
A Review of the Hydrologic Response
Mechanisms During Mountain
Rain-on-Snow
W. Tyler Brandt1*, Kayden Haleakala2, Benjamin J. Hatchett3 and Ming Pan1

1Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, San
Diego, CA, United States, 2Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles,
CA, United States, 3Western Regional Climate Center, Desert Research Institute, Reno, NV, United States

Mountain rain-on-snow (ROS) generates large flooding events worldwide. Climate
warming will enhance the frequency, magnitude, and widespread nature of these
events. Past studies indicate rainfall, not snowmelt, typically drives much of the runoff
response during ROS. However, there is substantial event-to-event variability—resulting
from shifting atmospheric drivers and nuanced physical mechanisms governing water flow
through a snowpack. Historically, turbulent fluxes were assumed to dominate the energy
balance for snowmelt during ROS. Recent research nonetheless suggests that other
components of the energy balance might be larger drivers depending on: 1) the time of
year; 2) the elevation; and 3) the aspect of the slope. This mini review summarizes the
literature on the physical processes governing ROS and proposes that moving forward we
utilize the terms “active” and “passive” to describe a snowpack’s contribution (via
snowmelt) to terrestrial water input (TWI) during ROS. Active snowpacks readily
contribute meltwater to TWI via the energy balance, bolstering rainfall-runoff totals.
Passive snowpacks do not melt, but simply convey rainwater through the snow matrix.
In both snowpack cases, preferential flow paths enhance transmissivity. This proposed
classification scheme will help researchers and water managers better communicate and
interpret past findings, and aid in forecasting discussions of future events.
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INTRODUCTION

Snow-fed mountain watersheds supply freshwater to ~2 billion people worldwide (Viviroli et al.,
2007; Sturm et al., 2017; Immerzeel et al., 2020). However, climate change is endangering this natural
service. Declines in winter snowfall and snow albedo are reducing snow’s natural reservoir function
by producing both smaller and earlier snowmelt (Dudley et al., 2017; Huss et al., 2017; Mote et al.,
2018; Skiles et al., 2018; Lynn et al., 2020; Kraaijenbrink et al., 2021; Siirila-Woodburn et al., 2021).
Winter rain-on-snow (ROS), particularly on high elevation alpine snow (Freudiger et al., 2014;
Beniston and Stoffel, 2016; Musselman et al., 2018; Hock et al., 2019), further diminishes the
snowpack’s ability to accumulate, and simultaneously escalates the risk of extreme hazards including
ROS floods, ROS initiated avalanches, and debris flows (Harr, 1981; DeGraff, 1994; Stimberis and
Rubin, 2011; Surfleet and Tullos, 2013; Hatchett et al., 2020).

What is ROS? The simplest definition is: measurable rainfall on an existing snow cover (Pomeroy
et al., 2016). However, observing and/or measuring the process is easier said than done (Harpold
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et al., 2017), which gives rise to numerous “definitions”. For
example, McCabe et al. (2007) defined ROS as any day in which
precipitation occurs and snow depth declines—a good definition
given available instrumentation, but the metric fails to quantify
flood risk. Alternatively, Musselman et al. (2018) and Huang et al.
(2022) defined ROS (with flood potential) as heavy rainfall
≥ 10mm d−1, or ≥ 25mm d−1, respectively, that falls on a
snow water equivalent (SWE) ≥ 10mm and where the
snowmelt contribution to Terrestrial Water Input (TWI;
integrated rainfall and snowmelt reaching the land surface
over the event duration) exceeds 20%, or 25%, respectively.
However, as Wayand et al. (2015) noted, ROS flooding can
still occur with minimal snowmelt contributions, and therefore
depending on the ROS definition, could lead to an undercount of
rainfall-driven, but nonetheless still technically ROS-type floods.

Definitions aside, rain falling on a snowpack tends to occur
between a few to ~10 times a season (Moore and Prowse, 1988;
Cohen et al., 2015; Würzer et al., 2016; Li et al., 2019; Juras et al.,
2021; López-Moreno et al., 2021), and is more frequent in
maritime mid-latitude mountains vs. continental, or arctic
locations (López-Moreno et al., 2021). Most ROS events do
not cause flooding (i.e., Merz and Blöschl, 2003; Yang et al.,
2020). But, when floods do arise—they can be historic (e.g.,
Kattelmann, 1997; Marks et al., 1998; Rössler et al., 2014;
Garvelmann et al., 2015; Pomeroy et al., 2016).

This review covers the physical processes governing ROS for
midlatitude mountain snowpacks and touches on flood-
generating mechanisms. Conceptually, ROS floods exist on a
continuum—on one end, rainfall on a snow-dominated
landscape producing TWI, and on the other, TWI resulting
from both rainfall and snowmelt. Improvements to ROS flood
forecasting skill is predicated on knowing the contributions of
both fluxes as they impact the timing, duration, and volume of
runoff (Tarasova et al., 2019). To help process-based discussion
we introduce two new terms— “passive” vs. “active” snowpacks.
Passive snowpacks convey rainfall but provide minimal melt,
whereas active snowpacks readily melt, enhancing TWI.

CONDITIONS FOR A LARGE ROS FLOOD

Many past ROS floods have been largely rainfall driven
(Kattelmann, 1997; Merz and Blöschl, 2003; Wayand et al.,
2015; Li et al., 2019). A good example of a more “extreme”
snowmelt contribution would be Henn et al. (2020) who found
that snowmelt enhanced TWI by 37% in California’s Feather
River. But, broadly speaking, what drives a large ROS runoff
response?

Simply put, a large ROS runoff response requires an
anomalously low snowline, a large snow-covered area (SCA)
and prolonged, high-intensity rainfall over most of the SCA. A
seasonally low snowline can result from either a preceding cold
storm, or within a single storm (Hatchett et al., 2016)—but both
scenarios lead to a large SCA. Prolonged, high intensity rainfall
can occur under a range of atmospheric conditions. These
include: atmospheric rivers (ARs; e.g., Guan et al., 2016; Ralph
et al., 2020), cloud microphysical processes such as seeder-feeder

mechanisms and localized convection (e.g., Rössler et al. (2014)),
enhanced mid-tropospheric moisture fluxes (e.g., Kaplan et al.
(2012)), and orographic effects (Houze, 2012). We note that these
atmospheric conditions operate in unison or independently, but
their identification is fundamental to understanding the
spatiotemporal variability in the basin-wide runoff response.

While atmospheric conditions favor prolonged, high-intensity
precipitation for a large runoff response, surface processes can
either amplify or dampen the runoff. Primary factors include: the
snow energy balance, preferential flow, and the antecedent
snowpack and soil conditions (Figure 1; Dunne and Black,
1971; Berris and Harr, 1987; Kattelmann, 1997; Singh et al.,
1997; Marks et al., 1998; Kattelmann and Dozier, 1999; Rössler
et al., 2014; Guan et al., 2016). An active snowpack driven by a
large positive energy balance can bolster rainfall driven
TWI—particularly across ephemeral (i.e., transient), low-
elevation snow with little cold content (Jennings et al., 2018).
However, without a saturated landscape and a snowpack with
established preferential flow routing (see Section 4), runoff
responses could still be dampened and/or delayed
(Kattelmann, 1989; McGurk and Marsh, 1995; Singh et al.,
1997; Garvelmann et al., 2015; Würzer et al., 2016).

Many midlatitude snow-dominated basins have extensive
forest coverage, and vegetation structure/density are known to
influence snow accumulation via interception, reduced wind
effects, and an altered energy balance (Storck et al., 2002;
Lundquist et al., 2013; Broxton et al., 2015; Stevens, 2017).
Given that ROS involves some of the same processes, it would
follow that vegetation should also exert control on resulting ROS
runoff. However, results from field studies remain inconclusive.
For example, some studies suggest that ROS produces more
outflow from glades (forest open areas) compared to forests
(Beaudry and Golding, 1983; Berris and Harr, 1987; Storck
et al., 2002), while others observed little difference
(Kattelmann, 1987; Berg et al., 1991; Garvelmann et al., 2015).
A good discussion can be found in Garvelmann et al. (2015)—but,
more research is needed.

PASSIVE VS ACTIVE SNOWPACKS

While our binary classification (passive vs. active) is by design
simple, we note that snowpacks exist on a spectrum that can vary
both temporally and spatially (Figure 2). For example, at a point
location, antecedent snowpack conditions (e.g., the pre-event
cold content) coupled with the meteorological conditions will
initially drive a singular response (passive or active), however a
shift in the meteorological drivers (i.e., a change in weather
fronts) could elicit a switch. From a basin perspective,
snowpacks are likely composed of a transition from active to
passive snowpacks because of elevation-driven temperature
differences—particularly when basins encompass large
topographic relief. Forest coverage and/or structure will only
increase the variability in the snowpack response. Regardless,
both snowpack modes (passive vs. active) can dampen and/or
delay TWI through an unsatisfied irreducible water content, but
only active snowpacks will amplify TWI.
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Passive Snowpacks
We define a passive snowpack as one that primarily conveys
rainfall (i.e., TWI contributions of snowmelt ≤ 10%). The minor
snowmelt contribution is principally the result of advective
heat—a small component of the energy balance (Trubilowicz

and Moore, 2017). Because snowmelt can be small, SWE can
remain the same, or even increase, when comparing pre- and
post-ROS event water equivalents due to liquid water storage
within the pack, and/or intermittent snowfall. Algorithms looking
for a decreasing snow depth and/or SWE to indicate ROS might

FIGURE 1 | (A) A conceptual diagram of the key drivers for a large runoff response for a ROS event. Key ingredients include a low snowline with a large SCA
combined with a high intensity (i.e., heavy), long duration rainfall over the majority of the SCA. Modulating factors that can enhance runoff volumes include saturated snow
and soils, and a positive energy balance during the event that results in snowmelt contributions to TWI (i.e., an active snowpack). (B) a histogram of available data on
snowmelt vs. rainfall contributions to TWI from 10 studies covering 203 ROS events from the following papers: Beaudry andGolding (1983), Bergman (1983), Marks
et al. (1998), Rössler et al. (2014), Garvelmann et al. (2015), Wayand et al. (2015), Pomeroy et al. (2016), Corripio and López-Moreno (2017), Mateo-Lázaro et al. (2019),
and Henn et al. (2020). Note: not all events are independent, ROS definitions vary by study, and spatial scales represented range from point to basin using either
observations or models. Moving forward we would encourage new studies to record the percent contributions to TWI to facilitate future intercomparison studies. (C) the
evolution of the snowline in California’s Sierra Nevada (focused on the Tuolumne) using data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS)
obtained from Worldview (https://worldview.earthdata.nasa.gov/). The first image (ci) demonstrates how a cold storm can initially exacerbate ROS flood risk by
increasing SCA beyond traditional mountain regions and expanding ephemeral vs. seasonal (Petersky and Harpold, 2018) snowpack areas. However, flood risk abated
as ephemeral snow melted away (cii), dampening some of its potentially “active” impact prior to ROS that occurred after 5 February. (ciii) Shows the snow cover retreat
after ROS. This sequence highlights the importance of storm sequencing in ROS flooding—had the 5 February storm occurred earlier, the flood risk would have been far
greater. The snow seasonality metric and snowlines were estimated from data obtained via the Snow Property Inversion from Remote Sensing product [SPIReS; Bair
et al. (2021)].
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miss a passive snowpack. Passive snowpacks are maintained
through a combination of: 1) a large cold content; 2)
insufficient meteorological drivers to induce melt; and/or 3)
preferential flow paths.

Regular snowfall events build cold content (Jennings et al.,
2018), enabling a seasonal, deep snowpack to buffer modest

meteorological drivers (Haleakala et al., 2021). Shallower
snowpacks (i.e., ephemeral snow) are more at risk of melt
during ROS. However, the presence of preferential flow—even
for an ephemeral snowpack—can modulate the impacts of
sensible heat due to rainfall energy. Preferential flow can move
large volumes of water through small pores (between 3 and 8% of

FIGURE 2 | A conceptual diagram connecting meteorological drivers for active vs. passive snowpacks to snowpack liquid water routing and finally the speed of
water outflow. Note: for a more detailed description of hydraulic barriers with regards to water routing within the snowpack see Webb et al. (2018a).
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a cross-sectional area according to McGurk and Marsh, 1995),
essentially “insulating” the rest of the pack (Marsh and Woo,
1984; Kattelmann, 1985; McGurk and Marsh, 1995; Schneebeli,
1995). While we study active snowpacks because of their large
flooding impacts (i.e., Marks et al. (1998), Rössler et al. (2014),
and Henn et al. (2020)), passive snowpacks may be equally potent
flood drivers (see Appendix A in Wayand et al., 2015).

Active Snowpacks
Active snowpacks produce relatively large snowmelt volumes
(i.e., contributing ≫ 10% to TWI). In short, a satisfied cold
content and a positive energy balance will shift a passive
snowpack to an active one generating snowmelt. Key
components of the energy balance will be discussed.

Turbulent Fluxes
The turbulent heat fluxes—particularly the latent heat flux—are
dominant drivers of ROS melt. Warm and wet winter storms, often
atmospheric rivers (AR), feature high specific humidity and above-
average wind speeds (Ralph et al., 2004; Ralph et al., 2005; Gimeno
et al., 2014; Hatchett et al., 2017). These conditions favor the latent
heat flux, with energy release taking two forms: 1) the refreezing of
rain within the snowpack; and 2) condensation at the snow’s surface
(DeWalle and Rango, 2008). It was 2) that drove large floods after a
1996 AR in the Pacific Northwest, with 60–90% of the energy for
snowmelt attributed to condensation (Marks et al., 1998). The
literature is rich with other case studies demonstrating the
potency of this energy balance term e.g., Berris and Harr (1987),
Rössler et al. (2014) andGarvelmann et al. (2015). Nonetheless, a key
modulating factor is vegetation (i.e., Berris and Harr, 1987; Marks
et al., 1998), so forest density and coverage need to be carefully
considered when attributing snowmelt to the turbulent fluxes.

Downwelling Longwave Radiation
Another important, but less-recognized energy balance driver of
ROS melt, is downwelling longwave radiation. During ROS,
longwave contributes to active snowmelt via warm, moist
atmospheric conditions (Garvelmann et al., 2014; Bilish et al.,
2018; Li et al., 2019). Over the continental US, Li et al. (2019)
demonstrated that net radiation (dominated by longwave) is the
leading source of energy (68%) for ROS snowmelt in the
mountainous Western US. The study is supported by
Mazurkiewicz et al. (2008) who also found that ROS snowmelt
was governed by longwave contributions in the Pacific
Northwest—a surprise given that the turbulent fluxes were
hypothesized to be a key driver.

Ground Heat Flux
Historically, studies have often neglected the ground heat flux
due to near- or below-freezing surface temperatures (DeWalle
and Rango, 2008). However, during fall and spring near-
surface soil temperatures can exceed 0°C and contribute to
basal layer snowmelt. Pomeroy et al. (2016) found that a late-
season snowpack was primarily melted by the ground heat flux
during a 2013 Canadian Rockies ROS flood. They reasoned
summer ROS should be considered “distinct” from
winter ROS.

Advected (Sensible) Heat due to Rain
Lastly, advected (sensible) heat from percolating rain into snow (a
porous media) has the potential to induce melt (Kattelmann,
1997; DeWalle and Rango, 2008; Li et al., 2019). However, in
British Columbia, Trubilowicz and Moore (2017) showed
advected heat contributed <10% to total energy consumed for
melt over 286 ROS events (10 years period). However, the
calculation neglects preferential flow (Marsh and Woo, 1985;
McGurk and Marsh, 1995; Singh et al., 1997; Eiriksson et al.,
2013), which if present further diminishes the role of advected
heat. Nonetheless, prolonged, high-intensity rainfall has potential
for non-negligible advected heat, so the term should not be
overlooked.

SNOW HYDRAULIC CONDUCTIVITY AND
OUTFLOW GENERATION

The rate of liquid water transmission through snow governs
outflow timing and magnitude. Despite being studied—from
theoretical (e.g., Colbeck, 1972; Colbeck, 1973; Colbeck, 1975;
1976; 1978), to experimental (e.g., Colbeck, 1974; Singh et al.,
1997; Juras et al., 2017), and observational standpoints (e.g.,
Marsh and Woo, 1984; Conway and Benedict, 1994; McGurk
and Marsh, 1995; Kattelmann and Dozier, 1999; Eiriksson et al.,
2013; Rücker et al., 2019)—we have yet to fully grasp the
complexities of water routing through snow. Much of the
“unknown” lies in the variability of the snow’s stratigraphy
and the complex exchanges of water and energy between layers.

Matrix Flow vs Preferential Flow
Percolation within a porous material is driven by a fluid’s
potential energy but modulated by conductance (following
Darcy’s Law). In the absence of a hydraulic barrier, vertical
energy gradients (i.e., gravity) induce vertical flow. Vertical
flow falls into two classes of mechanisms: 1) matrix flow; and
2) preferential flow (Schneebeli, 1995; Waldner et al., 2004).
Under matrix flow, an even wetting front propagates following
Darcy’s law of flow—mathematically simplistic. Preferential flow,
on the other hand, consists of spatially heterogeneous saturated
“preferential flow paths” that exploit density differences and
conveys water due to a lower porosity (Marsh and Woo, 1984;
Kattelmann, 1985; McGurk and Marsh, 1995; Schneebeli, 1995).
Dye tracer studies have revealed that: 1) elements of both matrix
(usually at the surface), and preferential flow (usually deeper) can
be present (e.g., Conway and Benedict (1994)), and that 2)
preferential flow can “pool” or generate lateral flow if
hydraulic barriers (either ice lenses or capillary barriers) are
present (Conway and Benedict, 1994; Pfeffer and Humphrey,
1996; Singh et al., 1997; Kattelmann and Dozier, 1999; Albert and
Perron, 2000; Waldner et al., 2004; Eiriksson et al., 2013; Würzer
et al., 2017; Katsushima et al., 2020). Importantly, despite
preferential flow only representing a small volume of the
overall snowpack (between 3 and 8% as measured by McGurk
and Marsh, 1995), this conveyance mechanism cannot be
overlooked as it can heavily influence basin outflow response
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times (Eiriksson et al., 2013; Würzer et al., 2017). But, because
preferential flow is predicated on fine-scale differences in density
and porosity (which shift with grain metamorphism)—prediction
is challenging (Colbeck, 1978; Schneebeli, 1995; Avanzi et al.,
2019). Nonetheless, continued use of dye tracer studies and new
techniques like near-infrared hyperspectral imagery will help
address knowledge gaps (e.g., Donahue et al., 2022). Important
questions include: when does preferential flow form, and how
spatially heterogenous are these features?

Rainfall Simulation Experiments
Rainfall simulation experiments attempt to improve our
understanding of water routing through the whole snowpack,
although results can be difficult to compare (Conway and
Benedict, 1994; Singh et al., 1997; Eiriksson et al., 2013; Juras
et al., 2017). For example, Singh et al. (1997) found “conditioned”
snowpacks, i.e., isothermal snowpacks with a high liquid water
content (LWC; 6.8%) due to previous rainfall, generate rapid
runoff through preferential flow. Nonetheless, in contrast to
Singh et al. (1997); Juras et al. (2017) found that highly-
stratified mid-winter snowpacks (LWC of 0.9%) generated a
faster outflow response due to preferential flow when
compared with three isothermal snowpacks (mean LWC of
3.7%). Despite these contrary findings, stratified snowpacks
appear more likely to generate preferential flow, yielding faster
outflow response times. However, the initial snow depth and
LWC will act as secondary controls regulating the response times
(Würzer et al. (2016). We advocate for more rainfall simulation
experiments as they bolster natural ROS studies, but can be
conducted on our own time, and across different snow
environments (i.e., elevation, aspect and vegetation classes).
While these experiments are time intensive and difficult to
perform, this should not deter their usage.

MODELING AND OBSERVATIONS:
SUGGESTIONS

Because mountain ROS environments are arguably one of the
most complex encountered, parsing (and forecasting) active vs.
passive snowpacks requires a full, physically-based
characterization of the energy balance, as opposed to a degree
day model—temperature alone does not drive ROSmelt (Qi et al.,
2017). With reasonable meteorological forcing data, energy
balance models are capable of realistic estimates of snow state,
i.e., the “bulk” cold content (Jennings et al., 2018). However, the
quality of model output is largely predicated on the quality of the
meteorological forcing—which can be poor even in observation-
rich regions like California’s Sierra Nevada (Lundquist et al.,
2019; Terzago et al., 2020). Denser, and improved station
networks to capture complex meteorological drivers would
greatly enhance our modeling capabilities.

While the meteorological environment during ROS is
difficult to observe, arguably harder still are the exchanges
of water and energy within the snowpack itself. To represent
these processes, models require multi-layer snowpacks, with

both Darcy and Richard’s equations for flow, and ways to
incorporate preferential flow (i.e., Wever et al. (2016)). But our
physical understanding of these processes and their variability
is still in its infancy. Advancing modeling efforts requires more
rigorous measurements, e.g., TWI from networks of lysimeters
(Marsh and Woo, 1985; Kattelmann, 2000; Eiriksson et al.,
2013; Webb et al., 2018b; Rücker et al., 2019), observations of
stratigraphy and measurements of LWC (e.g., Koch et al.
(2019), Mavrovic et al. (2020); Eole and Michel (2021),
Capelli et al. (2022)). This “measurement space” needs
clever, new engineering solutions to achieve a predictive
understanding of ROS.

FINAL THOUGHTS

Impactful ROS floods are rare, unique, and occur during
varied meteorological conditions with swings in flood driving
mechanisms. The causative components for ROS floods
(rainfall vs. snowmelt) can vary storm-by-storm depending
on whether a snowpack is passive or active, and the routing
mechanisms at play. Moving forward, we first encourage a
more vigorous debate on the definition(s) of ROS—having
agreed upon definitions will foster better intercomparison
studies and understanding of future ROS risk. Second, we
encourage funding for established and novel measurements
and improved networking across systems (Hatchett et al.,
2020). Specifically, we suggest: 1) improved and denser
observation networks for the phase, temperature, and
intensity of precipitation; and 2) the development of
quickly deployable and movable instruments to measure
the snow energy balance, snow cold content, and
snowpack flow regimes. These new observations would
help to constrain model physics with regards to passive vs.
active snowpacks, and ensure extreme events are skillfully
forecast for the correct physically-based reasons (Kirchner,
2006).
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