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Vegetation in karst areas is crucial for maintaining fragile local ecosystems, driven by
climate change and human activities. Southwest China contains the largest continuous
karst zone in the world and its vegetation dynamics are more sensitive to climate changes
and human activities. However, previous studies rarely studied the driving roles of
vegetation dynamics in karst areas during the last 20 years, and whether climate
change or human disturbance factors have dominated the vegetation dynamics are still
uncertain. The objective of this work is to study vegetation dynamics and its responses to
climate change and human activities from 2001 to 2019 using the normalized difference
vegetation index (NDVI). Taking the three karst provinces of southwest China as study
area. Vegetation variation characteristics under the influence of climate variations and
human activities were distinguished through a residual analysis. The results indicated
general greening trends with about 90.31% of the study area experiencing an increase in
NDVI and about 9.69% of the area showing a decrease. Within the combination of climate
change and human activities, human activities became the dominant factor in the process
of vegetation cover improvement and degradation in the study area during 2001–2019,
with average relative roles of 62 and 59%, respectively. Temperature made the greatest
positive contribution among the climatic factors, followed by precipitation and relative
humidity. In contrast, sunshine duration had a negative effect on NDVI in the study area.
Human activities have had different effects on the vegetation dynamics of the three karst
provinces in southwest China, including destruction of vegetation around some cities.

Keywords: vegetation dynamics, NDVI, climate variations, human activities, remote sensing, southwest karst

INTRODUCTION

Vegetation links natural elements such as soil, atmosphere and water, and can represent the overall
ecological environment of a region to a great extent (Breil et al., 2017). Vegetation dynamics are an
essential indicator of global climate change (Zhao et al., 2020). Unlike other types of data, remote
sensing data have spatio-temporal continuity, so they are often used to monitor the spatial and
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temporal distribution characteristics and variation trends of
global and regional vegetation, providing a solid foundation
for studying the spatial distribution pattern of vegetation and
predicting future development trends (Jong et al., 2012).
Vegetation indexes reflect the characteristics of surface
vegetation and can be used to effectively characterize the
details of surface vegetation coverage. The NDVI is very
sensitive to the biophysical characteristics of vegetation, and as
an important measurement parameter of vegetation growth, it is
effectively used to monitor the dynamic changes of vegetation.
Many scholars (Eckert et al., 2015; Hou et al., 2015; Chen et al.,
2018) have applied NDVI data widely in vegetation status
monitoring, ecological environment assessment, crop growth
detection and natural disaster monitoring in the world and
large areas. Eckert et al. (2015) used Moderate Resolution
Imaging Spectroradiometer (MODIS) NDVI to reverse the
changes of vegetation cover in Mongolia, and found that the
vegetation degradation areas and vegetation restoration areas are
closely related to the change of land use types and regional
precipitation. Chen et al. (2018) used MODIS NDVI data to
distinguish the driving factors of land degradation in Songnen
grasslands and quantify the influence of climate change on NDVI
dynamics. The impact of climate change on vegetation cover is
complex due to the spatio-temporal variation in climate effects
and the ecological environment conditions in different regions
(Hou et al., 2015).

The influence of climate factors on vegetation dynamics is still
unclear, and the spatial difference of the climate-vegetation
relationship is also complicated by different vegetation species
that have different response sensitivities to climate variables
(Nanzad et al., 2019). Therefore, many researchers (Levin
2016; Chu et al., 2018; He et al., 2020) have studied the
driving mechanism of vegetation change. Relevant research
shows that changes in vegetation cover are affected by climate
change and human activities, and the rapid development of
remote sensing technology has greatly promoted the research
process of large-scale vegetation dynamics change. Baniya et al.
(2018) found that NDVI variation is more sensitive to
temperature than precipitation in Nepal. Nanzad et al. (2019)
proposed that anomalous variation in growing season NDVI was
correlated with precipitation and temperature anomalies over
Mongolia from 2000 to 2016. Previous researches (Xu et al., 2017;
Zhao et al., 2018) have reported general greening trends in
mid–high latitudes of the northern hemisphere, which have
primarily been related to the climate change based on a long-
term time series of land surface observations and on model
simulations (Meng et al., 2019). Nevertheless, vegetation
variations and the controlling effect of climate vary
geographically and temporally. Further, with the continuous
strengthening of agricultural activities, ecological construction,
urban expansion and other human activities, the influence of
human factors on vegetation coverage has become more and
more significant on the global scale and over long periods
(Ostwald & Chen 2006). Wang Hao et al. (2020) found that
the vegetation dynamics of the Otindag Sandy Land in China
showed a downward trend during 2001–2017 and that human-
driven disturbances had a more profound impact on the

vegetation dynamics than climate factors in such a short
period, with a general negative influence. Xiu et al. (2019)
found a reduction in wetland areas of the Hongjian Nur
region was mainly caused by climatic and human factors.
They concluded that the contribution of temperature and
precipitation to vegetation growth were small and the impacts
of human activities on the wetland areas were mainly caused by
agricultural irrigation, artificial surface expansion and ecological
water use. Gemitzi et al. (Gemitzi et al., 2019) suggested the
economic crisis in Greece during the last decade, which caused a
dramatic drop in urban expansion, positively impacted vegetation
productivity in urban areas as well as sites protected by
environmental legislation. Therefore, human disturbance
complicates the influence of climate change on vegetation
dynamics.

Southwest China, which has tropical and subtropical monsoon
climates, contains the largest continuous karst landforms in the
world. Guizhou, Guangxi and Yunnan Provinces have received a
lot of attention since 82% of China’s karst landforms are located
here, which are all characterized by fragile environment, broken
high topographical complexity (including steep mountain
topography) and poor soil conditions (Peng et al., 2020).
Owing to high population stress together with the extremely
fragile ecosystem, more severe rocky desertification occurred in
this region. More than 20% of the karst regions have deteriorated
greatly and are suffering rocky desertification (Cai et al., 2014),
which further increases the poverty of the population. Karst,
which develops on soluble rock, is a fragile ecosystem that is
vulnerable to rocky desertification affected by large population
stress (Peng et al., 2020). The three karst provinces in southwest
China was selected for study because of its ecological
environment is highly sensitive to external disturbances,
including climate change and human-driven disturbance (Cai
et al., 2014; Hou et al., 2015; Peng et al., 2020). In karst areas,
forests are generally the main types of land cover (Cai et al., 2014).
Once forests in a karst area are destroyed, they have difficultly
recovering through natural succession because the rocky
desertification is usually followed by unique geological and
hydrogeological conditions. Since most previous studies have
concentrated on climate variables (Hou et al., 2015; Deng
et al., 2018), a systematic investigation of vegetation
sensitivities to different environmental factors, including both
climate variables and human disturbance, is needed. To protect
and promote the ecological environment of west China, the
Chinese government conducted the “Grain to Green Program”
(GTGP) in 2000. Some researches of vegetation greenness in the
karst area demonstrated general greening trends from 2000 to
2011 (Xu et al., 2014), so whether climate factors or human-
driven disturbances have developed the ecological restoration in
recent years is uncertain (Cai et al., 2014).

An accurate quantitative analysis of the contributions of
climate change and human activities to vegetation NDVI is
crucial for elucidating the relevant driving mechanisms in the
three karst provinces of southwest China. Two decades
(2001–2019) of climate variables and vegetation dynamics in
the three karst provinces of southwest China from the GTGP in
2000 were examined 1) to investigate the characteristics of climate
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change and vegetation dynamics over these two decades by the
coefficient of variation and the Theil-Sen median trend analysis
and explore the significance of NDVI change trend through use of
theMann-Kendall test, 2) to analyze the vegetation sensitivities to
individual climate variables (temperature, precipitation, sunshine
duration and relative humidity), and 3) to explore the influence of
human disturbance on the climate-vegetation relationship. The
findings of this study contribute to our understanding of
vegetation response processes to climate change and provide
scientific bases and technical support for the ecological
restoration in the three karst provinces of southwest China.

MATERIALS AND METHODS

Study Area
The study area in southwest China encompasses three provinces:
Guizhou, Guangxi, and Yunnan (approx. 793,984 km2)
(Figure 1). This area has the most serious rocky desertification
of fragile subtropical karst environment caused by the climate
change and disturbance of unreasonable social and economic
activities (Cai et al., 2014). The karst landform occupies
approximately 40% of the study area (approx. 321,000 km2). It
is themost aggregated and typical karst landform region of China.
The three provinces contain up to 82% of the rocky desertification
areas (Jiang et al., 2014). Additionally, it is also the main area of
the GTGP project, and ecological afforestation plots have been
implemented in each county around this area. Thus, the three
provinces were chosen as study area.

Data Collection and Quality
The NDVI dataset used to analyse the vegetation dynamics in this
study are from the Moderate Resolution Imaging

Spectroradiometer (MODIS). The Terra MODIS NDVI
Monthly L3 Global 1 km SIN Grid V006 dataset
(MOD13Q1.A2020001, tile h26v05\h26v06\h27v05\h27v06)
was obtained from NASA’s Earth Observing System (http://
reverb.echo.nasa.gov/reverb/) for the period of January 2001 to
December 2019 with a spatial resolution of 1 × 1 km2. The annual
average NDVI time series data of the study area were obtained
with the Maximum Value Composite method, which minimizes
atmospheric effects, scan angle effects, cloud contamination and
solar zenith angle effects.

The climate dataset used in the study was from the
Meteorology Information Center of the Chinese National
Bureau of Meteorology (http://data.cma.cn), which has strict
precision control and good quality. For missing data, this study
used SPSS 22.0 (IBM SPSS Statistics, New York, United States)
to interpolate the missing data. Geographical location will have
a certain impact on the interpolation accuracy of
meteorological data. In order to improve the accuracy of
interpolation results, ANUSPLIN interpolation software
package (Hutchinson 1998) was selected to introduce a
digital elevation model (DEM) as covariant to interpolate
meteorological data. A high-precision meteorological spatial
dataset was obtained with the same spatial and temporal
resolution and consistent projection as NDVI. Data was
verified based on meteorological stations in the three karst
provinces by interpolating some data and then verifying the
remaining data. The simulation test showed that the proposed
method has high accuracy (see the results in Supplementary
Material). The dataset included the monthly mean
temperature, the monthly precipitation, the monthly
average sunshine duration, and the relative humidity of 299
national standard weather stations during 2001–2019
(Figure 1).

FIGURE 1 | Elevation of the study area and the spatial distribution of weather stations.
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DEM data comes from SRTM (Shuttle Radar Topography
Mission) of American Space Shuttle Endeavour and was used as
the source for elevation. This dataset used a nearest neighbor
resampling algorithm based on the latest SRTM V4.1 data, with
an accuracy of 1 km. The DEM of the study area was obtained by
clipping, which is mainly used to assist in generating time series of
meteorological factors.

Methods
Theil-Sen Median Analysis and Mann-Kendall
Significance Test
The Theil-Sen Median analysis is a non-parameter estimation
method and was applied to analyze the dynamic variation of
NDVI. The Theil-Sen Median analysis uses median values to
estimate the variation trend of NDVI in each pixel, which can
reduce the errors resulting from abnormal values of the time
series NDVI and enhance the precision of estimation. The
calculation of the trends in NDVI time series was as follows
(Peng et al., 2015):

Slope � Median⎡⎣(NDVIj −NDVIi)
j − i

⎤⎦, j> i (1)

Where and are the NDVI value in the years and, respectively, and,
with as the length of the time series. is the magnitude of the NDVI
variation trend with, indicating an upward trend of vegetation
cover during the study period and, indicating a downward trend.

The significance of the NDVI variation trendwas tested using the
M-K Significance test. TheM-K Significance test is a non-parametric
significance test. It is widely used to investigate variation trends
of environmental, geographic, climatic, and hydrological time-
series data because it accepts data in either a random order or a
particular order, and the results are less affected by abnormal
values (Li et al., 2019). In this study, the non-parametric M-K
test was applied to test and assess the significance of linear
trends in NDVI sequences. The M-K test statistic was computed
as follows:

To define a time series{NDVI(i)}, i � 1, 2,/, n (2)

S � ∑n−1
i�1

∑n

j�i+1sgn(NDVIj −NDVIi) (3)

sgn(NDVIj −NDVIi) � ⎧⎪⎨⎪⎩
1, NDVIj −NDVIi > 0
0, NDVIj −NDVIi � 0
−1, NDVIj −NDVIi < 0

⎫⎪⎬⎪⎭ (4)

Where and are the NDVI values in the and years, respectively,
and indicates the length of time series, and sgn is a symbolic
function.

To calculate the variance,

VAR(S) � ⎧⎨⎩n(n − 1)(2n + 5) −∑m
i�1
ti(ti − 1)(2ti + 5)⎫⎬⎭ (5)

Where m is the number of the tied groups in the time-series data
and is the number of data points in the tied group. When n ≥ 10,
the test statistic, S, presents a normal distribution and the Z-value
can be applied to detect the variation trends:

Z �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S − 1
VAR(S), S> 0

0, S � 0

S + 1
VAR(S), S< 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(6)

Under a given significance level, there is a threshold of the
normal distribution Z1–a/2. When |Z| ≤ Z1–a/2, the null hypothesis
is accepted, and when |Z| > Z1–a/2, the alternative hypothesis is
accepted, indicating a significantly and monotonically increasing
or decreasing trend in a time-series data. For instance, when |Z| >
1.96, it suggests that the linear variation trend is statistically
significant at the p < 0.05 level. When |Z| > 2.58, it suggests that
the linear variation trend is statistically significant at the p <
0.01 level.

Multiple Regression and Residual Analysis
Due to the lack of long-term observation data about the effects of
anthropogenic effects on vegetation NDVI, it is difficult to
directly quantified the effects. Therefore, the multiple
regression and residual analysis were selected to distinguish
the relative roles of climate variations and human activities on
vegetation dynamics in this study. The methodology originated
from that NDVI is only influenced by climate change under
natural conditions. So it is easy to be understood for this method
that the NDVI variation characteristics should be aligned with
those of climate factors without the impacts of anthropogenic
effects (Evans & Geerken 2004; Liu et al., 2013; Burrell et al.,
2018). The multiple regression and residual methods were used to
assess the impacts of climate factors on vegetation variation (Li
et al., 2012). Four climate factors that mainly affect vegetation
(temperature, precipitation, sunshine duration and relative
humidity) (Sun et al., 2015), were used as independent
variables for regression with NDVI values as responding
variables. The variance inflation factor (VIF) was also
employed to assess the multi-collinearity among four climate
variables. It is calculated by taking the ratio of the variance of all
given model’s betas divide by the variane of a single beta if it were
fit alone. Normally, if the VIF is greater than 10, multicolinearity
is likely present and we should consider dropping the variable.
The calculation of VIFi was as follows (Roman et al., 2016):

VIFi � 1
1 − R2

i

(7)

Where R2
i is determination coefficient of the ith independent

variable on the linear regression model against the remaining
independent variables.

The four climate factors were screened by VIF analysis, which
showed that all the VIF values were less than 5 (see
Supplementary Material). Therefore, the multiple regression
model was conducted for the four climate factors. The Eq. 8
characterizing the correlations among vegetation NDVI and the
four climate factors were calculated and obtained through
regression analysis. Then, the mean annual temperature, the
accumulated annual precipitation, the accumulated annual
sunshine duration, and the mean annual relative humidity

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 7994934

Yang et al. Climate Variations vs. Human Activities

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


dataset from 2001 to 2019 were respectively bought into the Eq. 8
to gain the vegetation NDVIC. The predicted values of NDVIC
were considered as the impact of climate factors on vegetation
NDVI under the absence of anthropogenic effects. Finally, the
method of residual analysis was chosen to distinguish the relative
contribution of anthropogenic effects for vegetation coverage (Li
et al., 2017). The formula is as follows:

NDVIC(i, t) � A × X1(i, t) + B × X2(i, t) + C × X3(i, t)
+D × X4(i, t) + c (8)

Where NDVIC(i,t) is the variable affected by climate factors for
the ith predictive NDVI in the tth year, A is the regression
coefficient for the mean annual temperature X1(i, t), B is the
regression coefficient for the accumulated annual precipitation
X2(i, t), C is the regression coefficient for the accumulated annual
sunshine duration X3(i, t), D is the regression coefficient for the
mean annual relative humidity, and c is a constant.

Without considering other non-deterministic factors, NDVI
residual is the influence of human factors on vegetation cover
change (Li et al., 2015; Jiang et al., 2017). Therefore, the
anthropogenic effects on vegetation coverage were identified as
the whole impacts under the absence of climate change effects for
this study. The formula is as follows:

NDVIH � NDVIobs −NDVIC (9)
Where NDVIH is the value of residual error, that is, the NDVI
value is only affected by anthropogenic effects. If the result is
positive, human activities promote vegetation NDVI; a negative
trend indicates an inhibition of vegetation NDVI. NDVIobs is the
remote-sensing data value, and NDVIC is the vegetation NDVI
value under the influence of climate change alone. Furthermore,
the results of NDVIH and NDVIC were analyzed for this study
from 2001 to 2019.

Analysis of Relative Roles
Considering data availability and comparability, we selected three
anthropogenic factors, i.e., the population density (PD),
nighttime light (NTL) data and the land use/cover change
(LUCC) information, which were often used as the main
proxies for analyzing human activities on vegetation change
(Geldmann et al., 2015; Qiu et al., 2018). The PD data were
collected from 2001 to 2019 originated from WorldPop

Population Counts (https://www.worldpop.org/geodata/listing?
id=76). The Operational Linescan System (OLS) onboard the
U.S. Defense Meteorological Satellite Program (DMSP) was most
commonly selected for nighttime light sensor, which was employed
to demonstrate economic activities. The DMSP-OLS derived the
version 3 nighttime light (NTL) dataset is a freely available product
obtained from the annual NPP-VIIRS-like nighttime light data,
Harvard Dataverse (https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/YGIVCD&version=3.1).

PD data and NTL data are available annually since 2001 at a
resolution of 1 km2. LUCC is a signal that directly indicates the
effects of human activity on environmental change on the Earth’s
land surface. LUCC data is provided by the Data Center for
Resources and Environmental Sciences of the Chinese Academy
of Sciences (https://www.resdc.cn/Default.aspx). LUCC data of
study areas derived from China’s current land use datasets for the
period of 2000–2020, which is mainly based on the Landsat TM/
ETM’s remote sensing images. Spatial resolution is 30 m based
upon the national standard of the Classification of Land Use
Status (GB/T21010-2017). A human-computer interaction
interpretation method was conducted by the first-level
standard classification system. The study area was divided into
seven categories: cultivated land, forest land, grass land, water
area, construction land, unused land and (Wang et al., 2021).
Land use transfer matrix was employed to analyze a
comprehensive land use dynamics degree (Liu et al., 2019). All
the data of anthropogenic factors should be processed using
Extract by Mask, Projections, Transformations and Resample
in ArcGIS.

The ideas and methods for calculating the relative effect
proposed by Xu et al. (2019) were used to determine the
relative effect of climate variations and human activities in
the process of vegetation change, as shown in Figure 2. First,
through a residual analysis, we derived the NDVI value
induced by each of climate variations and human activities
for each pixel. The impact of climate variations was measured
by predictive NDVI, whereas the impact of human activities
was measured by NDVI residuals. Then, the trends in
predicted NDVI and residual NDVI were combined with
the trend in observed NDVI during 2001–2019, and three
evaluation methods were built according to different scenarios
to assess the relative roles of climate variations and human
activities in vegetation change, as shown in Table 1.

FIGURE 2 | Flow chart of the process for assessing the relative roles of climate variations and human activities in the process of vegetation cover change.
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TABLE 1 | Methods for assessing the relative roles of climate change and human activities on vegetation variation.

Slope
(NDVIC)

Slope
(NDVIH)

Relative roles of climate
variations/%

Relative roles of human
activities/%

Explanation

The zone of
vegetation increase

Scenario1 >0 >0 |ΔNDVIC |
|ΔNDVIC |+|ΔNDVIH | × 1 |ΔNDVIH |

|ΔNDVIC |+|ΔNDVIH | × 1 Both climate variations and human
activities induced the vegetation
coverage increase.

Scenario2 >0 <0 100 0 Climate variations induced the
vegetation coverage increase.

Scenario3 <0 >0 0 100 Human activities induced the vegetation
coverage increase.

The zone of
vegetation
decrease

Scenario1 <0 <0 |ΔNDVIC |
|ΔNDVIC |+|ΔNDVIH | × 1 |ΔNDVIC |

|ΔNDVIC |+|ΔNDVIH | × 1 Both climate variations and human
activities induced the vegetation
coverage decrease.

Scenario2 <0 >0 100 0 Climate variations induced the
vegetation coverage decrease.

Scenario3 >0 <0 0 100 Human activities induced the vegetation
coverage decrease.

Notes: ΔNDVIC, is the difference of predictive NDVI, between the times t + i and t caused by climate variations; ΔNDVIH, is the difference of NDVI, residual between the times t + i and t
caused by human activities.

FIGURE 3 | Comparison of NDVI in the three karst provinces of southwest China between 2001 and 2019.

FIGURE 4 | Variation of annual NDVI in the three karst provinces of southwest China during 2001–2019.
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Comparison of NDVI between 2001 and 2019 are shown in the
Figure 3.

Correlation Analysis
The correlation coefficient is widely selected to detect the internal
relationship from multiple variables. Partial correlation
coefficients report the linear relationship between two
variables when regarding other variables as controls.
Therefore, in this study, the partial correlation coefficient was
applied to dissociate the impacts of temperature, precipitation,
sunshine duration, and relative humidity on vegetation cover
change. The calculation of the partial correlation coefficient is as
follows:

Rxy � ∑n
i�1(xi − �x)(yi − �y)�����������∑n

i�1(xi − �x)2
√ �����������∑n

i�1(yi − �y)2√ (10)

Where Rxy is the correlation coefficient between x and y; n is the
length of the study period, here, n = 19; xi and yi are the values of
x and y in the given year i, respectively; x and �y are the mean
values of x and y in a given period, respectively. Rxy ranges from
-1 to 1. When Rxy is greater than 0 indicates that there is a
positive (partial) correlation coefficient between two variables,
and Rxy less than 0 indicates a negative correlation.

RESULTS

Temporal Vegetation Dynamic Changes
The interannual variation of NDVI vegetation in southwest karst
provinces of China are shown in Figure 4. Since the
implementation of the GTGP in 2000, NDVI vegetation of the
study area has been progressively improved, with a linear
tendency of 0.003/a from 2001 to 2019 (R2 = 0.9274, p <
0.05). Over the past 20 years, the mean values of NDVI
vegetation range from 0.771 in 2001 to 0.822 in 2017,
implying that the overall variations of vegetation coverage in
the study region proposed a trend of gradually increasing.

From different time periods, before 2008, NDVI of vegetation
in the three southwest karst provinces increased significantly, and
vegetation restoration improved continuously. However, from
2008 to 2019, it showed a fluctuating upward trend. During the
four periods of 2009–2011, 2012–2014, 2015–2016 and
2017–2019, there was a continuous downward trend, and the
NDVI of vegetation decreased by 0.0081/a, 0.0009/a, 0.0070/a and
0.0068/a, respectively. According to the changes in different

provinces, the NDVI of vegetation in Guizhou has changed
the most over the past 20 years, whereas that in Yunnan has
changed the least, with the annual change rates of 0.0036/a and
0.0025/a respectively. Since 2009, the climate in southwest China
has been warm and dry, and the sustained abnormal high
temperature has been observed and recorded in summer over
four consecutive years, showing obvious drought. The occurrence
of natural disasters such as extreme weather, has an impact on
NDVI, which may be the main reason for the reduction of
vegetation coverage in some years in the three southwest karst
provinces.

Although the vegetation coverage in the southwest karst
landform tended to improve and the annual difference of
NDVI was small, there was obvious spatial heterogeneity in
the vegetation coverage change. In order to further describe
the spatial change characteristics, the vegetation variation
trend was divided into six grades (extremely significant
decline, significant decline, slight decline, extremely significant
increase, significant increase and slight increase) according to the
Slope and significance level of NDVIobs, as shown in Table 2. The
NDVI of vegetation in the study area showed an upward trend,
which was larger than that of a downward trend from 2001 to
2019 (Figure 5). This demonstrates that over the 20 years since
the GTGP began, the eco-environment in the study area has
significantly improved. The characteristics of the spatial pattern
evolution are shown in Figure 5: about 90.31% of the study area
experienced an upward trend of vegetation coverage, whereas
about 9.69% of the area showed a decreasing trend. NDVI with
significantly decreased values was primarily concentrated in
major cities, such as Kunming, Nanning, Guiyang, Baoshan,
Dali, Qujing and Yulin.

Relative Roles of Climate Change and
Human Activities in the Increased Area of
Vegetation Cover
Under the joint action of climate change and human activities, the
entire vegetation coverage in the study area has been improved.
The vegetation improvement area mentioned in this paper refers
to the area with Slope>0, accounting for 90.31% of the total study
area (Table 2). According to the three possible scenarios of the
relative effects of climate change and human activities on
vegetation improvement, the relative effects of climate change
and human activities in the study area from 2001 to 2019 were
quantitatively distinguished. The relative effect of human
activities on vegetation improvement in the southwest karst

TABLE 2 | The statistical results of the significance test of NDVI variation trend.

Slope Significance Variation trend Number of effective pixels Area/104 km2 Ratio/%

<0 p < 0.01 Extremely significant decrease 4376 0.4376 0.55%
<0 0.01 ≤ p < 0.05 Significant decrease 6231 0.6231 0.78%
<0 p ≥ 0.05 Slight decrease 66463 6.6463 8.36%
>0 p ≥ 0.05 Slight increase 282036 28.2036 35.46%
>0 0.01 ≤ p <0.05 Significant increase 183812 18.3812 23.11%
>0 p < 0.01 Extremely significant increase 252483 25.2483 31.74%
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provinces was slightly stronger than that of climate change
(Figure 6A). The average relative effect of human activities
was 62%, and that of climate change was 38%. Thus, human
activities over the past 19 years were the leading factors for
vegetation improvement in the three karst provinces of
southwest China.

The relative effects of climate change and human activities
show obvious spatial heterogeneity. As shown in Figure 6B, the
area where vegetation improvement was mainly caused by human
activities (the relative role>50%) accounts for 66.02% of the total
improved area, mainly distributed in the southeast of Yunnan, the
northwest and southwest of Guangxi, and the northeast of
Guizhou. However, the vegetation improvement areas mainly
caused by climate change accounted for 33.95% of the total

improvement areas, mainly distributed at the junction of
Yunnan and Guizhou and the central part of Guangxi. From
the perspective of spatial distribution, the effects of climate
change and human activities on vegetation improvement areas
are intertwined, and human activities exert a major influence on
vegetation variations in study areas where vegetation coverage
has increased significantly.

Relative Roles of Climate Change and
Human Activities in the Decreased Area of
Vegetation Cover
Climate change and human activities not only promote the
improvement of vegetation coverage in the southwest karst

FIGURE 5 | The spatial distribution of NDVI variation trends in the three karst provinces of southwest China from 2001 to 2019.

FIGURE 6 | The relative role of climate change and human activities on vegetation improvement in the three karst provinces of southwest China from 2001 to 2019.
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provinces of China, but also cause the vegetation vitality in some
areas to decline, resulting in different degrees of vegetation
degradation, deterioration of ecological environment and
aggravation of rocky desertification. The vegetation
degradation area refers to the area with Slope<0, accounting
for 9.69% of the total study area (Table 2). Similar to the
improvement areas, we found that the average relative effect of
human activities on the vegetation degradation area in the
southwest karst provinces of China from 2001 to 2019 was
59%, and the average relative effect of climate change was
41%. Therefore, human activities are still the main factor
causing vegetation degradation in the three southwest karst
provinces of China.

Climate change and human activities have jointly led to
vegetation degradation in some areas of the three southwest
karst provinces, but there is a big spatial difference in their
relative effects. As shown in Figure 7, the area where
vegetation degradation was mainly caused by climate
change (relative role>50%) accounted for 37.24% of the
total degraded area, and was scattered in central Yunnan
and central Guangxi. The area of vegetation degradation
mainly caused by human activities (relative role>50%)
accounted for 62.76% of the total degraded area, mainly
distributed in northeastern Guangxi, central Guizhou, and
western and southern Yunnan. In the extremely significant
decline and significant decline areas, the vegetation

FIGURE 7 | The relative roles of climate change and human activities on vegetation degradation in the three karst provinces of southwest China from 2001 to 2019.

FIGURE 8 | The spatial distribution of the predicted NDVI variation trend in the three karst provinces of southwest China from 2001 to 2019.
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degradation areas mainly caused by human activities
accounted for more than 50% of the total area.

DISCUSSION

Effect of Climate Change on Vegetation
Cover in the Three Karst Provinces
A number of findings have suggested that climate-driven
variability is major contribution for trends in vegetation
productivity of China (Piao et al., 2006; Deng et al., 2018). In
this paper, the influence of climate change in the process of
vegetation cover change was isolated through the residual
method. According to the principle of the residual method,
the impact of climate change on NDVI can be better isolated
only when NDVI is significantly correlated with climate
indicators. At present, the correlation analysis among NDVI
and climate indicators mainly focuses on two climate
indicators, temperature and precipitation, while the
relationship among other climate indicators and NDVI is
seldom studied. Considering the four indicators of

precipitation, temperature, relative humidity and sunshine
duration together to access the relationship among NDVI and
climate indicators will improve comprehensive interpretation of
climate changes on vegetation cover changes.

From Figure 8, the area with improved vegetation is obviously
larger than the area with degraded vegetation, and the area with
increased vegetation accounts for 82.08% of the total area, of
which 20.78% of the total area had extremely significant rise or
significant rise, mainly distributed in the central and southern
parts of Guangxi and the junction of Yunnan, Guangxi and
Guizhou provinces. One area with significant vegetation
improvement is located in the ecological protection priority
area from southeast Yunnan to west Guangxi, one of the three
major biodiversity centers in China. It is rich in precipitation and
sufficient in heat, which is suitable for plant growth. At the same
time, the continuous promotion of ecological environment
restoration projects in the area by the three provincial
governments is also conducive to the continuous improvement
of the ecological environment. In contrast, since the impacts of
human activities on vegetation away from human settlements,
especially primary forests, were non-significant (Nesha et al.,

FIGURE 9 | The correlation among NDVI and climate factors in the three karst provinces of southwest China.
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2021). Furthermore, the extremely significant decline and the
significantly decreased areas only account for 1.18% of the total
area and are scattered in Guangxi and Yunnan, especially around
cities. The areas with a significant downward trend (Slope<0) are
related to man-made scrubland, field crop and well-developed
urban building. Those areas are usually in proximity to roads or
around county seats, indicated that numerous engineering
projects and rapid urbanization play a leading role for the
degradation of vegetation, especially in major cities, such as
Nanning, Liuzhou, Dali and Kunming. This indicates that
human-driven urban expansion may be another factor that
leads to the decline of NDVI.

The feedback of vegetation coverage on climate variations (0.003/
a) in the three karst provinces weremore sensitive during 2001–2019
compared with results from other areas. For example, the NDVI
increased at rates of 0.0005/a in northwest China and -0.0009/a on
the Mongolian Plateau (Dai et al., 2011; Bao et al., 2014). Due to the
large storage capacity and high infiltration rate of karst carbonate
fissures and fractures, the soil-epikarst system plays an important
role in runoff generation and may further weaken the effect of
human activities (e.g., land use change) on water discharge.
Therefore, this particular soil-epikarst architecture is responsible
for the difference in the effects of climate and human activities on
water discharge between karst and nonkarst areas.

From Figure 9A, 72.07% of the study area is positively
correlated with precipitation, with 4.09% of the area having a
significant positive correlation (p < 0.05). From Figure 9B,
70.91% of the total study area has a positive correlation with
temperature, slightly less than precipitation. About 6.74% of the
total area has a significant positive correlation (p < 0.05). As shown
in Figure 9C, about 64.85% of the total study area is positively
correlated with relative humidity, of which about 10.32% of the area
has significant positive correlation (p < 0.05). From Figure 9D,

74.36% of the study area is negatively correlated with sunshine
duration, with 8.01% of the area having a significant positive
correlation (p < 0.05).

According to the correlation analysis results, the NDVI of
vegetation in the southwest karst provinces from 2001 to 2019
was positively correlated with air temperature, precipitation and
relative humidity, with partial correlation coefficients of 0.120,
0.116 and 0.107, respectively, listed from most to least influence.
In contrast, the NDVI was negatively correlated with sunshine
duration, with a partial correlation coefficient of -0.15. Thus,
vegetation growth in the southwest karst provinces is affected by
climate change, which positively promotes and negatively inhibits
growth, and the degree of influence is spatial heterogeneous.

The systematic research on the NDVI variations and their
relationship from climate indicators implies the complex spatial-
temporal heterogeneity in climate change for the study area and
even for the karst ecosystem, which influences the obtain of more
representative conclusions and the ability to surmise general rules
regarding this region. Moreover, Our results do not only present a
research framework for climate change adaption or ecosystem
restoration in a degraded region but also contribute knowledge to
the origin and mechanism of vegetation variations. Taking
climate effects for instance, more efforts or measures should
be emphasized for future restoration and reconstruction
processes based on the important scientific and practical
significance, including several high temperature resistance of
engineering measures (NDVI is closely related to temperature).

Effect of Human Activities on Vegetation
Coverage in the Three Karst Provinces
Human activities have always been one of the critical factors for
vegetation changes, especially since the full implementation of the

FIGURE 10 | Variation trend of residual NDVI in the three karst provinces of southwest China from 2001 to 2019.
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GTGP in China in 2000 (Erb et al., 2018). Hence, it is also
essential to accurately quantify the contributions of human
activities to changes in vegetation. As explained above,
human activities exhibited spatially heterogeneous effects on
vegetation growth. Human activities displayed significant
positive effects on vegetation growth in farming areas and
GTGP areas (Figure 10), except around the cities and roads,
indicating that farming and afforestation were beneficial to
vegetation growth in the three karst provinces (Peng et al.,
2020). The areas with positive and negative NDVIH trends
accounted for 88.43 and 11.58% of the total study area,
respectively. The above results show that human activities
had dual effects on regional vegetation growth. On the one
hand, human activities promoted vegetation growth in most
regions; on the other hand, human activities inhibited vegetation
growth in other regions. On the whole, human activities played a
dominant role in promoting regional vegetation growth.

Under the influence of human activities, the extremely
significant increasing areas with vegetation cover accounted for
11.20% of the total study area, mainly distributed in southeastern
Yunnan, northwestern Guangxi and most parts of Guizhou
(Figure 10). Numerous studies (Wang et al., 2015; Qiao et al.,
2020) have shown a vegetation greening trend in southwest China
over the past two decades and attributed it to the afforestation and
conservation of natural forests. The great changes of NDVI
resulting from ecological restoration projects in recent decades
were considered to be the driver for vegetation greening in
southwest China (Brandt et al., 2017). To combat rocky
desertification of karst in southwest China, a great deal of
ecological restoration engineering, including the GTGP, Natural
Forest Protection Project and the Public welfare Forest Protection,
has been carried out since 2000. Additionally, the central
government initiated “A General Plan Outline for a Program to
Comprehensively Address Karst Rocky Desertification

FIGURE 11 | The correlation among NDVI and PD, NTL in the three karst provinces of southwest China.

FIGURE 12 | Spatial transformation variation map of land use type in the three karst provinces of southwest China between 2000 and 2020 (km2).
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(2005–2015)” in southwest China. During the process of rocky
desertification control and restoration engineering, the annual
afforestation area (forest plantation, closing hill for afforestation
and degraded forest restoration) increased by approximately
2.3*105 km2 from 2006 to 2016, while the cumulative
afforestation area reached nearly 3.4*106 km2.

The areas with a negative trend of NDVI residuals were
scattered, of which the areas with significant decline and
extremely significant decline accounted for only 0.74% of the
total study area, primarily around cities (Figure 10). Those areas
are usually in proximity to roads or around county seats,
suggesting that numerous engineering projects and rapid
urbanization play a leading role for the degradation of
vegetation, such as some problems from the population-
economy pressure, were considered to be one of the main
reasons for vegetation degradation (Yu et al., 2014; Zhou
et al., 2015; Zheng et al., 2019). However, the relationships
among various factors remain unclear, and the response of
vegetation to climate change and anthropogenic factors in the
karst area of China has not been well established. Scholars hold
differing views about the relationship among vegetation growth
and anthropogenic factors (Zhou et al., 2015; Li et al., 2019),
which need further validation.

Substantial population growth, rapid economic development
and drastic land use/cover change have been the major sources of

human activities that influenced the vegetation change.
Therefore, the PD and NTL data were measured as the
anthropogenic factors to reflect the relationship between
NDVI and human activities for the three karst provinces.
According to Figure 11, the NDVI in the southwest karst
provinces was negatively correlated with the PD and NTL (p <
0.05), which suggests that the population pressures and economic
growth could potentially will ultimately influence on the
vegetation patterns and urban development of a region (Abdus
et al., 2017). From Figure 11A, 62.35% of the study area is
negatively correlated with NDVI, with 19.95% of the area having
a significant negative correlation from PD (p < 0.05). From
Figure 11B, 48.32% of the study area is negatively correlated
with NDVI, with 12.95% of the area having a significant negative
correlation from NTL (p < 0.05).

In addition, the land use/cover change (LUCC) information is
also a key aspect of regional environment change, and in a sense
indicates the impacts of human activities on natural environment.
Figure 12 shows Spatial transformation variation map of land use
type in the three karst provinces between 2000 and 2020. Results
demonstrate that study area’s land use pattern has experienced
significant variations, which were primarily characterized by the
transformation of cropland to forest land, forest land to cropland
and grassland, and grassland to forest land, with the conversion
areas of 75,318 km2, 70,043 km2, 59,195 km2, and 56,970 km2,

FIGURE 13 | Transfer matrix of land use in the three karst provinces of southwest China between 2000 and 2020 (km2). Notes: 11-Transfer cropland to cropland,
12-Transfer cropland to forest land, 13-Transfer cropland to grassland, 14-Transfer cropland to water bodies, 15-Transfer cropland to bulit-up land, 21-Transfer forest
land to cropland, 22-Transfer forest land to forest land, 23-Transfer forest land to grassland, 24-Transfer forest land to water bodies, 25-Transfer forest land to bulit-up
land, 26-Transfer forest land to others, 31-Transfer grassland to cropland, 32-Transfer grassland to forest land, 33-Transfer grassland to grassland, 34-Transfer
grassland to water bodies, 35-Transfer grassland to bulit-up land, 36-Transfer grassland to others, 41-Transfer water bodies to cropland, 42-Transfer water bodies to
forest land, 43-Transfer water bodies to grassland, 44-Transfer water bodies to water bodies, 45-Transfer water bodies to bulit-up land, 46-Transfer water bodies to
others, 51-Transfer bulit-up land to cropland, 52-Transfer bulit-up land to forest land, 53-Transfer bulit-up land to grassland, 54-Transfer bulit-up land to water bodies,
55-Transfer bulit-up land to bulit-up land, 56-Transfer bulit-up land to others, 61-Transfer others to cropland, 62-Transfer others to forest land, 63-Transfer others to
grassland, 64-Transfer others to water bodies, 65-Transfer others to bulit-up land, 66-Transfer others to others.
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respectively. LULC change frequently have a effect on regional
environmental ecology and adaptability of biodiversity when the
results of land use change were beneficial to economic
development and social benefits and interests.

Land use transfer matrix is one of the most effective and
common ways to explore the internal conversions of land use
between different land use types (Huang et al., 2021).
Furthermore, it was found that forest land extremely
significant increase by 33415 and 26,010 km2 over the past
two decades, largely because of transitions from cropland and
grassland, which accounted for 47.71 and 43.94%, respectively.
Afforestation not only gives farmers higher economic benefits in
mountains of Southwest China, but also plays a positive role in
suppressing soil degradation and improving biodiversity
conservation, which further promotes the conversion of
cropland or grassland to forest land (Huang et al., 2021). The
increased forest land mainly occurred in the western
mountainous areas of the three karst provinces (Figure 13).
This might be due to the three provinces are mainly plateau
and mountain areas with poor living environments. Actually, the
implementation of the GTGP since 2000 prevents the rebound of
returning land and enhances sustainable developments (Qu et al.,
2020). It was obvious from Figure 13 that rapid big city
expansion resulted in agricultural land loss from cropland,
forest land and grassland, such as Nanning, Liuzhou, Guilin,
Guiyang, Zunyi and Kunming.

Limitations
In this study, a methodology that can be used to quantitatively
evaluate the contributions of climatic and human factors to
vegetation cover in southwest China was designed by selecting
NDVI as the evaluation indicator. However, the limitations of
this study should also be recognized. First, the results of this
study were not verified by experimental data. Second, due to the
lack of data on local rocky desertification, determining the
contributions of some human activity factors, such as GDP,
human population density, and afforestation area, to vegetation
NDVI requires further research. Therefore, research that
focuses on more accurately quantifying the influences of
climatic and human factors and on establishing a
quantitative method of isolating the contributions of different
human factors needs to be further explored. Third, the scale
represents the temporal and spatial dimensions that are used for
measuring ecological processes (Guo et al., 2021). The
relationship between vegetation NDVI and its driving forces
at one scale may not be applicable to another scale (Xu et al.,
2014). Thus, future research that assesses the contributions of
climatic and human factors to NDVI changes of the southwest
karst provinces in China can be improved by fusing multi-
source data at a higher spatial resolution and on a long-
term scale.

Finally, mathematical models were constructed to establish
regression equations and reveal the influence of human activities
on vegetation (Wang et al., 2020). According to the residual
sequence model obtained from the trend analysis, if the trend is
positive, then the image element vegetation affected by human
activities is improved. This condition indicates that the image

element affects vegetation and disturbance variation. Thus, the
quantitative relationship among vegetation cover, climate factors,
and human activities should be further investigated in future works.

Uncertainties remain in this study. Since this model ignores
the complex interaction between climate change and human
activities and reduces the nonlinear relationship between
vegetation dynamics and influencing factors to a linear
relationship (Jiang et al., 2019), the accuracy of the
quantification in this study may be affected. Additionally, the
spatial resolution of the MODIS NDVI dataset used in this study
was 1 km, leading to the possibility that scattered vegetation in
unaltered natural vegetation was only affected by climate change
in the mountainous areas of southwest China, which is another
source of uncertainty. Lastly, the climate data utilized in this
paper were obtained through spatial interpolation based on
sparse site data, which could be another potential source of
uncertainty.

CONCLUSION

Vegetation is highly responsive to external conditions. We
investigated the influence of climate change (temperature,
precipitation, sunshine duration and relative humidity) and
human factors (GDP, population density, and land use/cover
change) on gradual greening trends in southwest China, which
exists the largest karst area all over the country. NDVI time series
data from 2001 to 2019 were obtained from the MODIS NDVI
dataset at a spatial resolution of 1 km and temporal resolution of 1
month. The coefficient of variation, Theil-Sen median trend, M-K
test and relative role analysis were used to assess the relative roles
of climate change and human activities in the process of
vegetation cover change of the southwest karst provinces in
China from 2001 to 2019. The main conclusions are as follows:

1) NDVI of vegetation in the study area progressively improved
from 2001 to 2019, with a linear trend of 0.003/a. Prior to
2008, NDVI rose significantly in the southwest karst
provinces, which indicates the vegetation continued to
improve and recover. From 2008 to 2019, NDVI increased
with the fluctuations which might relate to the occurrence of
extreme weather.

2) Under the joint action of natural and anthropogenic-driven
factors, vegetation coverage in the southwest karst provinces
showed an overall upward trend from 2001 to 2019, and the
annual difference of vegetation NDVI was small. Vegetation
variations in the study area had an obvious spatial
heterogeneity. Climate change and human activities are two
driving forces in vegetation NDVI. Though the interaction of
the two, about 90.31% of the study area experienced an
increase in vegetation coverage and about 9.69% a decrease,
with the significantly decreased values mainly concentrated in
the major cities.

3) Human activities over the past 19 years were the leading
factors in the process of vegetation cover improvement and
degradation in the southwest karst provinces of China. For
areas with increasing vegetation, as identified by remote
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sensing observations, the relative roles of climate variations
and human activities in vegetation dynamics were calculated
as 38 and 62%, respectively, indicating that human activities
played an important role in vegetation increase. For areas of
decreasing vegetation, as identified by remote sensing
observations, the relative roles of climate variations and
human activities in vegetation change were calculated as 41
and 59%, respectively, indicating that climate variations had
large negative effects on vegetation condition.

4) During 2001–2019, vegetation NDVI in the southwest karst
provinces was positively correlated with precipitation, air
temperature and relative humidity, with partial correlation
coefficients of 0.116, 0.120 and 0.107, respectively. In contrast,
NDVI was negatively correlated with sunshine duration, with a
partial correlation coefficient of −0.15. Thus, vegetation growth
in the southwest karst provinces was both positively promoted
and negatively inhibited by climate change.

5) Under the influence of human activities, the vegetation
coverage increased significantly for about 11.20% of the
total study area, scattered around cities. The NDVI of
vegetation in the three provinces was negatively correlated
with PD andNTL. LUCC results demonstrate that study area’s
land use pattern has experienced significant variations, which
were primarily characterized by the transformation of
cropland to forest land, forest land to cropland and
grassland, and grassland to forest land. Afforestation
further promotes the conversion of cropland or grassland
to forest land, and rapid big city expansion resulted in
agricultural land loss from cropland, forest land and
grassland in the three provinces of southwest China.
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