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To interpret the climatic signals of precipitation/speleothem δ18O, it is critical to identify the
importance of the factors affecting the precipitation δ18O. This study presents new stable
isotope data for precipitation δ18O and δD in the site of Shenqi cave, southwest China, from
November-2015 to October-2016 (the “Super-El Niño” event), to investigate the regional-
scale climate forcing on precipitation δ18O. The precipitation δ18O, δD and d-excess have
an obvious seasonality, relatively low values in the wet season and high in the dry season.
The further analysis of seasonally altered LMWL and moisture circulations suggested that
changes in atmosphere moisture circulations would be the key factor underlying the
precipitation/speleothem δ18O fluctuations in our study area at least on seasonal
timescales. Combined with the seasonal-monthly variations of the IsoGSM δ18O,
GPCP/CRU rainfall and NCEP/NCAR moisture fluxes, we detected that the super-El
Niño of 2016 have changed the distributions of monthly rainfall in wet season through the
Western Pacific Subtropical High, but not mainly the precipitation isotopic compositions
and moisture circulations in our study area.
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INTRODUCTION

Asian summer monsoon (ASM) and El Niño/Southern Oscillation (ENSO) affect billions of people’s
livelihoods over East Asia including China, Japan, Korea, Indo-China peninsula, and Philippines
(Wang et al., 2001; Xie et al., 2009; Tan et al., 2011; Wang et al., 2013; An et al., 2015; Cheng et al.,
2016; Cai et al., 2017; Tan et al., 2018). The nature of its variability as well as its future evolution is
always subject of debate, due to the great repercussion that unusual events may cause in the
socioeconomic area involved. The oxygen isotope (δ18O) composition of rainfall (and thus, the one
contained in speleothems) contains very valuable information about atmosphere moisture
circulation, rainfall and temperature, drawing so much attention in the scientific community
(Yonge et al., 1985; Fleitmann et al., 2004; Yuan et al., 2004; Maher, 2008; Li et al., 2011; Tan
et al., 2011; Tan, 2014; Cheng et al., 2016; Moreno et al., 2021).

Speleothem oxygen isotope (δ18Ospel) records have been widely used to characterize ASM
variations on a wide range of timescales from orbital and millennial to centennial-multidecadal
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and decadal-annual (Wang et al., 2001; Zhang et al., 2008; Zhou
et al., 2008; Tan et al., 2011; Tan, 2014; Cheng et al., 2016; Tan
et al., 2018). The δ18Ospel variability, under conditions of
carbonate precipitation in equilibrium, has been widely
attributed to changes in the δ18O of the precipitation (δ18Op)
(Li et al., 2011; Luo et al., 2014; Tan, 2014; Duan et al., 2016; Chen
& Li, 2018; Sun et al., 2018). As such there are many mechanisms
controlling the δ18Op (Lachniet, 2009) that may complicate the
interpretation of the δ18Ospel, e.g., the “temperature effect”
(Mangini et al., 2005; Feng et al., 2014), “amount effect” (Bar-
Matthews et al., 2003; Fleitmann et al., 2004), “rainout effect”
(Yuan et al., 2004; Pérez-Mejías et al., 2018), “altitude effect”
(Johnston et al., 2013), “continental effect” (McDermott et al.,
2011) and “moisture/circulation effect” (Maher, 2008; Clemens
et al., 2010; Tan, 2014; Cai et al., 2017; Yang et al., 2019). The
monitoring of rainfall δ18O is an effective method to accurately
unravel the speleothem δ18O significance, which has been
implemented as early as 1980s (Yonge et al., 1985), while a
complete study is needed of the corresponding hydrological
conditions of recharge and evaluate the homogenization of the
groundwaters (Fairchild and Baker, 2012; Genty et al., 2014;
Duan et al., 2016). The rainfall/dripwater δ18O from Chinese
monsoonal region roughly reflect changes in the monsoon
intensity, being sensitive to the variability seen in the Western
Pacific Subtropical High (WPSH) (Wang et al., 2013; Zhao et al.,
2018) as well as changes in the amplitude and/or frequency of
ENSO extreme events (Tan, 2014; Chen and Li, 2018; Sun et al.,
2018; Zhao et al., 2018). Seasonally-varying arrivals of moisture
likely play a key role in the observed seasonal cycle of δ18Op, as
was seen, for example, in monsoon region of China or northern
Borneo, whereby heavier δ18O is indicative of relatively dry
conditions on seasonal timescale (Cobb et al., 2007; Duan
et al., 2016).

The consistent variations of the ASM among different
speleothem δ18O records on different timescales (Cheng et al.,
2016; Tan et al., 2018; Zhao et al., 2018; Yang et al., 2019) basically
suggest a common climatic control factor. It is worth noting that
the seasonal δ18Op variation of the ASM had a large spatial
consistency as well, with high values at the onset of the monsoon
season and low values during the main monsoon phase. From the
principle of oxygen isotope, it is most likely to represent the
nature of the ‘wind’ of the monsoon scenario, or the spatial scales
of the atmospheric circulation and the associated changes in
moisture sources (Tan, 2014; Cheng et al., 2016; Duan et al., 2016;
Chen and Li, 2018; Sun et al., 2018; Cheng et al., 2021). The ASM
is a vast climate system, which transports huge amounts of
moisture and heat northward from southern Hemisphere (e.g.,
Mascarene High) across the Indian Ocean into India,
southeastern China, and as far as northeastern China and
Japan (Cheng et al., 2016; Tan et al., 2018; Cheng et al., 2019;
Zhao et al., 2021). The ASM δ18Op, therefore, is largely a measure
of the fraction of water vapor removed from air masses between
the tropical Indo-Pacific and monsoon region. To first order, this
process can be modeled assuming Rayleigh fractionation (Yuan
et al., 2004; Hoefs, 2009; Cheng et al., 2012). Moreover, the
coherent spatial climate variation of East Asia summer Monsoon
(EASM) regions also indicated the uniform signal regarding to its

synoptical pattern, which is deeply affected by the intensity of
southerly winds (Tan et al., 2014; Zhao et al., 2018; Cheng et al.,
2019; Cheng et al., 2021). On the other hand, the variation of
δ18Op in ASM region is highly complex and a large portion of the
variance is unexplained by the monsoon intensity or southerly
winds only, and may be attributed to some other related factors,
for example the rainfall amount, ENSO or Westerly Jet (Tan,
2014; Chiang et al., 2015; Ming, 2016; Kong et al., 2017).

We also denote that ENSO is the dominant mode of climate
variability in the instrumental records from the ASM regions (Xie
et al., 2009; Zhang and Gao, 2016; Chen et al., 2017), which deeply
affect the ASM through the Walker Circulation (Vecchi et al.,
2006), the Indian Ocean capacitor effect (Xie et al., 2009) and also
influences action centers like the WPSH (Wang et al., 2013; Zhao
et al., 2018). The original signal may be kept in the footprint of the
air mass where the precipitation is produced, as well as in the type
of cloud (Hoefs, 2009). Some studies demonstrated that strong
events on sub-annual scales, like for example tropical cyclones,
may be recorded in the dripwater, and thus, potentially
transmitted into speleothem (Frappier et al., 2007; Lases-
Hernández et al., 2020). Here, we present data of the δ18O
and δD of precipitation from the sensitive monsoon region
located in southeastern Tibetan Plateau, covering a full
hydrological year (from November 2015 to October 2016).
The interest of that year can be found in the anomalous
intensity seen in El Niño, comparable to the strongest events
seen during the past decades so-called “super El Niño” during
1982/1983 and 1997/1998 (Chen et al., 2017; Rao and Ren, 2017).
Hence, it is of great interest to explore any signal of such unusual
El Niño event in the δ18Op in this area, as well enrich the
information obtained from monitoring surveys to help to
interpret the climatic signals recorded in the speleothem δ18O
from caves located in our study area. In fact, under ideal
conditions of a proper growth rate, fast infiltration and poor
groundwater mixing, such signal of unusual events like the
present case of super El Niño may be recorded in speleothems
from this area.

STUDY AREA AND MONITORING
PROTOCOL

The study area (Shenqi cave), located at the southeast margin of
Tibetan Plateau (TP), has a specific geography environment about
plenty of water sources (Dadu River and Yangtze River) and snow
mountains (Gongga), with large relative height from ~7,500 m to
~1,000m (Figure 1 and Supplementary Figure S1). The cave
(28°56′ N, 103°06′ E, 1407 m above sea level), formed in Triassic
dolomitic limestone, has a small entrance of 3*4 m2, and its total
length exceeds 400m (Tan et al., 2018). An underground river was
developed in the cave along with the main passage. The annual
precipitation is 1,290 mmwithmore than 80%occurring during the
monsoon season (late May-October, data from Leshan station,
95 km northeast Shenqi cave, during 1951–2013). Spatial
correlation analysis indicates that rainfall variations around the
area of Shenqi cave are positively correlated with those in
southwestern China, especially in southeastern TP (Tan et al., 2018).
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Precipitation collection was carried out for a complete
hydrological year from November-2015 to October-2016.
The cumulative precipitation samples per rainfall event
were collected above cave in an open area near cave
entrance. Following the International Atomic Energy Agency
(IAEA) protocol (www-naweb.iaea.org/napc/ih/documents/

userupdate/sampling.pdf), rainwater was collected in a 5 L
HDPE bottle with a funnel. A ping-pong ball was placed at the
funnel mouth and the bottom of the HDPE bottle was coated
with approximately 0.5 cm-thick paraffin oil to prevent
evaporation. The sub-samples of the homogenized
precipitation were removed into pre-cleaned 8 ml glass sealed

FIGURE 1 | Spatial distribution of the correlation coefficients between the GPCP JJAS rainfall amount and the JJAS amount-weighted δ18Op averaged near the
Shenqi cave (red circule) based on the Experimental Climate Prediction Center’s Isotope-incorporated Global Spectral Model (IsoGSM) (Yoshimura et al., 2008) between
1979 and 2017 with June geopotential heights (contours in geopotential meters, gpm) at 500 hPa in mean state of 1979–2017 (black line) and year of 2016 (red line) (A),
and comparisons of the monthly amount-weighted IsoGSM δ18Op data with the SOI and GPCP rainfall amount records (B). Stippling indicates significant
correlation (p < 0.1 level). Precipitation data (A) are from Climatic Research Unit (CRU) TS4.04, and the geopotential heights (gpm) are based on the monthly reanalysis
data from the National Center for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR). The Southern Oscillation Index (SOI) (B)
are from website https://www.ncdc.noaa.gov/teleconnections/enso/soi; precipitation amount in the study area (103°–104°E 28°–29°N), using monthly mean values
extracted from the Global Precipitation Climatology Project (GPCP) v2.3 (http://climexp.knmi.nl/select). Vertical bars depict the years with very intense El Niño (or “Super
El Niño”) events. It is generally accepted to use the contour line of 5880 geo-potential meters (gpm) to define the spatial boundary of the WPSH, which is also routinely
used by the National Climate Center of China (NCCC) (A).
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bottles with no head space for δ18Op and δD analysis. To prevent
precipitation from evaporating, liquid samples were collected
immediately after precipitation ceased, filtered using a filter
head with an aperture of 0.45 μm, and finally stored in 5-ml
HDPE bottles with waterproof seals. The time and place of
sampling were recorded for each sample. All the samples were
stored in cold storage (4°C) before isotope ratio analysis using a
water isotopes analyzer (IWA-35EP) of Los Gatos Research
(LGR) Company. In total, 128 precipitation samples were
collected as individual events in sample analysis. The
standard reference is LGR3A/4A/5A from Los Gatos
Research Company. As an analysis routine, LGR IWA
analyzed each sample 6 times. Because residue of previous
sample likely influences next sample (memory effect), the
first two measurements were not taken as valid data. The
results were expressed as δ-values relative to V-SMOW
(Vienna Standard Mean Ocean Water). The precision of the
IWA-35EP liquid water isotope analyzer measurement was <0.
20‰ for δD and <0.03‰ for δ18Op. We decided to delete one
outlier δ18Op and δD data on 9 September 2016 for their

calculation of linear regression lines, owing to that R2 of the
fit line is apparently improved from 0.69 to 0.92 after the point
removing (Supplementary Figure S7). Deuterium excess
(d-excess) of precipitation was calculated with the equation:
d-excess = δD—eight δ18O (Dansgaard, 1964).

RESULTS AND DISCUSSION

Seasonal Variation of stable Isotopes in
Precipitation
The δ18Op, δD and d-excess variability in our data exhibit a
seasonal pattern with relatively low values in wet season (June to
October) and relatively high values in dry season (November to
May) (Figure 2), roughly consistent with the pattern seen in the
datasets from the Global Network of Isotopes in Precipitation and
the Chinese Network of Isotopes in Precipitation (Johnson and
Ingram, 2004; Clemens et al., 2010; Dayem et al., 2010). The range
of the δ18Op is −17.7‰ (27th July) to 0.7‰ (19th May), whereas
δD ranges between −130.9‰ (27th July) to 29.1‰ (19th May,

FIGURE 2 | Precipitation d-excess, δ18O, δD and the corresponding amount of rainfall in our study area. A 10-points smoothing fit has been applied to the data (red
line). And the monthly weighted δ18Op (yellow point line) near Shenqi cave are based on the IsoGSM (Yoshimura et al., 2008). The GPCP v2.3 and CRU TS4.04 data,
used to extract the amount of rainfall data, can be found in the followingwebsite: http://climexp.knmi.nl/select. The yellow vertical bar depicts the wet season in the stable
isotopes of the precipitation, influenced by the “super El Niño” event and the corelated anomalous WPSH.
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again). The lowest δ18Op and δD values occurred in July, likely
correlated to the anomalously high WPSH and the super El Niño
(Zhang and Gao, 2016; Chen et al., 2017). The mean values of
δ18Op and δD are −7.0‰ and −39.8‰, respectively. The d-excess
of precipitation exhibits the significant seasonal variations as well,
with lower values in wet season and higher values in dry season
(Figure 2).

The negative correlation (r = −0.51, p < 0.01) betweenmonthly
mean values of δ18Op and monthly GPCP precipitation amount
in 2016 (Figure 2) marks the relationship between the stable
isotopes and amount of precipitation in this area. Besides, the
annual δ18O trend in Shenqi cave shows an negative relation with
local monsoon precipitation during the 1951–2010 period in
previous publication (Tan et al., 2018), suggesting that the
speleothem δ18O or δ18Op in this area can reflect monsoon
precipitation to some degree (Tan et al., 2015; Tan et al.,
2018). The amount effect is ascribed to gradual saturation of
air below the cloud, which diminishes any shift to higher δ18Op

values caused by evaporation during precipitation (Fricke and
O’Neil, 1999). Besides, relatively heavy isotopes tend to displace
to the liquid solution and precipitate, whereas more negative
oxygen are conforming in moistures. However, that significantly
negative correlations can be explained by not only the sensu-
stricto amount effect (Craig, 1961; Dansgaard, 1964), but also the
different moisture origins, evolution and distance to the source
area (Dansgaard, 1964; Tan, 2014; Cheng et al., 2016; Zhao et al.,
2018). For instance, there’s no significant correlations of local
rainfall amount and weighted IsoGSM δ18Op in spatial
distribution of correlation coefficients for 1979–2017, but
significantly negatively correlated with rainfall amount around
the upstream regions-southwest monsoon regions (Figure 1A).
Besides, the δ18Op in June kept enriched while the rainfall in June
is highest during the entire year (Figure 2), which were
unexplained by the only amount effect mechanisms as well. It
is roughly consistent with the previous study about the
18O-enriched rainfall during the onset of monsoon when the
moisture source was mainly from the continent or marginal
ocean, owing to the relatively small land-sea temperature
gradient (Cheng et al., 2012; Cheng et al., 2019). Therefore,
the degree of “amount effect” observed here is basically an
overall negative correlation on seasonal timescales, and it is
largely controlled by the history and origin of the seasonally
altered moisture circulations (Figures 1A, 4), rather than a
conventional amount effect mechanism (Dansgaard, 1964;
Fricke and O’Neil, 1999; Zhao et al., 2018). Indeed, this
explanation entails differences with the relationship between
δ18Op and rainfall amount seen in tropical regions, for
example in northern Borneo, where it is linked to the intensity
of convective activity associated with the Intertropical
Convergence Zone variability, and increased precipitation
drives more negative δ18Op (Cobb et al., 2007).

On the other hand, the d-excess is a characteristic parameter of
the source area of the water vapor from which rain originates
(Rozanski et al., 1982; Lewis et al., 2013; Duan et al., 2016). High
humidity during the formation of moist air masses leads to d-
excess < 10‰, while low humidity at the vapor source typically
yields d-excess > 10‰ (Clark and Fritz, 2013). The d-excess of

rainwater in our study area shows the similar seasonal variation,
with lower values in wet season but higher values in dry season
(Figure 2). This further confirms that rainfall in our study areas
in the wet season is likely sourced from the tropical oceanic air
masses (Figure 4), where the humidity is high. In contrast, the
rainfall in the dry season is mostly sourced in continental air
mass, northwest or from local recycled moisture, where the
humidity is low.

Local Meteoric Water Line in Super-El Niño
of 2016
The relationship between the δ18Op and δD values of the
rainwater samples collected per rainfall events (n = 127) from
November 2015 to October 2016 depict the following Local
Meteoric Water Line (LMWL: δD = 8.85 δ18O+ 22.70) for the
super-El Niño in 2016. The slope as well as the intercept for y-axis
are higher than the Global Meteoric Water Line, defined as δD =
8 δ18O+ 10 (Craig, 1961) (Figure 3). We further established the
LMWL respectively calculated for the case of the wet season (δD
= 8.47 δ18O+ 14.51) and dry season (δD = 7.65 δ18O+ 18.44)
(Figure 3). Additionally, new LMWL has been calculated for
every month mainly in the wet season (MJJAS), and most of the
fit lines are reliable with relatively high R2 (Figure 3). The slopes
range from 9.16 to 7.95, and intercepts with values ranging from
20.41 to 7.95 (Figure 3). Generally, the decreasing slopes from
wet season to dry season or from June to September are attributed
to the increasing evaporation below the cloud (Craig, 1961; Fricke
and O’Neil, 1999; Fairchild and Baker, 2012; Duan et al., 2016;
Chen and Li, 2018; Pérez-Mejías et al., 2018; Sun et al., 2018),
which’re likely related to the gradually weakening of remote
oceanic moistures or monsoon intensity (Figure 4).

It is worth noting that slope of LMWL in June is highest
among the wet season (MJJAS), indicating the high relative
humidity of atmosphere and the absence of evaporation. The
situation can be attributed to the relatively low temperature
(Supplementary Figure S4) and high rainfall amount in June.
And indeed, the rainfall amount is highest along the year of 2016
(Figure 2) and highest of June rainfall in the past 40 years
(Supplementary Figure S3) under the stable meteorological
situation mainly maintained by the anomalously intensified
WPSH in June of the super- El Niño 2016 (Figure 1A and
Supplementary Figure S5, S6) (Zhang and Gao, 2016; Chen
et al., 2017; Rao and Ren, 2017). On the other hand, although
rainfall amount in June is highest, the intercepts, d-excess, δ18Op

and δD values in June are apparently higher than that in July,
August and September, which is very likely corresponding to the
isotope enriched moisture/rainfall during the onset of monsoon
(Cheng et al., 2012; Cheng et al., 2019). The land-sea temperature
gradient before the onset of the summer monsoon was relatively
small, the moisture source in our study area was thus mainly from
the marginal ocean or continent, so that the precipitation δ18Op

was heavier; the land-sea temperature gradient considerably
increased after the summer monsoon onset, the atmospheric
circulation scale become significantly larger, the moisture
source was thus more from remote ocean (Figure 4), such
that the precipitation δ18Op was lighter. Besides, the widely
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existing of large rivers, snowy mountains and dense forests may
favor processes of continental recycled moisture and enrich the
air masses with in this geographic area (Supplementary Figure
S1) in June, the onset of the summer monsoon (Hoefs, 2009).

Therefore, the variations of LWML from wet season to dry
season or from June to September basically indicates the

increasing ratios of continental recycled moisture and the
decreasing ratios of ocean moisture (depleted) relative to the
total moisture, as the monsoon persistently weakens and
decreases the ocean moistures deliver to study area. We also
added the monthly weighted IsoGSM δ18Op data from 1979 to
2017, clearly showing the seasonal variations with the

FIGURE 3 | Linear regression lines conformed by the δ18Op and δD of the precipitation events in the study area during different periods. The GMWL is also included.
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FIGURE 4 | Moisture fluxes (kg m−1 s−1) integrated from 1,000 to 300 hPa during the wet season and dry season in 1948–2016 average, and comparisons of
monthly moisture fluxes in wet seasons between 1948 and 2016a and 2016, respectively. Moisture fluxes (kg m−1s−1) and geopotential heights (gpm) are based on the
monthly reanalysis data from the National Center for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR).
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18O-depleted values in the wet season and 18O-enriched in the dry
season (Supplementary Figure S2). Besides, there is no
significant correlation between the annually weighted IsoGSM
δ18Op and SOI (r = -0.13, p > 0.1, n = 38), whereas the correlation
coefficient between rainfall and SOI is obviously significant (r =
-0.27, p < 0.01, n = 38) (Figure 1). Indeed, the super- El Niño
2016 have changed the distributions of monthly rainfall in wet
season (June) through atmosphere systems, e.g., WPSH, but not
the main isotopic compositions of moistures or precipitation.

Links Between Precipitation, Moistures
Circulation and ENSO
The tropical oceanic moistures keep an almost constant
northward component in the wet season (JJAS), usually
reaching it northernmost influence during July, e.g., in the
mean state of 1948–2016 or in the “super-El Niño” of
2016 (Figure 4), corresponding to the lowest values seen in
the precipitation δ18O, δD and d-excess in July or August
(Figure 2 and Supplementary Figure S3). The sharp decrease
of δ-values is observed between June and July, reaching its
minimum during the wet season when the most remote
moistures were delivered to our site through a strong process
of rainout or Rayleigh fractionation (Hoefs, 2009). This
mechanism can account for the most depleted δ18O and δD
reached during July of 2016, while the rainfall amount is not
highest.

Based on meteorological data in Leshan station for the
1980–2010 period, the highest rainfall (around 300 mm)
usually occurred in July and August, which is consistent
with other stations of Ebian, Panzhihua and Emei cities
around the study area (Supplementary Figure S4) (http://
data.cma.cn/data/weatherBk.html). However, month with the
highest precipitation in 2016 was June instead of July or
August (Figure 2), perhaps corresponding to the super-El
Niño event during that year 2016 (Zhang and Gao, 2016;
Chen et al., 2017; Rao and Ren, 2017). And indeed, the
CRU and GPCP data shows that rainfall amount in June
2016 is highest of June rainfall in the past 40 years
(Supplementary Figure S3). Chinese researchers have long
suggested that during the summer following El Niño,
pronounced precipitation anomalies tend to take place in
EASM regions (Xie et al., 2009; Cai and Tian, 2016; Zhang
and Gao, 2016; Cai et al., 2017; Chen et al., 2017; Rao and Ren,
2017), causing major floods similar to what accounted during
the summers of 1954 and 1998. The WPSH, which bridges the
El Niño events and the precipitation in EASM region, is
generally enhanced in boreal summer after El Niño events
(Xie et al., 2009; Zhang and Gao, 2016; Chen and Li, 2018;
Zhao et al., 2018). Indeed, during 2016 the WPSH intensity has
clearly enhanced earlier and more intensively than usual,
showing an enlarged size (Zhang and Gao, 2016; Chen et al.
, 2017; Rao and Ren, 2017) (Figure 1 and Supplementary
Figure S5, S6), likely providing a stable meteorological
situation to favor heavy rainfalls in June and July of 2016.
As a consequence, intense floods were recorded during that

summer, a disaster known as “7.19” which caused heavy
economic losses in China (Rao and Ren, 2017).

Generally, theWPSH intensity reaches its maximum in July in
the years without El Niño events (Supplementary Figure S5),
usually consistent with the peak of rainfall amount in July or
August in study area (Supplementary Figure S4). However,
double rainfall peaks in wet season of 2016 have been shown
in CRU and GPCP data (Figure 2). We attributed such double
peak pattern to the unusually double peaks of WPSH intensity
and area size (Supplementary Figure S5, S6), which can
influence the study area very intensively. The WPSH exerts
the control of the rainfall decreases seen in August of 2016,
owing to that the strong sinking air of WPSH may occupy the
study areas, shown by the anomalously prolonged western
boundaries in August under the super El Niño
(Supplementary Figure S5, S6). In September, the gradually
weakening of the WPSH may lead to a synoptic situation more
comparable to June, thus favoring the rainfall but shaping a
second peak of rainfall amount less intense compared to the
former one. Nevertheless, more meteorological and observational
studies are critical to further assess the full role of the WPSH
feedbacks in amending ASM rainfall.

CONCLUSION

This study presents new stable isotope data from November 2015
to October 2016 of δ18Op and δD of the precipitation in the area
near Shenqi cave, southeast TP, west China. Despite the main
forcing of local precipitation δ18O can be very different attending
to the timescale, the following conclusions can be drawn:

1) Precipitation δ18O, δD and d-excess values have the seasonal
pattern of low values during the wet season (JJAS) and
relatively higher during the dry season (October to May of
the following year).

2) Consequently, the equation of Local Meteoric Water Line
(LMWL) was established in the year of super El Niño, δD =
8.84 δ18O+ 22.39. The further analysis of seasonal-monthly
LMWL, companied with seasonally altered atmosphere
moisture circulations and gradually depressed southerly
moistures in wet season, suggested that changes in large-
scale moisture sources/atmosphere circulations would be the
key factor underlying the δ18Op fluctuations in study area at
least on seasonal timescales.

3) The “super-El Niño” in 2016 have changed the distributions of
monthly rainfall in wet season through the WPSH, but not
mainly the precipitation isotopic compositions and moisture
circulations in our study area.
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