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Coal and gas outburst is an extremely serious dynamic phenomenon involving the
comprehensive action of many factors, and remains a major disaster that needs to be
solved in coal mine production. Considering the significant influence of moisture content on
coal and gas outburst, it is necessary to carry out experimental research on coal and gas
outburst under different moisture content conditions. The coal of the serious outburst coal
seam in the Luling coal mine, which has had several coal and gas outburst accidents, was
selected as the experimental sample. Firstly, the gas desorption law and outburst index
characteristics of coal under different moisture content were studied, and the influence of
moisture content on gas outburst parameters of coal was obtained. Then, the simulation
tests of coal and gas outburst under different moisture content were carried out by using a
triaxial coal and gas outburst simulation test system. Based on the above experimental
research, the influence of moisture on coal and gas outburst was summarized, and the
energy calculation and prevention countermeasures of coal and gas outburst under
different moisture content conditions were carried out. With the increase of moisture
content, the adsorption constant a, the initial velocity of gas diffusion Δp, and the gas
desorption index of drill cuttings K1/Δh2 decrease, but the Protodyakonov coefficient f
increases, all of which have an exponential relation to moisture content. Meanwhile, with
the increase of moisture content, the threshold of coal and gas outburst pressure
increases, and the intensity and energy of outburst decrease. At 0.45 MPa pressure,
the outburst of 1.47% moisture content is the most serious, the outburst of 5% moisture
content is weakened, while the outburst of 10% moisture content is not triggered. Five
percent moisture content can be used as a critical index of hydraulic measures to prevent
coal and gas outburst in No. 8 coal seam of the Luling coal mine. This research can provide
new insights into the theoretical study of coal and gas outburst in serious outburst coal
seams and the control of coal and gas outburst by hydraulic measures.
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1 INTRODUCTION

With the growth of coal mining in China, factors such as geostress, gas pressure, geological structure,
and mining activities are changing constantly. Coal seam gas has become the key factor that
constrains safe and efficient production of Chinese deep coal mines (Cheng et al., 2011; Wang et al.,
2012; Chen et al., 2022). The damage caused by coal and gas outburst dynamic disasters is increasing
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day by day. At present, coal and gas outburst accidents have
become the focus of attention (Cheng and Pan, 2020; Wang L.
et al., 2020). Coal and gas outburst involves injecting a large
amount of coal/rock and gas into the mining working face over a
short time. The coal rock is injected from several tons to tens of
thousands of tons, and the gas is emitted from hundreds to
millions of cubic meters, which may lead to a series of disasters
such as gas explosion (Beamish and Crosdale, 1998; Zhao et al.,
2016; Zhi and Elsworth, 2016). Since the first outburst accident
was recorded in the Isaac Coal Mine, France, in 1834, tens of
thousands of outburst accidents have happened all over the world
(Shepherd et al., 1981; Wang et al., 2013; Tu et al., 2021). In the
past decades, coal and gas outburst, as one of the most destructive
disasters in China’s coal production, has caused serious economic
losses and casualties (Cheng et al., 2011; Wang et al., 2017b;
Cheng and Pan, 2020). According to incomplete statistics, there
are more than 1,000 mines with strong coal and gas outburst
danger in China. In the recent 20 years, there have been nearly
500 outburst accidents and more than 3,000 deaths (Sun, 2014;
Zhang et al., 2021). Although coal and gas outburst accidents have
been effectively controlled in recent years, they are still at a
relatively high level and have become more and more prominent
in coal mine accidents. FromApril to June 2021, four coal and gas
outburst accidents happened in succession in China, causing 18
deaths. This shows that coal and gas outburst remains a major
disaster that needs to be solved in China’s coal mine production.

Coal and gas outburst is a very destructive and complex coal/
rock dynamic process (Black, 2019). It is generally believed that
the trigger of outburst is related to geological structure, coal
properties, gas pressure, stress state, and other factors (Díaz
Aguado and González Nicieza, 2007; Jin et al., 2018; Tu et al.,
2021). Moisture is one of the most important factors that
influence gas seepage and coalbed methane extraction (Ding
and Yue, 2018). Generally, moisture in the coal seam will
inhibit gas desorption, diffusion, and seepage, and greater
moisture content generates lower outburst risk (Fan et al.,
2017). Hydraulic measures are important technical measures
that deal with gas hazards, such as coal seam water injection,
hydraulic flushing, hydraulic slotting, and hydraulic fracturing
(Lu et al., 2017; Zhang et al., 2017; Yan et al., 2019; Zhao et al.,
2020). The implementation of hydraulic measures will increase
the moisture content of coal seamwhile relieving in situ stress and
improving gas drainage efficiency (Yang et al., 2019; Yi et al.,
2021). The difference in moisture content affects the adsorption
and desorption capacity of coal and then affects the outburst
parameters and gas outburst capacity of coal (Pan et al., 2010;
Wang K et al., 2021). Coal has a stronger adsorption capacity for
water molecules than methane molecules (Zhang and Sang, 2009;
Wang H et al., 2021). The affinity between methane molecules
and the coal molecule is reduced, and methane molecules are less
aggregated around the coal molecule because of the presence of
water molecules (Meng et al., 2020). Matrix pores are the main
storage space for methane (Fan et al., 2021; Zhang et al., 2022)
and water molecules enter matrix pores of coal body by capillary
suction and mainly act on micropore fractures. If the pressure
difference between the inside and outside of pores cannot
overcome the capillary force, water will block the gas

desorption path and reduce the gas desorption capacity of
coal, resulting in the water lock effect (Hao et al., 2018; Liu
et al., 2019; Qin et al., 2020). After the implementation of
hydraulic measures, the moisture content of coal seam
increases and the permeability decreases, which has a
restraining effect on gas emission and will result in the change
of desorption-induced strains (Chen et al., 2012).

However, most of the studies focus on the influence of different
moisture content on gas adsorption/desorption in coal (Zhang et al.,
2011; Chen and Cheng, 2014; Wang et al., 2017a; Hao et al., 2018;
Zhao et al., 2018; Liu et al., 2019; Qin et al., 2019; Yao et al., 2020).
There are still different views on the influence of moisture on the
characteristics of gas adsorption and desorption in the coal industry,
which is highly controversial. At present, most studies conducted are
single studies, and water studies and coal and gas outburst
experiments are separate. There are relatively few studies that
examine the law of coal and gas outburst intensity under
different moisture content conditions and the key control indexes
of coal and gas outburst prevention under hydraulic measures
combined with coal and gas outburst simulating tests. Most coal
and gas outburst simulating tests are used to focus on themechanism
and characteristics of gas outburst, while moisture content
experiments are used to study the characteristics and microscopic
characteristics of coal body. In addition, the process of hydraulic
measures implemented on site shows that too little water is not
conducive to gas control, and toomuchwater can lead to difficult gas
extraction and environmental pollution. In addition, the process of
hydraulic measures implemented on site shows that too little water is
not conducive to controlling gas, while too much water will lead to
gas extraction difficulty and environmental pollution. It is
particularly important to select a suitable water content index for
specific coal seam in hydraulic measures, but there is no unified
method at present. Therefore, it is necessary to study the influence of
moisture on the gas outburst parameters, the energy of coal and gas
outburst, and the selection of key moisture content index in
hydraulic measures, which is of great significance for preventing
gas disasters and guiding the field production in coal mines.

A total of 26 coal and gas outburst accidents happened in the
Luling coal mine in Anhui Province, China, with a high frequency
and a high intensity of gas outburst. Among them, the one with
the largest outburst intensity happened in No. 8 coal seam on
April 7, 2002. A total of 10,500 t of coal/rock were injected, and
1.23 million m3 of gas was emitted, resulting in 13 deaths (Wang
L. et al., 2020). Therefore, the test coal sample was taken from No.
8 coal seam in the Luling coal mine in view of its strong outburst
risk. In this paper, based on the study of the outburst physical
parameters of coal sample under different moisture content, the
influence of different moisture content on gas desorption of coal
was explored. The influence of moisture content on the gas
outburst parameters of coal and the intensity of coal and gas
outburst were studied by combining various experimental
devices. Then, the simulation tests under different moisture
content were carried out using the simulation test system to
explore the influence of moisture on the laws and characteristics
of coal and gas outburst. The characteristics of coal and gas
outburst under different moisture content conditions and the key
moisture content index of coal and gas outburst prevention under
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hydraulic measures were analyzed in the end. With this study, the
relevant laws of coal and gas outburst dynamic disasters of strong
outburst coal with different moisture content can be further
understood. It is hoped that this study can provide technical
guidance for hydraulic measures to prevent and control coal and
gas outburst dynamic disasters.

2 MATERIALS AND METHODS

2.1 Coal Samples Preparation
The Luling coal mine is located in Huaibei Coalfield, Anhui
Province, China. It has been affected by many geological
tectonic movements, resulting in extremely complex
geological environment and tectonic features. The in situ
stress in the Luling coal mine is concentrated because it is
located near the top of the lateral arc. No. 8 coal seam is the
main mining seam, the roof of which is fine sandstone/
mudstone and the floor is mudstone (Wang L. et al., 2020).
The complex environment seals the gas in the coal seam,
resulting in high gas content and pressure. In addition,
because of the large number of folds and faults, the local
thickness of No. 8 coal seam varies greatly, which increases
the risk of coal and gas outburst. There have been many
outburst accidents in No. 8 coal seam, which has strong

outburst risk. Therefore, coal samples were extracted from a
working face of No. 8 coal seam in the Luling coal mine in
this study.

The independent variable of this study is moisture content, so
coal samples with different characteristic parameters need to be
prepared. According to different experimental requirements, coal
samples with corresponding particle size were crushed and
screened. The drying oven was used to fully dry the coal
samples. Then, the dry coal samples were saturated with
distilled water for 3 days by the vacuum water saturation
instrument for them to fully absorb water. After that, the
wet coal samples were taken out and water drops on the
surface of the coal particles were adsorbed using filter paper.
Then, the vacuum drying oven was used to dry the sample sieves
containing the coal samples to obtain different moisture content
by controlling the drying time. Finally, the sieves were taken out
and the coal samples therein were stored in the sealing bag,
successively.

2.2 Gas Outburst Parameter Determination
of Coal With Different Moisture Content
2.2.1 Adsorption Constant a
Coal is a porous medium with a large number of fractures and
pores in its interior, which provide sufficient space for gas

FIGURE 1 | Schematic of the gas adsorption/desorption experimental devices. (A) HCA gas adsorption experimental device. (B) FM-1 gas isothermal desorption
device.
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adsorption. The relationship between gas adsorption and gas
pressure can be represented as Eq. 1:

Q � abp
1 + bp

(1)

Where p is the equilibrium pressure of adsorption, MPa; Q is the
gas adsorption capacity of coal sample per unit mass when the
adsorption equilibrium pressure is p, m3/t; a is the limit
adsorption capacity of coal sample per unit mass, m3/t; and b
is the reciprocal of equilibrium pressure corresponding to the
adsorption capacity reaching half of Langmuir volume, MPa−1.

Adsorption constant a of coal samples was measured
according to the China National standard MT-T 752-1997 via
an HCA gas adsorption experimental device, as shown in
Figure 1A. The particle size of coal samples with different
moisture content used in the experiment is 0.2–0.25 mm and
the mass is 50 g.

2.2.2 Protodyakonov Coefficient f
The Protodyakonov coefficient, f value, of coal samples (hereafter
referred to as f) was determined according to the China National
standard GB/T 23561.12-2010. The particle size of coal samples
with different moisture content is 1–3 mm and the mass is 50 g. It
is generally believed that the f of intact coal is in the range of
0.75–1.5.When f is less than 0.5, the coal properties indicate a risk
of a coal and gas outburst. When f is less than 0.3, this coal is
considered to be strong outburst risk (Wang C et al., 2020).

2.2.3 Initial Velocity of Gas Diffusion
The initial velocity of gas diffusion (hereafter referred to as Δp)
was determined according to the China National standard
AQ1080-2009 via a WT-1 gas diffusion velocity analyzer. The

particle size of coal samples with different moisture content is
0.2–0.25 mm.

2.3 Gas Desorption Experiment of Coal With
Different Moisture Content
Gas desorption capacity of coal has an important influence on the
generation and development of coal and gas outburst. The
moisture content greatly affects the gas desorption capacity of
coal. Therefore, it is of fundamental and important significance to
study the gas desorption characteristics of strong outburst coal
under different moisture content conditions. Gas desorption
experiments were carried out under the adsorption
equilibrium pressure of 0.74, 1, 2, 3, and 4 MPa via a FM-1
gas isothermal desorption device, as shown in Figure 1B (Zhao
et al., 2016). The particle size of coal samples is 1–3 mm and the
moisture content of coal used in the experiment are 1.68%, 3.42%,
5.19%, and 6.81%, respectively. After converting the measured
data into standard data, the desorption curve was drawn.

2.4 Coal and Gas Outburst Analogical
Simulating Test Under Different Moisture
Content
The triaxial coal and gas outburst simulation test system was
designed and completed by the research team according to the
similarity theory, which satisfies the geometric similarity, motion
similarity, and dynamic similarity (Tu et al., 2016; Lei et al., 2020).
It is mainly composed of four systems: outburst chamber, loading
system, data collection system, and gas injection/vacuum
pumping system, as shown in Figure 2. The interior space size
of the outburst chamber is designed to be 250 × 250 × 310 mm,
and the wall thickness is about 80 mm. An outburst port of
approximately 50 mm diameter is set in the front of the chamber,
and a gas injection/exhaust port is set in the front right of the
chamber. For safety reasons, CO2 was used in place of explosive
CH4. The ambient temperature was 25°C; the triaxial loading
pressures for σx, σy and σz were all 5 MPa; and the outburst
pressure was set to 0.25–0.45 MPa. The test scheme is shown in
Table 1. Each outburst simulation test was performed according
to the following steps:

1) Coal sample preparation—the coal sample with the
corresponding moisture content was prepared, and the
particle size of coal was 0.25–0.5 mm.

2) Coal briquette pressing—the outburst chamber was filled with
coal sample after the coal sample preparation was completed.
Then, the coal sample in the chamber was preliminarily
compacted horizontally using the loading system. After
adding the appropriate amount of coal samples to the
chamber, the press was increased to 48 MPa for secondary
pressing and the loading time was kept for 40 min. In this way,
the coal briquette will be pressed successfully according to
previous studies.

3) Vacuum pumping/gas charging—after confirming that the
chamber was sealed, it was vacuumed for 12 h. Then, CO2 was

FIGURE 2 | Schematic of the triaxial coal and gas outburst simulation
test system.
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injected into the chamber for at least 48 h to make it fully
adsorbed and balanced to the target pressure.

4) Outburst preparation—a loading stress of σx = σy = σz
=5 MPa was applied to the chamber, and the gas pressure
in the chamber was confirmed with minimal changes by the
pressure transmitters.

5) Outburst induced—the plug of the outburst port was
removed, causing the outburst.

6) Data acquisition—the key parameters were obtained from the
test site.

3 RESULTS AND ANALYSIS

3.1 Gas Outburst Parameter Characteristics
The adsorption constant a, f, and Δp of coal samples with a
moisture content of 1.68%, 3.42%, 5.19%, and 6.81% were
determined, as shown in Figure 3. The curves in Figure 3
were obtained by fitting data points, and their goodness of fit
were all above 0.99.

3.1.1 Results of Adsorption Constant a
Figure 3 illustrates that the adsorption constant a of coal
decreases with the increase of moisture content. This indicates

that the limit adsorption capacity of gas decreases due to the
moisture of coal. In addition, with the increase of moisture
content, the decline curve tends to flatten and the rate
decreases. It is highly probable that the adsorption constant
a will not change with the further increase of moisture content.
The main reason for the above results is that the fractures and
pores of coal are filled with water, which affects the adsorption
of gas in three aspects: 1) A part of the decomposed water and
free water in the coal body combine with the coal structure
surface through acting force, occupying a certain amount of
adsorption space on the coal structure surface. This reduces the
effective space for gas adsorption to a certain extent, leading to
the decrease in the amount of adsorbed gas. 2) Some fractures
and pores in the coal body are very narrow, and free water
cannot reach its interior. However, some water will enter into
these narrow fractures and pores in the form of water vapor,
which will form a competitive relationship with CH4, resulting
in a decrease in the amount of adsorbed gas. 3) The influence of
moisture on the adsorption characteristics of coal will be
greatly weakened after the coal is saturated with water
(Yang et al., 2017).

3.1.2 Results of Protodyakonov Coefficient f
f can represent the ability of coal to resist outburst (Xue et al.,
2014). The smaller the value of f, the lower the strength of coal
and the higher the deformability. This means that coal and gas
outburst is more dangerous (Fan et al., 2020). It can be seen from
Figure 3 that the f increases with the increase of moisture content,
and the increase rate gradually decreases and tends to be gentle.
The internal friction angle decreases linearly with the increase of
moisture content while the cohesion increases parabolically with
the increase of moisture content, which is beneficial to the
consolidation of the coal body (Wang H et al., 2021). The
more moisture content in the coal, the harder it is to be
crushed, and the lower the risk of coal and gas outburst.

3.1.3 Results of Initial Velocity of Gas Diffusion
Δp is one of the important indicators for discriminating coal and
gas outburst risk. It characterizes the microstructure of coal and
indicates the gas emission capacity of coal, which greatly affects
the intensity of coal and gas outburst. It can be used individually
or combined with other parameters to predict the outburst risk
tendency of coal seams (Zhou et al., 2019). As can be seen from
Figure 3, Δp decreases with the increase of moisture content, and
shows a gradual decrease and flattening trend, which is similar to

TABLE 1 | Scheme for coal and gas outburst simulation test.

Test number Gas type Moisture content
(%)

Gas pressure
(MPa)

Ambient temperature
(°C)

Triaxial stress

σz (MPa) σx (MPa) σy (MPa)

1 CO2 1.47 0.25 25 5 5 5
2 CO2 1.47 0.35 25 5 5 5
3 CO2 1.47 0.45 25 5 5 5
4 CO2 5 0.35 25 5 5 5
5 CO2 5 0.45 25 5 5 5
6 CO2 10 0.45 25 5 5 5

FIGURE 3 | Variation law of the gas outburst parameters with moisture
content.
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the change law of the adsorption constant a of coal. This shows
that water has a significant inhibitory effect on gas emission. After
water molecules enter the fractures and pores of coal body, the

water lock effect is generated, which hinders the movement of
methane molecules, resulting in the decrease of gas desorption
amount per unit time and the decrease of desorption rate. This is

FIGURE 4 | Gas desorption curves of coal samples with different moisture content at different adsorption equilibrium pressure. (A) Equilibrium pressure of
0.74 MPa. (B) Equilibrium pressure of 1 MPa. (C) Equilibrium pressure of 2 MPa. (D) Equilibrium pressure of 3 MPa. (E) Equilibrium pressure of 4 MPa. (F) Accumulated
gas desorption amount.
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consistent with the findings of others (Wang et al., 2017a; Wang
et al., 2018).

3.2 Gas Desorption Characteristics
The desorption curves of coal with different moisture content at
the equilibrium pressure of 0.74, 1, 2, 3, and 4 MPa are shown in
Figure 4.

The relationship between the accumulated gas desorption
amount and desorption time is a monotonically increasing
parabola (Figure 4). In the initial period of gas desorption, the
gas desorption amount is large and the desorption rate is fast.
With the passage of time, the desorption rate decreases and the
desorption amount gradually flattens out. With the increase of
adsorption equilibrium pressure, the accumulated gas desorption
amount of coal samples with different moisture content increases.
Under the same adsorption equilibrium pressure, the desorption
curve of coal samples with higher moisture content is always

below that of coal samples with lower moisture content,
indicating that the desorption amount decreases with the
increase of moisture content in the coal.

Figure 4F shows the relationship between the gas desorption
amount and moisture content in 120 min under different
pressures. With the increase of moisture content, the gas
desorption amount in 120 min decreased gradually. In
general, the desorption quantity decreases greatly in the
initial increasing stage of moisture content. With the increase
of moisture content, the decrease of desorption capacity
decreases gradually. This law is more obvious at lower
adsorption equilibrium pressure because the influence factors
of pressure on gas desorption is weakened.

3.3 Coal and Gas Outburst Characteristics
3.3.1 Test Results of Coal andGasOutburst Simulation
The tests in Table 1 were carried out under the same
environmental conditions, and the results are shown in
Table 2. The test results are divided into two cases:
outburst and no outburst. For the outburst case, the coal
powder thrown out has the same shape (spindle distribution),
showing a wide shape in the middle of the two ends of the tip
(Figure 5).

The test results show that the change of gas pressure and
moisture content greatly affects the trigger and intensity of coal
and gas outburst. It can be found that gas pressure threshold
exists in the trigger of coal and gas outburst, andmoisture content
will greatly affect the pressure threshold (Ding and Yue, 2018; Lei
et al., 2020). With the increase of moisture content, the threshold
of gas pressure increases and the intensity of outburst decreases.
Outburst was triggered at a gas adsorption equilibrium pressure
of 0.35 and 0.45 MPa when themoisture content was 1.47%, while
the coal with a moisture content of 5% was only triggered at a
pressure of 0.45 MPa, and the amount of coal powder thrown out
was relatively less. The coal with a moisture content of 10% did
not even trigger outburst at a pressure of 0.45 MPa.

The characteristics of residual briquette after outburst are
also significantly different, as shown in Figure 6. The outburst
hole of the coal with 5% moisture content was complete and
round. The residual coal in the chamber was relatively complete
and less broken. When the moisture content was 1.47% and the
gas pressure was 0.35 MPa, the outburst hole was larger and
more fractures appeared on the surface and inside of the residual
briquette. When the moisture content was 1.47% and the gas

TABLE 2 | Simulation test results of coal and gas outburst.

Test
number

Moisture
content (%)

Gas
pressure (MPa)

Trigger
of

outburst (Y/N)

Coal
briquette
mass (kg)

Outburst coal
powder

mass (kg)

Maximum
outburst

distance (m)

Relative outburst
intensity

(%)

1 1.47 0.25 N 20.135 0 0 0
2 1.47 0.35 Y 20.367 3.785 11.54 18.21
3 1.47 0.45 Y 20.127 5.714 15.83 26.47
4 5 0.35 N 20.974 0 0 0
5 5 0.45 Y 20.726 3.538 11.13 17.07
6 10 0.45 N 21.869 0 0 0

The bold values indicate that the coal and gas outburst was triggered in this group test.

FIGURE 5 | Shape characteristics of the outburst coal powder
thrown out.
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pressure was 0.45 MPa, the damage to the residual briquette was
the most serious, and most of the coal in the chamber was
broken.

3.3.2 Characteristics of Coal and Gas Outburst
Process
When the outburst was triggered, the high-pressure gas
carrying coal in the chamber was jetted out rapidly, and
the duration was very short, only about 1 s. The two-phase
gas–solid mixtures caused by the outburst propagated as
shock waves and flows from the sources (Zhou et al.,
2020). The entire outburst process was divided into four
stages: preparation, trigger, development, and termination
(Zhao et al., 2016). Figure 7 shows the typical motion state in
the outburst process of test 3. In the outburst trigger stage, the
coal was broken and thrown out under the action of high-
pressure gas and stress. At this time, the mass and velocity of
the thrown coal were increasing. The free gas in the chamber
had enough energy to break, transport, and throw away the
coal. During the outburst development stage, the mass and
velocity of the thrown coal were relatively stable because the
desorption gas was converted into free gas to supplement
energy. At the outburst termination stage, the effect of gas
and stress was not able to further break down and throw out
the coal, so the mass and velocity of the thrown coal

decreased, and finally the outburst came to an end. The
whole outburst process experienced three periods:
acceleration period, stabilization period, and attenuation
period. The three stages are closely related to the energy of
coal destruction and migration.

FIGURE 6 | Outburst hole characteristics of different simulation tests. (A) Test 2: 1.47% moisture content and 0.35 MPa pressure. (B) Test 3: 1.47% moisture
content and 0.45 MPa pressure. (C) Test 5: 5% moisture content and 0.45 MPa pressure.

FIGURE 7 | The process of coal and gas outburst in simulation tests.

FIGURE 8 | Mass distribution of coal powder at different distances.
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3.3.3 Distribution Characteristics of Coal Powder
After each outburst, the coal powder scattered on the ground was
weighed to obtain the distance distribution, as shown in Figure 8.
The distance between the thrown coal powder and the outburst
port in a test was divided into five zones equally: zones Ⅰ, Ⅱ,Ⅲ,Ⅳ,
and Ⅴ. The mass and proportion of the outburst coal powder in
each zone are shown in Table 3.

Most of the coal powder was concentrated in zonesⅢ,Ⅳ, and
Ⅴ, while the distribution in zones I and Ⅱ was rare, the sum of
which was less than 15%. This phenomenon indicates that there is
enough energy in the chamber to break a large amount of coal and
throw it out for a long distance in the early andmiddle stage of the
outburst. With the continuous development of the outburst
process, the energy is consumed greatly, and only a small part
of the coal is broken and thrown out for a short distance. Finally,
the outburst process terminates, which is also consistent with the
outburst process analysis.

Compared with tests 3 and 5, when the moisture content of
coal increased from 1.47 to 5%, the mass proportion of coal
powder in zones Ⅲ and Ⅳ increased significantly, while that in
zones Ⅴ decreased by 8.31%. In addition, the maximum distance
of coal ejection was shortened by 4.67 m. The moisture content of
coal has a great influence on the distance and distribution of the
outburst coal powder. With the increase of moisture content, the
bonding between coal particles increases (Wang H et al., 2021).
Since coal rock mass is a porous medium, its internal pores and
fractures are filled by water molecules, which increases the density
of a single coal particle, so the thrown coal powder becomes more
concentrated.

4 DISCUSSION

4.1 Energy Analysis of Coal and Gas
Outburst
The complete coal and gas outburst process goes through four
stages: the preparation stage, the trigger stage, the development
stage, and the termination stage. The energy required for outburst
changes constantly at each stage. In the preparation stage, gas
pressure and stress fully compress the skeleton of coal, resulting
in a large amount of elastic potential of coal (Tu et al., 2021). In
addition, 90% of the gas in coal is in the adsorption state and has
great expansion potential. In the trigger stage, the equilibrium
state of the coal body is broken, the free gas and stress release
energy quickly to do work on the coal body, and the outburst
accident is triggered (Hou et al., 2021). In the development stage,
adsorbed gas with high pressure gradient can be desorbed quickly

to supplement energy, and the coal body is continuously stripped,
broken and thrown out by free gas. For the simulation test of coal
and gas outburst in this study, the algorithm for defining energy is
shown in Eq. 2 (Guo, 2014). In the outburst simulation test, coal
and gas are thrown into free open space, which is different from
the coal and gas thrown into the roadway in the actual coal and
gas outburst. The energy calculated by this method is also
different from the actual outburst energy, but the energy
variation trend is consistent.

E � ∑
n

i�1
Ei (2)

Where E is the total outburst energy of coal and gas outburst
simulation test, kg·m; Ei is the energy of pulverized coal thrown
out within the range of i, Ei � imi; i is the per-unit distance
between the thrown coal powder and the outburst port, which is
an integer, m; and mi is the mass of thrown coal powder within
the range of i.

Figure 9 shows the variation characteristics of outburst energy
per unit distance in different tests. The outburst energy of the
three tests increased first and then decreased with the distance of
coal powder thrown out. The calculated outburst energy was
mainly concentrated in the rear, indicating that the outburst
energy is large in the early and middle period of outburst, which
can break the coal body and throw it to a long distance. The total
energy of outburst in tests 2, 3, and 5 was 29.8554, 62.0029 and

TABLE 3 | Distribution of outburst coal powder in different zones.

Test number Moisture content (%) Proportion of coal powder mass (%)

Zone Ⅰ Zone Ⅱ Zone Ⅲ Zone Ⅳ Zone Ⅴ

2 1.47 1.69 10.46 21.96 35.94 29.95
3 1.47 1.51 12.23 19.45 29.94 36.87
5 5 1.41 9.89 23.91 36.23 28.56

FIGURE 9 | Variation characteristics of outburst energy with distance of
throwing coal.
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27.5826 kg·m, respectively. The total outburst energy in test 3 was
the largest. With the decrease of moisture content and gas
pressure, the total outburst energy and outburst intensity
decreased. Compared with tests 3, the total energy in test 5
was reduced by 34.4203 kg·m.

4.2 Effect of Moisture on Coal and Gas
Outburst
The gas desorption index of drill cuttings K1 and Δh2 are
indicators to predict and judge the risk of coal and gas
outburst through the correlation law of gas adsorption and
desorption of coal, which are widely used in gas prevention
and control technology in China. K1 reflects the gas
desorption amount of coal in the first 1 min, and Δh2 reflects
the gas desorption amount within 4–5 min (State Administration
of Work Safety, 2019; Wang F et al., 2020). K1 and Δh2 can be
obtained by intercepting the corresponding data of gas desorption
experiment in Section 3.2, which can further analyze the risk of
coal and gas outburst, as shown in Figure 10. When the gas
adsorption equilibrium pressure is 4 MPa and the moisture
content is 1.68%, K1 and Δh2 are the largest. When the gas
pressure is the same, K1 and Δh2 decrease and tend to be gentle
with the increase of moisture content of coal, showing an
exponential law. The gas outburst parameter experimental
results show that with the increase of moisture content, the
adsorption constant a of coal decreases and the limit
adsorption amount of gas decreases. The f of coal increases,
and the coal body strength increases, thus increasing the energy
threshold required by coal and gas outburst. The desorption
capacity of gas decreases as the Δp decreases. All of them have an
exponential relation to moisture content. The results of gas
desorption experiments show that with the increase of
moisture content, the accumulated gas desorption amount and
the initial desorption rate decrease obviously. All the above laws
indicate that the increase of moisture content weakens the risk of
coal and gas outburst. According to the variation law of each
parameter with moisture content, it can be predicted that there is
a certain limit of moisture content. When the moisture content
exceeds its value, the increase of coal seam solidity coefficient and

the decrease of gas desorption velocity will no longer be obvious.
Meanwhile, the adsorption constant a, f, Δp, K1, and Δh2 of coal
will not change significantly, but remain roughly stable at a
certain value.

When the moisture content of coal is low, a large amount of
adsorbed gas is desorbed into free gas, and the intensity of coal
and gas outburst is large. On the contrary, when the moisture
content increases, the water lock effect makes the desorption
amount of coal decrease greatly. Moreover, the coal body
plasticity increases, elasticity decreases, and the ability to resist
damage also increases, which weakens the possibility of outburst.
In the coal mine site, the stress concentration zone of the working
face is transferred to the depth of the coal seam, so as to reduce the
stress in front of the working face. At the same time, water will
have an obvious blocking effect on gas migration, which can
reduce the risk of outburst. Therefore, the risk of coal and gas
outburst decreases with the increase of moisture content, and the
outburst may not be triggered when the moisture content
increases to a critical value.

4.3 Key Indexes of Coal and Gas Outburst
Prevention Under Hydraulic Measures
Hydraulic measures can reduce the outburst risk of coal seam to a
large extent and escort the smooth development of mining face.
In the process of gas control in coal mine site, too little water is
not conducive to control the risk of coal and gas outburst.
However, too much water will lead to the water lock effect
(Hao et al., 2018; Liu et al., 2019; Qin et al., 2020), making it
difficult for gas to be pre-extracted, which is also not conducive to
the prevention and control of coal and gas outburst. Table 4
shows the critical value of outburst risk index commonly used in
China (State Administration of Work Safety, 2019). In this study,
the gas outburst parameters of No. 8 coal seam in the Luling coal
mine under different moisture content were obtained. According
to the fitting formula in Figure 3, when the moisture content is
greater than 5%, the Δp is <10 and the f is >0.5. Figure 11 shows
the Δh2 fitting curve of coal with a moisture content of 5.19%
under different gas pressures. When the gas pressure is 0.74 MPa,
Δh2 is 98.34 Pa, far less than the critical value of 160 Pa. The

FIGURE 10 | Effect of different moisture content of coal on K1 and Δh2. (A) Effect on K1. (B) Effect on Δh2.
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simulation test of coal and gas outburst also shows that it is
more difficult to outburst when the moisture content of coal is
greater than 5%. Therefore, it can be inferred that in No. 8 coal
seam of the Luling coal mine, the coal body moisture content
interval of hydraulic measures for coal and gas outburst should
be greater than 5%. Therefore, 5% moisture content of coal
body can be used as a critical index of hydraulic measures to
prevent coal and gas outburst in No. 8 coal seam of the Luling
coal mine.

5 CONCLUSION

In this study, we systematically studied the gas outburst
parameters and gas desorption characteristics of the strong
outburst coal under different moisture content in No. 8 coal
seam of the Luling coal mine. Additionally, the coal and gas
simulation tests under different moisture content were carried
out using the simulation test system to explore the influence of
moisture on the law and characteristics of coal and gas outburst.
The main conclusions are as follows:

1) With the increase of moisture content, the adsorption
constant a, the initial velocity of gas diffusion Δp, and the
gas desorption index of drill cuttings K1 and Δh2 of coal
decrease, but the Protodyakonov coefficient f of coal increases.
Meanwhile, the accumulated gas desorption amount and the

initial desorption rate decrease obviously. All of them have an
exponential relation to moisture content. Increasing the
moisture content of strong outburst coal is beneficial to
reduce the outburst risk.

2) The entire outburst process is divided into four stages:
preparation, trigger, development, and termination. The
change of moisture content greatly affects the
characteristics and energy of coal and gas outburst. With
the increase of moisture content from 1.47% to 5%, the
threshold of gas pressure increases and the intensity of
outburst decreases, the amount of coal powder thrown
out is relatively less, and the maximum distance of coal
ejection is shortened by 4.67 m. Furthermore, the total
outburst energy decreases by 34.4203 kg·m.

3) The coal and gas outburst may not be triggered when the
moisture content increases to a critical value. When the
moisture content of the strong outburst coal is greater than
5%, Δp is <10, f is >0.5, and Δh2 is < 160 Pa, which indicate
that the risk of outburst is greatly reduced. Therefore, 5%
moisture content of coal body can be used as a critical index of
hydraulic measures to prevent coal and gas outburst in No. 8
coal seam of the Luling coal mine.
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