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Phenology is an important biological indicator for monitoring terrestrial ecosystems and
global change. Solar-induced chlorophyll fluorescence (SIF) emitted by chlorophyll has
been proven to characterize vegetation photosynthesis and phenology. In this study, we
used monthly normalized difference vegetation index (NDVI), enhanced vegetation index
(EVI), and SIF products to qualitatively compare the effectiveness at detecting the
phenological characteristics (SOS (start-of-season), EOS (end-of-season), and LOS
(length-of-season)) over China during 2007–2013. The phenological characteristics
determined by gross primary productivity (GPP) were applied as the reference to
validate the phenological characteristics derived from NDVI, EVI, and SIF. The results
demonstrated that the phenological characteristics derived from SIF were more consistent
with that of GPP than VIs (NDVI and EVI) when considering all latitude grades, different
elevation grades, and different land cover types in China. In the middle- and high-latitude
regions, SOS derived from the vegetation indices (SOSVIs) did not deviate from those from
GPP (SOSGPP) and SIF (SOSSIF), while in low latitudes, SOSVIs were about 20 d later than
SOSSIF and SOSGPP. The VIs (EOSVIs) had a severe lag behind those of SIF (EOSSIF) in
estimating the EOS at all latitudes. The EOSSIF had a deviation of fewer than 5 d compared
with EOS estimated by GPP (EOSGPP), whereas the deviation of EOSVIs from EOSGPP was
about 10–31 d across low to high latitude regions. The biases of SIF and VIs were due to
the inconsistency between vegetation photosynthesis and leaf greenness. Also, VIs
overestimated the LOS at all latitudes, the difference of LOS between estimated by
NDVI and estimated by GPP was as long as 39 d in the high-latitude region. Our study
suggests that SIF is suitable for estimating the phenological characteristics of vegetation
regardless of different latitudes, elevation grades, and land cover types in China, providing
a basis for SIF to study the vegetation phenological characteristics in a regional scope.
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INTRODUCTION

Vegetation phenology is a significant factor in measuring the
dynamic change of vegetation (Zhao et al., 2015) and influences
such things as the terrestrial energy exchange and the global
carbon cycle (Keenan et al., 2014; Tang et al., 2015). Research on
vegetation phenology can further our understanding of the
change of seasonal phenomena (Vrieling et al., 2013),
agricultural production (Tao et al., 2006), and global change
(Cleland et al., 2007). Vegetation phenology is especially strongly
correlated with climatic fluctuation (Richardson et al., 2013).
Global climate change seriously affects the growth of terrestrial
vegetation and changes the distributions, growth cycles, and
species composition of vegetation (Zhao et al., 2015).
Therefore, accurate monitoring of phenology is of great
significance for understanding the exchange of material and
energy between vegetation and climate as well as for the
accurate assessment of vegetation productivity and the global
carbon budget (Piao et al., 2006; Yu et al., 2017).

Vegetation gross primary productivity (GPP) is the total
photosynthetic CO2 fixation of vegetation at the ecosystem
level (Xia et al., 2015). Several studies reported that canopy
phenology (using the camera) was consistent with the
phenology from GPP observations in the field, such as Bartlett
Experimental Forest and Howland Forest in the United States
(Richardson et al., 2009), the Lägeren Forest in northern
Switzerland, and the Hainich Forest in central Germany
(Ahrends et al., 2009). Therefore, GPP has been widely used
as a reference for land surface phenology derived from satellite
data analysis (Gonsamo et al., 2012; Jeong et al., 2017; Noumonvi
et al., 2021).

In the past three decades, phenological vegetation information
was monitored through time-series vegetation index data, which
were obtained from satellite sensors, because these data have
advantages in high temporal resolution and wide spatial coverage
(Yu et al., 2017). Examples include the National Oceanic and
Atmospheric Administration’s (NOAA’s) Advanced Very High-
Resolution Radiometer (AVHRR) (Justice et al., 1985; Reed et al.,
1994), Landsat (Melaas et al., 2013), MODerate Resolution
Imaging Spectroradiometer (MODIS) (Zhang et al., 2003;
Keenan et al., 2014; Walther et al., 2016), and Satellite Pour
l’Observation de la Terre (SPOT) VEGETATION (Myneni et al.,
1997; Zhou et al., 2001; Zhao et al., 2016). The normalized
difference vegetation index (NDVI), which is associated with
the greenness, seasonal, and interannual variabilities in most
vegetation growth and activity, has been widely applied in the
seasonal dynamic characteristics research on vegetation from the
regional scale to the global scale (Tucker, 1979; Piao et al., 2006;
Melaas et al., 2013). Compared with NDVI, the enhanced
vegetation index (EVI) is less prone to saturation, which is
caused by the luxuriant vegetation, and thus there are also
many studies using EVI to observe vegetation growth (Sims
et al., 2006; Testa et al., 2018). Although satellite vegetation
indices (VIs)-based phenology is widely used to monitor
seasonal growth and productivity of vegetation except for
evergreen forests (Keenan et al., 2014; Testa et al., 2018),
inconsistencies have been found between reflectance-based

phenology and true vegetation photosynthesis based on
ground observation (Churkina et al., 2005; Joiner et al., 2014;
Cui T. et al., 2017; Jeong et al., 2017; Sun et al., 2018). In addition,
NDVI-based phenological characteristics have also led to a longer
length-of-season (LOS) than that derived by gross primary
productivity due to an earlier estimated start-of-season (SOS)
and later estimated end-of-season (EOS) in Harvard Forest
(Gonsamo et al., 2012; Jeong et al., 2017; Lu et al., 2018).
These discrepancies could be explained by the differences in
temporal and spatial scales and dissimilarity between vegetation
greenness and functions (Kross et al., 2011; Zhang et al., 2017). It
has been suggested that the reflectance-based phenological
detection method may not be an accurate proxy for plant
photosynthesis (Frankenberg et al., 2011; Yang et al., 2014),
and therefore, additional observations to help detect
photosynthetic activity are necessary.

More recently, satellite remote sensing of solar-induced
chlorophyll fluorescence (SIF) observations provides a new
method for monitoring plant photosynthetic activities
(Frankenberg et al., 2011; Guanter et al., 2014). SIF is a by-
product of the photosynthesis process of a plant, and
approximately 1% of absorbed photosynthetically active
radiation (APAR) is re-emitted at a longer wavelength
(640–850 nm) by chlorophyll, which has two emission peaks: a
red spectral region with a peak at approximately 685 nm and a
near-infrared region (NIR) with a maximum at approximately
740 nm (Wagle et al., 2016; Lu et al., 2018). Using high spectral
resolution spectrometers and the advanced retrieval methodology
based on the exploitation of Fraunhofer lines, SIF can be retrieved
from platforms such as the Greenhouse gases Observing SATellite
(GOSAT) (Frankenberg et al., 2011; Guanter et al., 2012), Global
Ozone Monitoring Instrument-2 (GOME-2) (Joiner et al., 2013;
Zhang et al., 2016), Orbiting Carbon Observatory (OCO-2)
(Frankenberg et al., 2014; Li and Xiao, 2019), and
TROPOspheric Monitoring Instrument (TROPOMI) (Guanter
et al., 2015). Considering the longer time series of GOME-2 data,
a number of studies applied it for long time-series research
(Zhang et al., 2014; Cui Y. et al., 2017; Hu and Mo, 2020).

SIF data showed a significant positive linear relationship with
GPP across the growing season, which suggests that SIF has good
predictability for GPP from the canopy to satellite measurements
(Damm et al., 2015; Yang et al., 2017; Li et al., 2018).
Furthermore, some studies have shown that SIF could estimate
the onset of spring and decline of photosynthesis in autumnmore
accurately in different biomes and regions, and thus can
effectively estimate vegetation phenology (Joiner et al., 2014;
Huang et al., 2021). Moreover, SIF had been demonstrated to
be more sensitive for tracking short-term changes in GPP than
reflectance-based vegetation indices (Damm et al., 2010; Yang
et al., 2015; Luus et al., 2017; Sinha et al., 2017). However, most of
the previous research using SIF to assess the vegetation phenology
focused on the regions in relatively high latitude, in which the
phenology is easily detected by SIF, few studies have compared
vegetation indices and SIF in estimating phenological
characteristics over a lengthy period at various latitudes. Also,
few works estimated the phenology in different types of land
cover or elevations in China (Jiao et al., 2020; Cheng et al., 2021).
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In this study, we looked to quantify the improvement in
detecting phenology by using SIF compared to NDVI and EVI
products in different land cover types (evergreen forests,
deciduous forests, shrublands, grasslands, and croplands),
elevation grades (divided into 10 levels, according to the equal
number of pixels [Supplementary Table S1]), as well as latitudes
(high- (>40°N), middle- (30°N–40°N), and low- (<30°N) latitude
regions). The reason for latitude grades division is in
Synchronization of seasonal fluctuations between GPP and SIF,
as well as VIs in each grid cell over China in China (Figure 1).
Specifically, we compared phenological characteristics derived
from MODIS NDVI data with those derived from GOME-2 SIF
data in deciduous forests, shrublands, grasslands, croplands, and
evergreen forests using GPP data obtained from MODIS and the
Max Planck Institute (MPI) as references. Considering that SIF
data has been available since 2007, and GPP data accessed byMPI
is only available until 2013, thus we limit the study year to
2007–2013. The main objectives of this research are twofold.
One is to compare the performance of SIF-based and NDVI-
based satellite remote sensing data in monitoring the satellite-
GPP-based vegetation photosynthesis. The other is to study the
phenological characteristics of SIF and NDVI in different regions
(different latitudes, elevations, and land cover types), taking GPP
as the reference.

MATERIALS AND METHODS

Vegetation Indices Data
ThemonthlyNDVI and EVI data from 2007 to 2013 were provided
by the MODIS Terra Vegetation Indices dataset (MOD13C2) with
a spatial resolution of 0.05°×0.05°. The MODIS NDVI dataset is

based on specific spectral bands (red and infrared) designed to offer
stable global vegetation leaves greenness monitoring. It has been
widely used in land cover classification, carbon exchange modeling,
and phenology studies (Shen et al., 2014; Aredehey et al., 2017;
Biudes et al., 2021). In addition, EVI is more sensitive to high
biomass areas and is minimally impacted by soil and atmosphere
due to the increased blue band information (Huete et al., 2002;
Jiang et al., 2008). Therefore, both NDVI and EVI were selected for
phenological research in this study. In addition, NDVI and EVI
were spatially resized to 0.5°×0.5° grid cells using the bilinear
resampling method to make it consistent with the spatial
resolution of SIF data.

Solar-Induced Chlorophyll Fluorescence
Data
The SIF is acquired from the GOME-2 onboard the
Eumetsat’s MetOp-A platform, a sun-synchronous orbit
satellite whose nominal nadir footprint size is 40 × 80 km
and spectral resolution is 0.5 nm with an equator crossing
time of 9:30 a.m. (Joiner et al., 2014). The SIF signal is
obtained primarily by the filling-in of solar Fraunhofer
lines at wavelengths near 740 nm, which is the far-red
fluorescence emission peak. A principal component
analysis approach with a simplified radiative transfer
model was used to separate the spectral signatures of
atmospheric absorption and surface reflection from the SIF
emission. The monthly SIF product had been cloud filtered
and aggregated to 0.5°×0.5° spatial resolution by Joiner et al.
(2013) and can be downloaded at http://avdc.gsfc.nasa.gov.
In this study, we used version 2.7 Level 3 data from 2007
to 2013.

FIGURE 1 | Land cover map (A) and DEM (B) of China. The land cover was reclassified into evergreen forests, deciduous forests, shrublands, grasslands,
croplands, and barren areas. The spatial resolution of the land cover map is processed to 0.5° × 0.5°. The study area was divided into the high-, middle-, and low-latitude
regions by the bold and solid lines in the two panels.
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Gross Primary Productivity Data
The GPP data were used as the phenological reference from two
different sources. One source of GPP product was data-driven
derived from the MPI (GPPMPI). Specifically, it was estimated by
a statistical model to obtain GPP estimates by upscaling global
FLUXNET eddy covariance observations with the climate forcing
data set CRUNCEPv6 using a machine learning method
(Tramontana et al., 2016; Jung et al., 2017). GPPMPI has been
widely used for GPP validation in many pieces of research
(Frankenberg et al., 2011; Jung et al., 2011; Guanter et al.,
2014; Jiang and Ryu, 2016). A more detailed description of
GPPMPI is given in Tramontana et al. (2016). The monthly
global GPP data set at the 0.5° resolution, covering 2007–2013,
was downloaded from www.bgc-jena.mpg.de/geodb/projects/
Data.php.

The second source of GPP data was the MODIS GPP product
(GPPMOD), which is calculated by using the MOD15A2 fraction of
photosynthetically active radiation (fPAR) product and
meteorological data, and applying the semi-empirical method
(Running et al., 2004). In this study, we downloaded the
MOD17A2 monthly product with a spatial resolution of 0.05°,
which was accessed from the Numerical Terra dynamic Simulation
Group (NTSG), covering the years 2007–2013. The data was
downloaded from http://files.ntsg.umt.edu/data/NTSG_Products/
MOD17/GeoTIFF. Then, the bilinear resampling method was used
to resize the spatial resolution of GPP to 0.5°×0.5° grid cell, which
was consistent with the spatial resolution of SIF data.

Ancillary Data
The land cover data set was obtained from the MODIS
dataset (MOD12Q1), the University of Maryland (UMD)
land cover classification type was chosen and downloaded
from http://files.ntsg.umt.edu/data/NTSG_Products/
MOD17/GeoTIFF/MOD12Q1/.

Temperature data were from Earth System Research
Laboratory (ESRL) Physical Sciences Division (PSD) (www.
esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html).

We chose the global long-term monthly means V4.01 data which
covers 2007–2013, with the spatial resolution of 0.5°×0.5°.

Digital elevation data were generated from the CGIAR
Consortium for Spatial Information (CGIAR-CSI) Shuttle
Radar Topography Mission (SRTM) version 4.1 with a spatial
resolution of 250 × 250 m. The elevation files have been mosaiced
into a seamless near-global coverage (up to 60° north and south)
and downloaded from https://cgiarcsi.community/.

Land cover data were spatially resampled to 0.5°×0.5° grid cells
by the majority algorithm to be consistent with the spatial
resolution of SIF and GPPMPI data, while elevation data were
resampled by the mean resampling method.

Phenological Characteristics Extraction
To estimate vegetation phenological characteristics, the monthly
SIF, VIs, GPPMPI, and GPPMOD data are smoothed and
interpolated into a daily scale by the spline method (Chen
et al., 2004), then normalized the daily scale data. In order to
reduce noise and extract vegetation phenological characteristics
from time-series data accurately, the Savitzky-Golay smoothing
model (Chen et al., 2004; White et al., 2009; Brown et al., 2010;
Zhao et al., 2016) was applied to the original SIF, VIs (NDVI and
EVI), GPPMPI, and GPPMOD time series data. Smoothed and daily
interpolated data have been applied to estimate fluctuation of
vegetation growth or vegetation phenological characteristics with
high accuracy (Jonsson and Eklundh, 2002; Piao et al., 2006;
Zhang et al., 2013; Jeong et al., 2017; Chang et al., 2019; Wang
et al., 2019). They have demonstrated that monthly data could
provide a reliable result in phenological characterizing. The data
used in this study were normalized by the annual maximum and
minimum data to fill the magnitude gap among different data.

Then, the SOS, EOS, and LOS were estimated based on the
daily SIF, VIs, GPPMPI, and GPPMOD. In this study, we defined
SOS or EOS as a rapid continuous increase or decrease in
remotely sensed time-series data after the long annual period
of photosynthetic senescence (White et al., 2009). Thus, we
adopted the threshold determined by White et al. (1997)

FIGURE 2 | The method of estimating phenological characteristics. The “×” points are original data. The black solid line is a preprocessed seasonal curve that has
been smoothed, interpolated, and normalized. The red horizontal dotted line is the 50% threshold of maximum andminimum of the preprocessed seasonal curve (the red
vertical dotted line). The blue square dots are the SOS and EOS, and LOS is the difference between SOS and EOS.
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which is the 50% point of annual normalized time series seasonal
curve to calculate the phenology characteristics, because this
threshold has been verified as being sensitive to the dynamics
of underlying vegetation, canopy cover, and structure
(Richardson et al., 2009; de Beurs and Henebry, 2010; Lu
et al., 2018). We also calculated the LOS, which is the
difference between the SOS and EOS. The schematic diagram
of the phenological estimation method is shown in Figure 2, the
intersection points of the 50% threshold line (the red horizontal
dotted line) and the preprocessing seasonal curve (the black solid
line) corresponded to SOS and EOS. Especially, the croplands in
the middle-latitude region are planted twice a year, thus we
estimate the first and last time to reach the 50% threshold as
the SOS and EOS of these regions.

Due to the data series being at the monthly temporal resolution, it
may cause somedeviation from the daily data in estimation phenology
characteristics in the daily unit. The flux site GPP data, which has both
monthly and daily data, were used to estimate the phenology
characteristics, using Savitzky-Golay smoothing and spline
interpolation, to determine the uncertainty of the data with
different temporal resolutions, as Supplementary Figure S1 shows.
It is found that after the preprocessing, the SOS and EOS derived from
the daily data were 8 d different from the monthly data.

Resampling all the remotely sensed data to 0.5° spatial
resolution may lead to some mixed pixels in the images, but
the effect of the resampling was limited as Supplementary Figure
S2 shows. The EOS from the GPPMOD data was calculated with
0.05° (Supplementary Figure S2A) and 0.5° (Supplementary
Figure S2B) spatial resolutions. We can find that the EOS
distributions were not changed significantly before and after
resampling. Supplementary Figure S2(C) shows the
histograms of the calculated EOS. The histograms from
different resolutions data were also similar, which indicates
that the uncertainty from resampling preprocessing did not
affect the phenology characteristics significantly.

Quantifying Synchronicity Methods
To quantify the synchronization of seasonal fluctuations of GPPs
(GPPMPI and GPPMOD), SIF, and VIs (NDVI and EVI), the mean
absolute error (MAE, as Eq. 1) was conducted. In detail, we calculated
MAE on monthly normalized SIF, NDVI, and EVI with GPPMPI and
GPPMOD during spring and autumn (March, April, May, September,
October, and November) in each grid cell from 2007 to 2013.

MAE � 1
n
∑
n

i�1

∣∣∣∣yi − xi

∣∣∣∣ (1)

FIGURE 3 | Spatial distributions of MAE between GPPs and SIF [(A) for GPPMPI and (D) for GPPMOD], GPPs and NDVI [(B) for GPPMPI and (E) for GPPMOD], as well
as GPPs and EVI [(C) for GPPMPI and (F) for GPPMOD] in China during 2007–2013.
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where yi represents the i-th GPP value in a grid cell, xi represents
the i-th SIF, NDVI, and or EVI value in the grid cell at the same
position, and n is the number of GPP-SIF(/NDVI/EVI)
value pairs.

RESULTS

Synchronization of seasonal fluctuations
between GPP and SIF, as well as VIs in each
grid cell over China
To explore the synchronization of the seasonal curves of GPPs
and SIF, as well as GPPs and VIs in the period of vegetation leaf

development and leaf senescence, the spatial distributions of
MAE in spring and autumn are shown in Figure 3. The MAE
values between GPPs and SIF (Figure 3A for GPPMPI and
Figure 3D for GPPMOD), NDVI (Figure 3B for GPPMPI and
Figure 3E for GPPMOD), as well as EVI (Figure 3C for GPPMPI

and Figure 3F for GPPMOD) are shown. This figure shows lower
MAE values obtained from SIF and GPPs than that from VIs and
GPPs, which suggests that SIF curves can produce more similar
phenological characteristics to GPP. Therefore, SIF could provide
a basis for the application of SIF to indicate vegetation
phenological characteristics.

In addition, it was found that the synchronization between SIF
and GPPs was differentiated in latitudes. SIF and GPPs showed
high-level synchronicity in the high-latitude regions (>40°N),

FIGURE 4 | The normalized mean seasonal cycle of area-averaged GPPMOD, GPPMPI, NDVI, EVI, SIF, and Temperature (Temp) of deciduous forests (A),
shrublands (B), grasslands (C), and croplands (D) in the high-latitude region (over 40°N) of China between 2007 and 2013. Error bars in all subplots represent the
monthly standard deviations during 2007–2013.

FIGURE 5 | The normalized mean seasonal cycle of area-averaged GPPMOD, GPPMPI, NDVI, EVI, SIF, and Temperature (Temp) of deciduous forests (A),
shrublands (B), grasslands (C), and croplands (D) in the middle-latitude region (31–40°N) of China between 2007 and 2013. Error bars in all subplots represent the
monthly standard deviations during 2007–2013.
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medium-level synchronicity in the middle-latitude regions
(30°N–40°N), and relatively low-level synchronicity in the low-
latitude regions (<30°N). The variation of the synchronizations
provides a necessity to analyze the phenological characteristics by
SIF at different latitudes. Therefore, the study area was divided
into high-, middle-, and low-latitude regions, respectively.
Meanwhile, the synchronicity between SIF and GPPs had
some minor differences at the same latitude region, which
might be caused by the influence of elevation and land
cover types.

Seasonal Cycles of SIF and VIs at Different
Latitudes
We analyzed the phenological seasonal cycles of different land
cover types (deciduous forests, shrublands, grasslands, croplands,
and evergreen forests) in different latitude regions (high-, middle-,
and low-latitude regions) (Figures 4–6, and 9). The value of each
point in these figures was the average monthly value of the
corresponding land cover in the latitude region during the
2007–2013 period. We found that the seasonal dynamic curve
of SIF was closer to that of GPPs, but the curve of VIs in autumn
had a significant mismatch with the seasonal curves of two
products of GPP in most cases. Figure 4 shows that the VIs
curve ascended earlier than the other curves derived from GPPs in
spring, while in autumn, it descended later than GPPs in the high-
latitude region. Compared to GPPs, the SIF curve rose a little later
than GPPs and fell together with GPPs. Although compared with
NDVI and EVI, SIF had little advantage (±10 d) for estimating
SOS, for autumn phenology, the difference between EOSSIF (EOS

estimated by SIF) and EOSGPPs (EOS estimated by GPPMPI and
GPPMOD) (about 3 d) was much smaller than that between EOSVIs
(EOS estimated by NDVI and EVI) and EOSGPPs (about 31 d for
NDVI and about 19 d for EVI). Almost all the phenological curves
except croplands in the middle-latitude region rose together in
spring (±10 d), while in autumn, the VIs curves fell behind SIF and
GPPs (about 5 d for SIF, about 11 d for EVI, and about 22 d for
NDVI), as shown in Figure 5. While in contrast to the SIF,
GPPMOD, and GPPMPI, the seasonal cycle of VIs was delayed in
both spring and autumn in the low-latitude region (Figure 6) on
deciduous forests, shrublands, grasslands, and croplands. The
difference between SOSSIF (SOS estimated by SIF) and SOSGPPs
(SOS estimated by GPPMPI and GPPMOD) (about 5 d) was smaller
than that between SOSVIs (SOS estimated by NDVI and EVI) and
SOSGPPs (about 18 d for EVI and about 24 d for NDVI).
Additionally, the difference between EOSSIF and EOSGPPs (about
4 d) was also smaller than that between EOSVIs and EOSGPPs (about
10 d for EVI and about 28 d for NDVI). This phenomenon can also
be seen in Figure 9. Furthermore, the mismatch between SOS and
EOS derived from VIs, GPPs, and SIF, especially the advance of
SOSVIs in the high-latitude region, and the serious delay of EOSVIs
in all latitudes would lead to an overestimation of LOSVIs (LOS
estimated by NDVI and EVI), especially the clear difference
between LOSNDVI (LOS estimated by NDVI) and LOSGPPs (LOS
estimated by GPPMPI and GPPMOD) was about 39 d in high
latitudes. In a word, considering all cases, the bias of SIF
estimation of phenological characteristics was minimal.

The annual changes of GPPMPI, GPPMOD, SIF, and NDVI as
well as EVI of evergreen forests over 7 years (2007–2013) are
shown in Supplementary Figure S3. It was found that the

FIGURE 6 | The normalized mean seasonal cycle of area-averaged GPPMOD, GPPMPI, NDVI, EVI, SIF, and Temperature (Temp) of deciduous forests (A),
shrublands (B), grasslands (C), croplands (D), and evergreen forests (E) in the low-latitude region (below 31°N) of China between 2007 and 2013. Error bars in all
subplots represent the monthly standard deviations during 2007–2013.
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changes in NDVI and EVI throughout the year are very
apparent. The difference between the maximum and
minimum values of NDVI did not exceed 0.15, as well as
that of EVI, was no more than 0.2, and the upward and
downward trends were not very distinct. Thus, it is difficult
to distinguish SOS and EOS through VIs in the evergreen
region. However, SIF showed a clear upward trend from
March to May and a significant downward trend from
September to November, which was the same as the
changing trend of the two sources of GPP, and the
phenological change trend could be distinguished. Therefore,

the phenological characteristics estimated by SIF (Figure 6E,
Figure 7, Figure 8, Figure 9, and Figure 10; Supplementary
Figures S4 and S5) of the evergreen forests are displayed, but
would not be compared with VIs in the results.

Spatial Distribution of Phenological
Characteristics Estimated From SIF, VIs,
and GPP
To analyze the spatial distribution of the phenological
characteristics in China, the average values of SOS, EOS,

FIGURE 7 | Spatial distributions of 7-years averaged SIF and NDVI-based SOS (A, B), EOS (D, E), and LOS (G, H) dates, the difference between NDVI and SIF-
based SOS (C), EOS (F), and LOS (I) dates in China during 2007–2013.
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and LOS based on SIF and NDVI and the difference between
their estimations in deciduous forests, shrublands,
grasslands, and croplands in China over 7 years
(2007–2013) were mapped (Figure 7). In the high latitude
areas, SOSSIF was later than SOSNDVI (SOS estimated by
NDVI); in the low latitude areas, SOSSIF was earlier than
SOSNDVI; while in the middle latitude areas, SOSSIF was
later than SOSNDVI in the west and earlier in the east,
which may be due to elevation effect. Except for a few
anomalies, the EOSSIF data was ahead of that of the

EOSNDVI (EOS estimated by NDVI) data for all of China.
The advance of SOS and the delay of EOS has led to an
overestimation of LOSNDVI in most areas of China, except for
croplands in the middle latitudes and a small area of Tibetan
shrublands and grasslands. The spatial distribution of
phenological characteristics estimated from EVI and the
difference between SIF and EVI estimations were shown in
Supplementary Figure S4. Compared with NDVI, the
phenological characteristics estimated by EVI were closer
to the phenological characteristics estimated by SIF.

FIGURE 8 | Spatial distributions of the difference between SOSGPP and SOSSIF (A), EOSGPP and EOSSIF (D), and LOSGPP and LOSSIF (G), the difference between
SOSGPP and SOSNDVI (B), EOSGPP and EOSNDVI (E), and LOSGPP and LOSNDVI (H), and the difference between SOSGPP and SOSEVI (C), EOSGPP and EOSEVI (F), and
LOSGPP and LOSEVI (I) in China.
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Overall, these results indicated that SIF and VIs are vastly
different in estimating phenological characteristics.

The spatial distribution of the difference between the
phenological characteristics estimated by GPP and those
estimated by SIF, NDVI, and EVI are shown in Figure 8.
The phenological characteristics of GPP were the average
value of the two sources of GPP (GPPMOD and GPPMPI)
estimated phenological characteristics. It was found that
the phenological characteristics estimated by SIF were
more similar to those estimated by GPP, and the difference
was within ±40 d. However, the difference between the
phenological characteristics estimated by NDVI and those
estimated by GPP was the largest. Most of the differences
were delayed (that is, the difference was negative), with a
difference of more than 40 d in many regions. The difference
of the phenological characteristics estimated by EVI and GPP
is a little smaller than that between NDVI and GPP. However,
the estimated date was still delayed in many areas. Compared
with VIs, SIF had the advantage to estimate EOS in that the
difference between EOSSIF and EOSGPP was the smallest.
EOSVIs had delayed estimation in almost the entire study
area, distinguishing between −40 and −60 d in many areas.
This also leads to an overestimation of LOSVIs, especially in
high latitudes, and where the difference is around −50 d.
Supplementary Figure S5 shows the frequency statistics of
Figure 8, and it could also be found that SIF is more suitable
than VIs in estimating vegetation phenological
characteristics.

Phenological Characteristics Estimated
From SIF and VIs With GPP as a Reference
in Different Land Covers
Figure 9 represents the phenological characteristics derived
from different datasets (SIF, NDVI, EVI, and GPP) in different
land covers along latitudes. Different land cover types showed
distinct SOS and EOS changes along with latitudes. For
example, the SOS shifted to an earlier date and EOS delayed
gradually for deciduous forests and grasslands from high to
low latitudes and resulted in a longer LOS in lower latitudes.
Nevertheless, for shrublands and croplands, the curves
undulated intensively with the latitude change. For instance,
the estimated SOS for croplands, especially in the middle-
latitude region, showed a “concave”. The reason may be
intensive planting twice a year in central China, the
phenology trend represents a two-peak pattern (Figure 5D).
In addition, since evergreen forest only appears in low
latitudes, this study did not show the variation in middle
and high latitudes.

However, the land cover types did not influence the
difference in the estimation of phenological characteristics
between SIF and VIs compared with GPP. Specifically, the
difference between SIF and GPP is smaller than the difference
between VIs and GPP in different land cover types. The
differences of 7-years averaged SOS, EOS, and LOS
between the NDVI and GPP, EVI, and GPP, as well as SIF

FIGURE 9 | The area-averaged SOS (the lower lines) and EOS (the
upper lines) of GPPMOD, GPPMPI, NDVI, EVI, and SIF over deciduous forests
(A), shrublands (B), grasslands (C), croplands (D), and evergreen forests
(E) during 2007–2013 in China. The points and error bars in all
subplots represent the mean and standard deviations for 2007–2013,
respectively.
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and GPP are shown in Supplementary Figure S5. The
phenological characteristics of GPP were the average value
of the GPPMOD and GPPMPI estimated phenological
characteristics. The frequency of difference values above
the total and different land cover types by pixel were
counted in this figure. The distribution curve conformed to
an approximately normal distribution, and frequency
distributions of different land cover types were similar to
total frequency distribution. The differences between SIF
and GPP phenological characteristics were more
concentrated and closer to 0, while there was systematic
bias between VIs and GPP phenological characteristics,
and this caused the differences to be far from 0, especially
in EOS. It manifested that SIF-estimated SOS, EOS, and LOS
were all consistent with that estimated from GPP regardless of
the land cover type. Conversely, the VIs-estimated SOS, EOS,
and LOS were further away from those derived from GPP. The
above results further proved that SIF is more available for

estimating phenological characteristics in most land covers in
China.

Phenological Characteristics Estimated
From SIF and VIs With GPP as a Reference
in Different Elevations
Figure 10 shows the variation of SOS and EOS with elevation in
different land cover types and different latitude regions. Overall,
the phenological characteristics have the same tendency with the
elevation rising, the SOS of the vegetation becomes later, the EOS is
earlier, and the vegetation growth period is shortened. This
phenomenon is particularly pronounced in the middle- and
low-latitude regions, possibly because the temperature at these
latitudes is strongly influenced by the elevation. In the middle- and
low-latitude regions, the average elevation of the Qinghai-Tibet
Plateau in the west of the study area can reach about 6000m, while
the elevation in the eastern coastal area is only about 0 m. The great

FIGURE 10 | The area-averaged SOS (the lower lines) and EOS (the upper lines) of GPPMOD, GPPMPI, NDVI, EVI, and SIF over deciduous forests, shrublands,
grasslands, croplands, and evergreen forests during 2007–2013 in high- (A), middle- (B), and low- (C) latitude regions. The points and error bars in all figures represent
the mean and standard deviations for 2007–2013, respectively.

Frontiers in Earth Science | www.frontiersin.org February 2022 | Volume 10 | Article 80276311

Wang et al. Phenology Estimated From SIF

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


variation of elevation would result in significant temperature
differences, and the vegetation phenology will also change. In
the high-latitude region, the variation of elevation is not clear,
whichmay be due to the relatively small difference in elevation, and
the lower temperature in high latitudes. However, the differences
between SOSVIs and SOSSIF (or SOSGPPs) and between EOSVIs and
EOSSIF (or EOSGPPs) have always existed. That is, the SOS and EOS
derived from VIs deviated more from SIF and GPPs in most
elevations.

DISCUSSION

The phenological changes of GPPs and SIF were consistent
among the high-, middle-, and low-latitude regions, while the
seasonal fluctuations of VIs were largely different from those
of GPPs (Figures 4–6). In the high-latitude region, SOSVIs and
SOSSIF were both close to SOSGPPs, but SOSVIs was always
earlier than SOSSIF, whereas in the middle-latitude region, the
seasonal curves of VIs rose synchronously with SIF and GPPs
in spring phenology. However, in the low-latitude region, the
VIs-based spring phenology has a lag to the SOS estimated by
SIF and GPP. Meanwhile, VIs largely lagged behind SIF or
GPPs in the estimation of autumn phenological

characteristics at high to low latitudes, especially EOSNDVI.
The estimated phenological characteristics by SIF in the high-
latitude region were consistent with the results of previous
research, in which NDVI showed an advance in spring and a
distinct lag to GPP and SIF in autumn were found over
northern forests (Jeong et al., 2017) or a specific forest
such as Harvard Forest (Lu et al., 2018). Walther et al.
(2016) also verified a similar seasonal change over
deciduous broadleaf forests in the middle latitude along the
east coast of North America, that is, NDVI lagged behind
GPP, while SIF was synchronized with GPP. The distinct bias
of VIs, compared with SIF, in estimating phenological
characteristics might be due to the time inconsistency
between photosynthesis and greenness. VIs generally
indicated the greenness of vegetation, while SIF is closely
related to vegetation photosynthesis. In spring, vegetation in
the high- and middle-latitude regions might require time to
photosynthesize and increase primary productivity by
assimilating carbon after leaf emergence (Kikuzawa, 2003;
Jeong et al., 2017). In addition, it caused a rapid increase in
VIs values, but a slow increase in SIF and GPP values in the
sprouting period. However, the result that SIF had an absolute
advantage to estimate the spring phenological characteristics
based on GPP in the low-latitude region is different from that

FIGURE 10 | Continued
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in the high- and middle-latitude region and is still to be
explained. On the other hand, EOSVIs have a lag at high to
low latitudes, which may be due to the fact that VIs estimate
vegetation phenology by tracking vegetation characteristics
such as leaf area index and chlorophyll content and could
not reflect slight phenological changes in time in autumn (Lu
et al., 2018). In the case of autumn, carbon assimilation and SIF
are mainly limited by sunlight or suitable temperature
availability (Suni et al., 2003; Medvigy et al., 2013; Jeong and
Medvigy, 2014; Wang et al., 2020), while vegetation indices are
different from SIF, which are primarily controlled by the air
temperature (Wang et al., 2020; Yang et al., 2020). Thus, the
leaves may drop after the photosynthesis has begun to decrease,
which results in distinct lags in VIs, but a synchronized change
with GPP in SIF (Daumard et al., 2010). Especially, EOSNDVI

significantly lags behind other sources of data (GPPs, SIF, and
EVI), possibly because NDVI was reported to have saturation
effects in high biomass canopies (Walther et al., 2016) and it
starts decreasing after a large number of leaves become
senescent and drop.

In addition, the phenological characteristics estimation of
croplands in middle-latitude regions was only identified on the
first and last date with the values of 50% thresholds as SOS and
EOS. This may not be appropriate because the crops are always
harvested two times per year. To detect the double peaks in mid-
latitude croplands is our task in future studies.

SIF has also been proven reliable to track GPP phenological
fluctuations in evergreen forests, as shown in Supplementary
Figure S3. This finding supports the viewpoint of Magney et al.
(2019) that a good correlation between SIF and GPP in Colorado
subalpine evergreen coniferous forests enables SIF and GPP to
track each other consistently. The large seasonal variations in SIF
yield highlight its unique ability to accurately track the seasonality
of photosynthesis in different land covers, even in evergreen
forests, which was not detected successfully by VIs.

Furthermore, since the temperature is one of the important
climatic factors affecting vegetation phenology (Cong et al.,
2013; Liang and Zhang, 2016; Lang et al., 2019; Han et al., 2020),
the seasonal curve of temperature in the high-, middle-, and
low-latitude regions in different land cover types is shown in
Figures 4–6. We can find that the fluctuations of temperature
were similar in the same latitude region in different land cover
types, but the fluctuations of vegetation curves (GPPs, SIF, and
VIs) were different, which indicated that the phenological
characteristics of different vegetation have different
sensitivities to temperature. For example, in the middle-
latitude region, the seasonal fluctuations of deciduous forests
were similar to the temporal change of temperature, whereas in
shrublands and grasslands, the curves of GPPs, SIF, and VIs
began to rise after about 2 months of temperature rise in spring.
Moreover, by comparing the seasonal fluctuation of
temperature and the curves of GPPs and SIF in various
latitude regions, we found that the lower the latitude region,
the higher the sensitivity of GPPs and SIF to temperature. These
results are consistent with some previous studies (Doi and
Takahashi, 2008; Gao et al., 2020). Therefore, the
phenological characteristics calculated from the remotely

sensed temperature have limitations in terms of the different
responses of vegetation types to temperature, especially in the
middle to high latitudes.

Overall, our research showed the fact that SIF tracked the
variation in vegetation phenology more accurately than VIs in
different latitudes, elevations, and land cover areas based on
monthly data in China.

CONCLUSION

In this study, we compared and analyzed the discrepancies of
phenological characteristics derived from GOME-2 SIF product
and MODIS VIs products in China from 2007 to 2013. SIF
showed more effectiveness in estimating the phenological
characteristics than VIs in different latitudes, elevations, and
land cover areas in China. The phenological curves of VIs and
SIF in the high- and middle-latitude regions rose together in
spring, while the VIs curve lagged far behind SIF in autumn. In
the low-latitude region, in contrast to the SIF and GPP, the
seasonal cycles of VIs were delayed in both spring and autumn.
Thus, SIF appears to be a better option to accurately estimate the
characteristics of vegetation phenology and the phenological
changes. This provides a basis for future research on the
application scenarios of using SIF data to describe vegetation
growth conditions and analyze vegetation phenological
characteristics. Moreover, the obviously different
phenological changes between VIs and SIF in the high-
latitude region, middle-latitude region, and low-latitude
region provided evidence for future research on the
relationship between vegetation photosynthesis and
vegetation greenness across latitudes.
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