilized. One problem is
that this catalog does not include information about the arrival
time and amplitude of an earthquake at Stromboli, but only
information about its origin time and hypocenter. To identify
events in the seismic data as earthquakes, the local arrival time
and amplitude have to be estimated.

To estimate these two parameters, we determine the arrival
time and amplitude manually for dozens of larger
earthquakes, which can be clearly seen in the seismic data.
Based on this, as expected, a correlation between distance and
arrival time can be seen clearly in Figure 7A. The
proportionality constant is 6.6 km

s , which corresponds to
the average crustal P-wave velocity in the area. The arrival
time is therefore given by:

t � T
s

6.6 km/s (5)

where T is the time of the earthquake at the hypocenter and s is
the distance of the hypocenter to the craters of Stromboli. Note
that the distance to Stromboli takes the focal depth of
earthquakes, but not the curvature of the Earth, into account.

In addition, an intensity measure is defined, which is based on
a method introduced by (Pasolini et al., 2008):

I � M − ln s( ) (6)
Here the natural logarithm is used. The correlation between

the intensity and the actual amplitude (Figure 7B) is sufficient to
roughly estimate if an earthquake will be visible at Stromboli or
not. The relationship between the intensity I and the amplitude in
counts a is:
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a � 100.83·I+5.36 (7)
With this information, the catalog consolidation algorithm can
be used to compute the probability that an event is an
earthquake. One difference to the previous application (the
purpose of which was to identify local disturbances) is that
the earthquake catalog (from INGV) is now the complementary
catalog. Also, a different distance measure, that was found
empirically, is used: this different measure is necessary
because, firstly, the estimation of the arrival time is not very
accurate and, secondly, because earthquakes usually have a
duration of several minutes (compared to the average of 40 s
for small LP events):

gearthquake y( ) � 0.1 · gevent y( )
� 20/y 0

0 0.01/y( ) (8)

Note that, before using the INGV catalog, any earthquake
closer to the crater area than 1 km is removed, as it is probably
connected with the volcanic activity.

After this, the seismo-volcanic event catalog is complete and
includes two probabilities (volcanic event-probability and
earthquake probability) which provide more information about the
source of the events. Please note that the resulting probabilities are not
meant to exclude events completely. Instead, they should facilitate the
later analysis, by providing additional information.

3 PERFORMANCE EVALUATION AND
TESTING

To compare our catalog, we created a catalog of seismo-volcanic
events by hand, containing over 4,500 events, selected from 7.5 days
of randomly chosen data. For this purpose, we developed the
EventPicker software, a sub package of AWESAM. It simplifies
seismo-volcanic event selection down to a single clickwith themouse.

To compute the accuracy, these two catalogs (AWESAM-
catalog and hand-picked catalog) can be compared using a
modification of the catalog consolidation algorithm. In the first
step, the probabilities of all AWESAM events (in the time range of
the hand-picked events), which now form the principal catalog, are
calculated, using the hand-picked catalog as the complementary
catalog. Next, by applying a catalog consolidation vice versa, using
the hand-picked catalog as the principal and the AWESAM-catalog
as the complementary catalog, we generated a measure of how
many seismo-volcanic events in one catalog are contained in the
other. In consequence, there are two accuracy measures, from
which an overall accuracy can be derived:

• A1: Measures the fraction of seismo-volcanic events in the
AWESAM-catalog that are also contained in the hand-
picked catalog. This value is the average of the
probabilities (computed with the catalog consolidation
algorithm), while using AWESAM as the principal
catalog and the hand-picked as the complementary catalog.

FIGURE 7 | Arrival time and amplitude estimate of tectonic earthquake signals recorded at Stromboli.
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• A2: Measures the fraction of seismo-volcanic events in the
hand-picked catalog that are also contained in the
AWESAM-catalog. This value is the average of the
probabilities (computed with the catalog consolidation
algorithm), while using AWESAM as the complementary
catalog and the hand-picked as the principal catalog.

• Overall accuracy: A � 1
2 (A1 + A2)

Note that the specific values of the accuracies depend on themetric
used in the catalog consolidation. Figure 8 illustrates the accuracy
curves of the catalogs. These curves reveal the dependence between the
accuracy and the amplitude of seismo-volcanic events relative to the
noise level (signal-to-noise ratio–SNR). The higher the SNR, the
higher the probability that events are detected. For example, events
with an SNR larger than three are detected with an accuracy of 95%.
Thereby A1 and A2 hold different information. The fact that A1 is for
almost all signal-to-noise ratios smaller than A2 shows that the hand-
picked catalog contains some events that do not appear in the
AWESAM catalog, but not the other way around (almost all
events in the AWESAM catalog are also in the hand-picked
catalog). However, Figure 8 also exhibits that this only happens
for events, whose amplitudes are close to the noise level. The noise
level is computed with the 95th percentile of the absolute seismic data.

4 DISCUSSION

Examples of detected seismo-volcanic events of all amplitudes are
shown in Figure 9, to highlight that the algorithm works in these
different cases. For instance, Figure 9A shows a seismo-volcanic

event with an amplitude just above the noise level, and Figure 9D
shows the paroxysm in June 2019. Also the data which are
obtained from the adaptive MaxFilter are shown. It can be
seen that the filter size for the different amplitude changes, so
that large events are not detected multiple times.

The catalog offers a wide range of possibilities for further analysis.
For example, amplitude-frequency relations can be investigated and a
detailed inter-event-time analysis could help understand possible
regularities in occurrences of seismo-volcanic events. For instance,
a clustering of major explosions and paroxysms was observed by
Bevilacqua et al. (Bevilacqua et al., 2020). Additionally, natural time
analysis introduced byVarotsos et al. (Varotsos et al., 2011; Sarlis et al.,
2018) is also a promising approach to investigate the volcanic activity.
Additionally, it can serve as an indicator for changes in the volcanic
activity.

Particularly, the catalog is useful for any analysis that relies on the
data of seismo-volcanic events over long periods of time i.e. years and
decades. In earlier investigations, for example by Nishimura et al.
(Nishimura et al., 2016), the amplitude-frequency relationship was
derived based on data for 2months only.

As a first example for the application of the information provided
by the catalog, the temporal evolution of the amplitude-frequency
relationship for the years 2019–2020 is shown in Figure 10. In these
2 years, 3major explosions and two paroxysms (3. July and 28. August
2019) occured. The two paroxysms produced an eruption column of
about 6 km height and ejected material to distances multiple
kilometers from the vents (Andronico et al., 2021; Bevilacqua
et al., 2020). Our algorithmdetected all of thesemajor events correctly.

In contrast to results reported earlier (Nishimura et al., 2016),
the curve based on all seismo-volcanic events (labeled “average”)

FIGURE 8 | The accuracy curves show how the accuracy depends on the signal-to-noise ratio. The more prominent the peak over the noise level, the higher the
probability that it is detected.
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FIGURE 9 | Examples of recorded events with different amplitudes and their spectra (FFTs). The green line corresponds to the adaptive MaxFilter data. The slight
discrepancy between the amplitude of the signal and the detected event (marked by the orange cross) is due to filtering (discussed in section 2.2.2) (A) a minor event of
small amplitude. (B) event with average amplitude. (C) an event of amplitude 60.000; on average, fewer than 5 events per month have a higher amplitude than this event.
(D) paroxysm at 3 June 2019 (the duration of the paroxysm is longer, but the identified time-window includes the highest measured amplitude).

FIGURE 10 | The amplitude-frequency relation and its temporal development over a period of 2 years (2019–2020) at Stromboli. The catalog contains more than
290.000 seismo-volcanic events for this time period. The window size used to compute the individual curves is 30 days; a window step size of 10 days was used.
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is characterized by a significant change in slope for events with
amplitudes below and above 50.000 counts. This might reflect the
fact that large events have a different source process than smaller
events, as it has been suggested previously (see e.g., Métrich et al.,
2021). Mild explosions have been located down to 1 km below sea
level, while the origin of paroxysms is much deeper (up to
7–15 km below sea level). However, the change in slope is
only supported by only ~10 events. To draw further
conclusions, the catalog needs to be extended further to cover
more years and thus events. The detailed analyses of the catalog
and these observations will be presented in a forthcoming paper.

5 CONCLUSION

We introduced a time-efficient and automated algorithm for the
detection of seismo-volcanic events. Its strength is the ability to
identify very small events as well as major explosions and
paroxysms. In particular, AWESAM combines the detection,
the validation of events with another station and the
classification of earthquakes in a single, easy-to-use package.
This package was applied to the publicly-available seismic data
recorded at Stromboli. To improve the seismo-volcanic event
catalog we developed a consolidation algorithm that removes
local disturbances and tectonic earthquakes by including data
from a second station and by using information derived from the
official earthquake catalog of INGV. This module can further be
adapted to generate catalogs for other volcanoes with frequent
activity, such as Strombolian volcanoes but is also applicable to
less active volcanoes. Furthermore, the proposed approach can be
implemented to identify earthquakes signals from the recorded
seismic waveforms as well. Another strength is that it does not
require an extensive seismic network, so it is adaptable to a range
of different volcanoes. Our approach requires at least two seismic
stations, a catalog of tectonic earthquakes and some
reconfiguration of the hyperparameters used. However, even if
only one station is in operation or no earthquake catalog is

available, the algorithm can still produce a useful catalog of
seismo-volcanic events available for further analyses, for
example by using methods of supervised machine learning.
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