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Histology is key to understand physiology, development, growth and even reproduction of
extinct animals. However, the identification and interpretation of certain structures, such as
osteons, medullary bone (MB), and Lines of Arrested Growth (LAGs), are not only based on
personal judgments, but also require considerable labor for subsequent analysis. Due to
the dearth of available specimens, only a few quantitative histological studies have been
proceeded for limited dinosaur taxa, most of which focus primarily on their growth, namely,
LAGs and other growth lines without much attention to other histological structures. Here
we develop a deep convolutional neural network-based method for automated
osteohistological segmentation. Raw images are firstly divided into sub-images and the
borders are expanded to guarantee the osteon regions integrity. ResNet-50 is employed
as feature extractor and atrous spatial pyramid pooling (ASPP) is used to capture multi-
scale information. A dual-resolution segmentation strategy is designed to observe the
primary and secondary osteon regions from the matrix background. Finally, a segmented
map with different osteon regions is obtained. This deep convolutional neural network-
based model is tested on a histological dataset derived from various taxa in Alvarezsauria,
a highly specialized group of non-avian theropod dinosaurs. The results show that large-
scale quantitative histological analysis can be achieved by neural network-basedmethods,
and previously hidden information by traditional methods can be revealed. Phylogenetic
mapping of osteon segmentation results suggests a developmental pathway towards
miniaturized body sizes in the evolution of Alvarezsauria, which may resemble the transition
from non-avian dinosaurs to birds.
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INTRODUCTION

Histology provides a unique chance to study the physiology, development, growth and even
reproduction of extinct animals including non-avian dinosaurs. Most paleontological histological
studies focus on the microstructure of fossil skeletal tissues, such as bones, cartilage, and also
eggshells. The earliest histological work on dinosaur fossils can be traced back to Hylaeosaurus and
Pelorosaurus by Mantell (1850), Mantell (1851), who provided the first description of
microstructures in dinosaur bones, which was revisited by a thorough review on the early
history of paleontological histology (Falcon-Lang and Digrius, 2014). Another review by Bailleul
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et al. (2019) provided a systematic summary of recent histological
study advancements in techniques, discoveries, and perspectives.

Most histological studies are destructive for fossil specimens
and there are only few non-avian dinosaur taxa have found
available specimens for large scale comparative studies, thus
quantitative histological studies are limited. Many quantitative
histological studies focus on the growth and evolution of extinct
organisms, including the gigantism and secondary dwarfism of
sauropod dinosaurs (Sander et al., 2006; Lehman andWoodward,
2008), the growth pattern in dinosaurs and pterosaurs,
particularly T. rex and Psittacosaurus (Erickson and
Tumanova, 2000; Erickson et al., 2004; Padian et al., 2004;
Erickson et al., 2009; Zhao et al., 2013). However, most of
quantitative studies rely on manually collected statistics, for
example counting the number of growth lines and calculating
areas of osteons, etc. Machine learning based methods have only
been recently introduced in histological studies by Haridy et al.
(2021). Moreover, researchers may have different interpretations
on the same structures, for example the identification of
medullary bones, which are crucial to understand the sex and
reproduction of extinct animals (Canoville et al., 2020). Although
the identifications of most histological structures have reached
tremendously congruent during the rapid advancements of fossil
histology during the decade (Erickson 2014; Bailleul et al., 2019),
the lack of baselines for evaluation, personal bias, and
considerable cost of time in data processing are challenging
future development of histological studies.

With the recent development of convolutional neural network
(CNN) in image processing, CNN based feature learningmethods
have shown their great potential in biomedical image
segmentation. Ronneberger et al. (2015) presented U-Net,
which was named after its symmetrical encoding and decoding
branches in a U-shape framework, for segmentation of neuronal
structures in electron microscopic stacks. The network was
trained in an end-to-end manner that directly provides
segmentation maps based on the raw images, skip connections
in its U-shape framework can improve the performance of the
expansive path, thus the U-Net has become a popular architecture
for biomedical image segmentation tasks.

Dilated convolution can obtain larger receptive field than
traditional convolution layers. Gu et al. (2019) integrated
dense atrous convolution (DAC) and residual multi-kernel
pooling (RMP) blocks with encoder-decoder structure for
medical image segmentation. DAC with different rates and
RMP are employed to extract high-level features and preserve
spatial information. In order to exploit the useful information
from features in different levels, Wang et al. (2019) developed an
attention module to integrate the outputs of multiple levels. Then
atrous spatial pyramid pooling (ASPP) with dilated convolution
was employed to capture multi-scale information.

The features learned by the standard convolution layers are
not distinctive when the different target categories are similar and
dense connection is a better choice. Gibson et al. (2018) adopted
dense feature stacks in the encoder blocks for better feature
extraction. Zhou Z. et al. (2020) presented UNet++, which
consists of U-Nets of varying depths and the encoders are
densely connected. Chen L. et al. (2018) presented Dense-Res-

Inception Net (DRINet) for organ segmentation of CT images.
Dense connection blocks are used in the encoder blocks and
residual inception block are used in the decoder blocks. Skip
connections are not used for computation efficiency.

Besides, additional priori knowledge can further improve the
performance. Oktay et al. (2018) designed a shape regularization
loss to facilitate image segmentation. The shape information is
encoded to a vector by a trained encoder. As for low-contrast
images, Zhou S. et al. (2020) designed a High-Resolution
Encoder–Decoder Networks for blurry medical image
segmentation, which includes three main pathways: skip
connection, distilling pathway and high-resolution pathway.
Contour information has been integrated with segmentation
task to improve accuracy.

The manual analysis of large-size fossil images is tedious and
unfriendly for even paleontology experts, which also might
involve subjective errors. Motivated by pursuing automatic
objective analysis of osteon distribution in fossil histological
images, we utilized the deep learning-based segmentation
method to recognize the osteon regions of interest: vascular
canal (VC) and circular lamellar bone (CLB). Since there are
primary and secondary osteons distributed in bone thin sections,
here a dual-resolution segmentation strategy is designed to
observe the primary and secondary osteon regions from the
background. The model performance was tested on a dataset
comprising bone thin sections derived from Alvarezsauria
(Dinosauria: Theropoda).

MATERIALS AND METHODS

The segmentation is realized by a deep convolutional neural
networks (CNN) model Φ. The model’s input is a fossil image I,
whose height, width and channel number are H, W, and 3,
respectively. The model’s output is a segmentation map Σ, whose
spatial size is the same with that of I. Σ has 3 channels that
correspond to the background, VC region, and CLB region,
respectively. Thus, the dimensions of Σ is H × W × 3.
Σi, j, k ∈ [0, 1] is a pixel value indexed by ith row and jth

column, and indicates the probability that this pixel belongs to
the kth category of background and osteon regions. By comparing
the three channel indexes of a pixel, the channel index with the
highest probability is the inferred category. In this way, Σ can be
easily converted to a category index map X, as is visualized in
Figure 1. Afterwards, the osteon regions are extracted from X
using image structural analysis techniques. Each region is
described by a triplet descriptor < c, a, R> , where c and a
are the category index and region area, respectively, and R is a
set of pixels located within this region. Finally, the region
descriptors < ci, ai, Ri > (i � 1, 2, . . . . . . , Nr) are collected for
further analysis.

The fossil osteon images have three characteristics. First, the
osteon sizes are not in the consistent level across different
dinosaur taxa and bones. Larger dinosaur bones can
accommodate larger osteon sizes, so that some osteons
captured onto the images are larger. Second, the fossil
histological images have the resolution of 2,576 × 1936,
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compared to the ordinary image’s resolution such as 512 × 512. If
we use the entire image as the segmentation model’s input, the
computation complexity will be high and the mini-batch based
model training will be more difficult to conduct. Third, the
primary osteons are usually significantly smaller than the
secondary osteons and are often incomplete due to distortion
from secondary osteons, which leads to a tradeoff between the
small primary osteons’ clearness and the large second osteons’
shape-completeness if using a single resolution to view the image.
Considering the three problems, we propose the following three
methods, respectively.

1) Osteon Size Sampling:

For the fossil images of a certain dinosaur taxon, we manually
and randomly sampled NSP CLB regions of primary osteons and
NSS CLB regions of secondary osteon. For each osteon region, its
minimum bounding box is obtained and the diagonal length of
the bounding box is used to represent the osteon size. The average
CLB sizes of primary osteons and secondary osteons are
calculated as lP and lS, respectively, which are utilized to
determine the sub-image sizes in the following steps, so that
the observing resolution suits the osteon size level of the given
dinosaur taxon.

2) Split and Mosaic strategy:

Instead of inputting the entire large image into the
segmentation model Φ, we firstly split the entire image into M
sub-images, then use Φ to process these sub-images, and finally
mosaic the segmentation results of these sub-images together to a
single large segmentation map. Therefore, the computation
complexity is lower for the mini-batch based gradient
backpropagation in training stage. Besides, the split of entire
image into sub-images can significantly reduce the correlation
and dependency of nearby osteon regions in the same image,
during the learning stage, so as to enhance the generalization
ability of model inference.

Given an entire image with the size of H × W, we split it into
multiple sub-images with the size of h × w, as is depicted in
Figure 1. The aspect ratio of the sub-image is the same with that
of the entire image, namely, h/w � H/W. For example, if h � H/5
and w � W/5 thus there is no overlapping, there will be 25 sub-

images split from the original image. Generally, assuming H is
not the integral multiples of h, we can pad the entire image with
black borders so that the integral multiple relationship between
image and sub-image size is satisfied. After the sub-images are
collected, they are resized to 480 × 360 and then input to the
segmentation model Φ. The output sub-segmentation maps are
resized back to h × w and then mosaicked together according to
the split order. Thus, the entire segmentation map is obtained
(Figure 1).

Considering that an osteon region might locate at the border
of sub-images, the split operation will cause the osteon region
separated into the two or more different sub-images. A simple
strategy to relieve this problem is to pad the sub-images in the
split operation and center-crop the sub-segmentation maps
before the mosaic operation. As illustrated in Figure 1, when
a sub-image (magenta rectangle with the size of h × w) is split
from the raw image, we can pad it with its neighborhood (cyan
rectangle with the size of 1.25h × 1.25w), so that the two primary
osteon regions located on the upper border can be viewed
completely. After the padded sub-image is processed by the
segmentation model, the sub-segmentation map is center-
cropped back to the size of h × w before used to mosaic the
entire segmentation map. If each sub-image is processed in this
pipeline, the problem of separating osteon regions can be relieved.

3) Dual-Resolution Segmentation strategy:

As aforementioned, the primary osteon region could be
significantly smaller than the secondary osteon region.
Although the deep CNN based segmentation model has the
multi-scale perception ability, we cannot split the raw image
with a single sub-image size meanwhile guaranteeing that both
the primary and secondary region are clearly and completely
observed. Therefore, the dual-resolution segmentation strategy is
designed, which use the higher and lower resolution to observe
the primary and the secondary osteon regions, respectively.

Apparently, the observation resolution is determined by
the sub-image size h × w in the split operation. With the
average CLB sizes of primary and secondary osteon, labeled
as lP and lS, we can build a reltionship between the sub-image
sizes and the average CLB sizes, so that the observation
resolution is adaptive to the osteon size. With the dual-
resolution strategy, we have

FIGURE 1 | Segmentation strategy for fossil osteon image.
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{Resolution 1: hP � hP0 · lP, wP � wP0 · lP
Resolution 2: hS � hS0 · lS, wS � wS0 · lS

, where hP × wP is the sub-image size for primary osteon, hS × wS

is the sub-image size for secondary osteon, hP0, wP0, hS0, andwS0

are the constants describing the linear rela-tionship, which satisfy
hP0/wP0 � hS0/wS0 � H/W.

As is shown in Figure 1, the same raw images are processed by
two pipelines with two different resolutions. The upper branch is
for the primary osteon, with the higher resolution and the smaller
sub-image size. The lower branch is for the secondary osteon,
with the lower resolution and the larger sub-image size. We train
two segmentation models Φ1 and Φ2, for the upper and lower
branches, respectively.Φ1 andΦ2 share the same model structure
but are trained on the two different datasets Δ1 and Δ2. For
example, if there are N0 raw images for training and we use the
split configurations in Figure 1, there will be 25 × N0 sub-images
in Δ1 and 4 × N0 sub-images in Δ2 for the training of Φ1 and Φ2,
respectively.

Segmentation Model Structure
The proposed segmentation model is derived from DeepLabv3+
(Chen L. C.et al., 2018), whose structure is shown in Figure 2.
DeepLabv3+ model is mainly characterized by its atrous spatial
pyramid pooling (ASPP) block and brief structure with only one
skip connection route. We customized the original DeepLabv3+
model as described below.

1) ResNet-50 (He et al., 2016) is used as the backbone feature
extractor, outputting a feature map with 2048 channels and
16 output-stride. Output-stride is the ratio of input image
resolution to map resolution.

2) ASPP block is configured with four branches: an image
pooling branch, a 1 × 1 convolution branch and three 3 ×
3 convolution branches with the atrous rates of {2, 4, 8}. Each
branch’s output map has 256 channels. The four branches’
outputs are concatenated in channels and then compressed as
a 256-channel map by a 1 × 1 convolution layer.

3) The skip connection pulls out the low-level feature map, i.e.
the output of the 8th layer in ResNet-50. The low-level feature
map with 64 channels is adapted to 32-channel by 1 × 1
convolution. The 256-channel high-level feature map is
resized to 4× larger with bilinear-interpolation, and
concatenated with the low-level features. Thus the final
encoder output is a 288-channel multi-scale feature map.

4) In the decoder, the three convolution layers have 3 × 3 kernel
and 1 × 1 stride. The first two layers have the 128-channel

outputs, and the last layer has the 4-channel output with the
4 output-stride. The first two channels are for segmentation
and the last two for contour prediction. Finally, the 4× up-
sampling with bilinear interpolation is used to resize the maps
to the input size. Batch normalization is applied after
convolutional layers to stabilize the training, and Rectified
Linear Unit (ReLU) are used for activation. For the training of
deep CNN segmentation model, we use the standard cross-
entropy loss.

Bone Thin Sections
For histological thin sections, we sampled 6 taxa of Alvarezsauria
dinosaurs from different localities and ages (Table 1.). Long
bones including fibula, tibia, femur, and metatarsal are
sampled to acquire the growth information. The preparation
of bone thin sections can be found in detail in Qin et al. (2021).
The primary and secondary osteons are labelled by authors as
groundtruth. In total 146 thin sections images with resolution of
2,576 × 1936 are obtained. Only thin section images under
normal light are sampled.

Training Details
Considering the large pixel size of each thin section image, we first
sub-divide each 2,576 × 1936 image into four 1,288 × 968 sub-
images (Data Availability: folder Sub-images). Due to their poorly
defined boundaries of osteons and large portion of non-tissue
areas, Haplocheirus images are excluded from the final dataset.
But we still incorporate the raw images in the supplementary
materials. Among the rest 146 raw thin section images, 107
images are selected as training dataset and 39 as testing
dataset, users can divide the training and testing dataset as
needed. Both the training and testing datasets comprise
specimens from five Alvarezsaurian dinosaur taxa ranging
from large to small body sizes to avoid additional bias in

FIGURE 2 | Deep CNN structure for fossil osteon segmentation.

TABLE 1 | Sampled Alvarezsaurian dinosaur bone thin sections.

Taxa Sampled bones Image number

Bannykus wulantensis Fibula 18

Haplocheirus sollers Tibia 28

Qiupanykus zhangi Metatarsal 36

Shishugounykus inexpectus Fibula 29

Xixianykus zhangi Femur, Metatarsal 28 + 22

Xiyunykus pengi Fibula 13
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sampling. The primary and secondary osteons in both the
training dataset and testing dataset are labelled by authors as
the groundtruth, in which every labeled image was cross validated
by different authors to reduce the subjective influence to the
minimum.

As two segmentation models Φ1 and Φ2 are used for the
primary and secondary osteon segmentation, the two models are
training separately but under similar training parameters, except
the batch sizes due to the significant size differences between
primary and secondary osteons. We trained both models for 50
epochs and assigned batch sizes of 16 and 1 for primary and
secondary osteons, respectively. Input image sizes are cropped
into 256 × 256 in the center of the raw images (Figure 1).

RESULTS

The segmentation results are sorted in the order of intersection
over union (IOU):

IOU � SegmentationResult ∩ GroundTruth

SegmentationResult ∪ GroundTruth
, IOU ∈ [0, 1]

, thus better segmented images tend to have an IOU score close to
1. After excluding outlier images with too few or no osteon, the
segmentation results reached a best IOU score of 0.697 and 0.772
for primary and secondary osteons, respectively. The predicted
segmentations and their corresponding original images and
groundtruth are illustrated in Figure 3. Several outliers have
reached better IOU scores but there are too few osteons in the
vision field. The median IOU score for primary and secondary
osteons are 0.476 and 0.409. We also calculate the dice, namely
the Sørensen–Dice coefficient, to measure the performance of our
models in segmenting both the vascular canal (VC) and the entire
osteons in different taxa.

1
dice

� 1
2
× ( 1

Precision
+ 1
Recall

)
Therefore,

dice � 2TP
2TP + FP + FN

, where TP is true positive, FP is false positive, and FN is false
negative.

DISCUSSION

Alvarezsauria is a highly specialized group of non-avian
theropod dinosaurs with worldwide distribution (Bonaparte
1991; Altangerel et al., 1993; Hutchinson and Chiappe, 1998;
Naish and Dyke, 2004; Choiniere et al., 2010; Qin et al., 2019;
Qin et al., 2021). They have a lot of unique features including
the extremely reduced forelimbs and digits, and also resemble
birds in many aspects including cranial kinesis, keeled
sternums, and backward pointed pubis. During their
evolution, Alvarezsaurian dinosaurs suffered sustained
miniaturization, which might be due to the transition in
diet (Xu et al., 2018; Qin et al., 2021).

Osteon is a fundamental structure in cortical bone. With a
roughly cycle shape from transverse bone thin sections, its size
and density are informative to both the growth and evolution
of organisms. In our segmentation maps, the basalmost taxon
Shishugounykus has an average size of individual osteon
significantly higher than all other taxa and the density of
its primary osteon is correspondingly lower. Two larger Early
Cretaceous taxa, Bannykus and Xiyunukus have higher
primary osteon density and smaller primary osteon areas
than the smaller Late Cretaceous taxa Xixianykus and
Qiupanykus (Figures 3, 4C,D). The decrease of primary
osteon density and increase in sizes probably indicate more
rapid growth due to the truncated period of growing that lead
to the substantial miniaturization during the evolution of
Alvarezsaurians.

We also noticed that almost all predicted areas of the primary
osteons are significantly lower than the groundtruth in both training
and testing datasets (Figure 4D), while the predicted areas of the
centered vascular canal are close to the groundtruth. Such contrast
indicates that the localization of osteons, with the high contrast
between dark-colored vascular canal and light-colored surrounding
regions, is a relatively easy task for the neural network, but the
subsequent expansion to segment the entire osteon unit is more
challenging due to vaguely defined border inmany images.Moreover,

FIGURE 3 | Segmentation results of primary and osteons, from left to right: original image, groundtruth, and prediction. The smaller circle in each larger circle labels
the vascular canal.
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although we applied image-split, center-cropping, and padding to
reduce the influences from incomplete osteons, bone remodeling
during growth lead to the destruction of many primary
osteons and bring challenges in correctly segmenting the
entire unit. Another major problem leading to the poor
performance in part of the dataset may be small sample
size, particularly primary osteons in Shishugounykus
(Table 2) that shows outlier 0 in both precision and recall
evaluation, indicating a zero value of true positives in
segmentation results. There are only 7 and 2 primary
osteons manually labeled in the training and testing
datasets, respectively. Thin sections from other taxa
comprise tens to hundreds of osteons thus avoid such
extreme evaluation. On the other hand, generally well-
preserved fossils result in better performance, for example
Xiyunykus and Banykus specimens, while more poorly
preserved fossils with numerous fractures and non-tissue
areas can only be deficiently segmented like the
Qiupanykus specimen. By sampling better preserved fossils
and use sub-divided images that bypass those noises may lead

to better segmentation performance, but whether such
sampling strategy introduces other kinds of bias remains to
be tested.

Due to the limit of available specimens, this study trained models
based on a dataset covering neither the complete phylogeny nor the
ontogeny of known Alvarezsaurian dinosaurs, which shall
significantly influence the performance of segmentation prediction.
As most well performed CNNs are trained on enormous datasets,
which may comprise millions or even more images, adding new data
to train our CNN is highly likely to improve its performance andmay
strengthen its generalization to more broadly sampled dinosaur
specimens. Based on the increasing of paleontological images,
data-driven studies using CNNs would soon facilitate
paleontologists studying evolutionary questions.
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FIGURE 4 | (A). simplified Alvarezsauria phylogeny including taxa used in this study, modified from Qin et al. (2021). (B). Number of primary osteons and vascular
canal in training, testing, and predicting datasets. (C). Average density of vascular canal in primary osteons. (D). Average areas of primary osteons.

TABLE 2 | Detailed segmentation results.

Taxa Unit
precision

Unit
recall

Unit
dice

Unit
iou

VC precision VC recall VC dice VC iou

Primary osteon Xiyunykus 0.775 0.961 0.831 0.718 0.823 0.966 0.857 0.754

Banykus 0.785 0.884 0.770 0.637 0.853 0.901 0.844 0.737

Xixianykus femur 0.670 0.810 0.824 0.710 0.825 0.835 0.838 0.729

Shishugounykus 0 0 na na 0 0 na na

Xixianykus metatarsal 0.457 0.571 0.728 0.585 0.707 0.631 0.798 0.673

Qiupanykus 0.627 0.822 0.820 0.705 0.827 0.864 0.829 0.717

Secondary osteon Banykus 0.584 0.589 0.740 0.604 0.417 0.553 0.701 0.552

Shishugounykus 0.481 0.500 0.741 0.609 0.636 0.538 0.705 0.552
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