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The drivers of rapid Arctic climate change—record sea ice loss, warming SSTs, and a
lengthening of the sea ice melt season—compel us to understand how this complex
system operates and use this knowledge to enhance Arctic predictability. Changing
energy flows sparked by sea ice decline, spotlight atmosphere-surface coupling
processes as central to Arctic system function and its climate change response.
Despite this, the representation of surface turbulent flux parameterizations in models
has not kept pace with our understanding. The large uncertainty in Arctic climate change
projections, the central role of atmosphere-surface coupling, and the large discrepancy in
model representation of surface turbulent fluxes indicates that these processes may serve
as useful observational constraints on projected Arctic climate change. This possibility
requires an evaluation of surface turbulent fluxes and their sensitivity to controlling factors
(surface-air temperature and moisture differences, sea ice, and winds) within
contemporary climate models (here Coupled Model Intercomparison Project 6). The
influence of individual controlling factors and their interactions is diagnosed using a
multi-linear regression approach. This evaluation is done for four sea ice loss regimes,
determined from observational sea ice loss trends, to control for the confounding effects of
natural variability between models and observations. The comparisons between satellite-
and model-derived surface turbulent fluxes illustrate that while models capture the general
sensitivity of surface turbulent fluxes to declining sea ice and to surface-air gradients of
temperature and moisture, substantial mean state biases exist. Specifically, the central
Arctic is too weak of a heat sink to the winter atmosphere compared to observations, with
implications to the simulated atmospheric circulation variability and thermodynamic
profiles. Models were found to be about 50% more efficient at turning an air-sea
temperature gradient anomaly into a sensible heat flux anomaly relative to
observations. Further, the influence of sea ice concentration on the sensible heat flux
is underestimated in models compared to observations. The opposite is found for the
latent heat flux variability in models; where the latent heat flux is too sensitive to a sea ice
concentration anomaly. Lastly, the results suggest that present-day trends in sea ice
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retreat regions may serve as suitable observational constraints of projected Arctic
warming.

Keywords: turbulent fluxes, Arctic sea ice, CMIP6, AIRS, Arctic warming

INTRODUCTION

Sea ice and its overlying snowpack shape energy flows through
the Arctic by reflecting the majority of the solar radiation in the
sunlit months and inhibiting the Arctic Ocean and atmosphere
from exchanging heat, moisture and momentum year-round
(e.g., Screen et al., 2013; Vihma, 2014; Boisvert et al., 2015b;
Taylor et al., 2018). As global temperatures rise due to climate
change, the Arctic is warming faster than anywhere else on the
Earth (IPCC, 2013), known as Arctic Amplification (Serreze et al.,
2009; Screen and Simmonds, 2010a; Screen and Simmonds,
2010b). In response, Arctic sea ice has melted and satellite
monitoring of sea ice extent has shown that the summer
minimum has decreased at a rate of ~14% per decade over the
past 4 decades (Cavalieri and Parkinson, 2012; Stroeve and Notz,
2018). From 2009 to 2020, the Arctic saw 11 out of the lowest 13
September sea ice extents of the satellite record. Arctic sea ice
extent is decreasing in all months, with the most rapid declines
occurring since the early 2000s (Parkinson and DiGirolamo,
2016). In addition to declining sea ice extent, the totality of
the changing conditions in the Arctic, including a warming of
SSTs and a lengthening of the sea ice melt season, contribute to
increases in evaporation and turbulent fluxes (e.g. Steele et al.,
2008; Markus et al., 2009; Stroeve et al., 2014; Boisvert et al.,
2015a; Taylor et al., 2018; Boeke et al., 2021).

Increased sensible (SHF) and latent (LHF) heat fluxes play an
important role in the Arctic Amplification process. Although the
Arctic sea ice albedo feedback is largest in the summer months,
the strongest warming has occurred in fall and winter (Deser
et al., 2010). This wintertime warming maximum has been linked
to sea ice loss using observations, meteorological reanalysis, and
climate model simulations (Boeke and Taylor, 2018; Screen and
Simmonds, 2010a; Screen et al., 2012; Serreze et al., 2009). One
way in which sea ice influences the winter warming maximum is
that reduced sea ice cover promotes increased turbulent fluxes
from the ocean surface to the lower atmosphere and drives
atmospheric warming (Screen and Simmonds, 2010b).

Given the multiple mechanisms through which surface-
atmosphere coupling processes influence Arctic climate system
evolution, one may be surprised to find that the representation of
surface turbulent flux parameterizations has not kept up with our
understanding. Bourassa et al. (2013) indicate that modern
understanding of the physics behind the bulk formula
parameterizations and their application over highly stable and
heterogeneous sea ice surfaces has not been incorporated into
surface flux parameterizations (e.g., Brunke et al., 2006; Grachev
et al., 2007; Andreas et al., 2010a; Andreas et al., 2010b; Reeves
Eyre et al., 2021). While there have been changes to these
parameterizations globally that have produced more accurate
surface turbulent fluxes in the mid-latitudes; these changes
have not significantly improved estimates in the Arctic

(Bourassa et al., 2013). As a result, turbulent fluxes in the
Arctic from reanalyses and climate models are inaccurate and
often get the magnitude and sign of the fluxes incorrect when
compared to in situ and satellite-derived data (Boisvert et al.,
2015b; Taylor et al., 2018; Graham et al., 2019; Renfrew et al.,
2021).

The large disparities between modeled and observed turbulent
fluxes (Cullather and Bosilovich, 2011; Boisvert et al., 2015b;
Graham et al., 2019; Taylor et al., 2018; Bourassa et al., 2013) are
caused by multiple factors: 1) the specific parameterizations and
assumptions used in the bulk formula, 2) discrepancies in sea ice
properties, which drive the surface temperature and humidity and
drag coefficients, 3) the representation of near surface-air
temperature and humidity gradients, and 4) the spatial and
temporal resolution. Currently, climate models and reanalyses
apply mid-latitude boundary layer parameterizations in the
Arctic (Bourassa et al., 2013). However, the boundary layer
over sea ice is more stable than the nocturnal boundary layer
over land, resulting in substantial flux errors (Grachev et al.,
2007). The basic difference between these stable boundary layers
is that the surface boundary layer in the Arctic is long-lived.
Hence, there is usually no residual layer separating the Arctic
surface boundary layer from the free atmosphere, making it more
responsive to the influence of gravity waves, an additional source
of turbulence (Zilitinkevich and Esau, 2007). Boisvert et al.,
(2015a) demonstrate that the magnitude of the fluxes in these
stable boundary layers in the winter produced with the Grachev
et al. (2007) algorithm are on average 24% larger than those
calculated with Holtslag and de Bruin (1988), which is widely
used in climate models.

Accurate roughness lengths for wind speed, humidity and
temperature profiles over the ice are required to determine the
transfer coefficients and to calculate the fluxes (Andreas, 2002;
Andreas et al., 2010a). These have often been difficult to estimate
and there are large inaccuracies especially over the sea ice due to
its complex and heterogeneous topography, consisting of ridges
and leads. Climate models often represent Arctic sea ice
simplistically and cannot reproduce the sea ice extent,
thickness and loss from observations and lack arepresentation
of surface topography (Schweiger et al., 2011; Stroeve J. et al.,
2014; Holland et al., 2010; Jahn et al., 2012). While there have
been improvements in representing sea ice properties and
seasonality in recent climate models, there are still significant
biases compared to observations and a range in future predictions
(SIMIP Community, 2020; Smith et al., 2020; Crawford et al.,
2021; Watts et al., 2021). These errors in the sea ice can feedback
on the near surface atmospheric variables, for example, in a large-
eddy simulation model, a 1% variation in sea ice concentration
was found to change the surface air temperature by 3.5 K in
winter (Lüpkes et al., 2008a). Models and reanalyses also struggle
to capture near surface temperature, humidity, and wind speeds
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and suffer from a lack of available in situ observations for
assimilation (Jakobson et al., 2012; Graham et al., 2019; Davy
and Outten, 2020). Finally, models have different temporal,
spatial and vertical resolutions and do not resolve changes in
the fluxes due to small scale changes in the atmospheric and
surface conditions.

It is likely that the patchwork manner in which Arctic surface
turbulent schemes have been developed and the incomplete
integration of modern understanding are behind some of the
substantial inter-model differences in surface turbulent fluxes.
Graham et al. (2019) compared six reanalyses with in-situ
observations and found that reanalyses do not represent
turbulent fluxes correctly in any season over sea ice and
consistently have the direction of the SHF wrong and the
order of magnitude incorrect for LHF. Taylor et al. (2018)
found substantial differences in the mean surface turbulent
fluxes in the Arctic across Coupled Model Intercomparison
Project 5 (CMIP5) models indicating that they did not
appropriately simulate that the central Arctic tends to be a
heat sink to the Arctic atmosphere. Further, Taylor et al.
(2018) found the largest inter-model spread occurring in
winter and in regions of the most rapid sea ice retreat. Given
the substantial inter-model differences in the representation of
surface turbulent fluxes found across recent multi-model
ensembles (e.g., Taylor et al., 2018), additional work is needed
to evaluate the next generation of climate models from the
Coupled Model Intercomparison Project 6 (CMIP6) (Eyring
et al., 2016) and better understand the sources of model
discrepancies.

The large discrepancies between the model representation of
surface-atmospheric coupling processes indicates that this area is
prime for the use of observations to understand and constrain the
influence of these processes on projected Arctic warming--a goal
of this paper. These differences are thought to be caused by how
models handle the evolution of the surface albedo and the
properties of the sea ice pack (e.g. extent, concentration,
thickness, snow) and their representation of surface turbulent
fluxes. Previous work suggests that atmospheric coupling
processes and in particular surface turbulent fluxes may serve
as a meaningful constraint on projected Arctic warming. For
example, Boeke and Taylor (2018) indicate that the magnitude of
projected Arctic Amplification strongly correlates with the
seasonal heat transfer from summer to fall/winter, of which
the surface turbulent flux response plays a substantial role.
Physically, surface turbulent fluxes directly contribute to Arctic
warming via the ice insulation effect and can influence the
atmospheric circulation variability (Burt et al., 2016; Zheng
et al., 2019). Thus, there is a need to evaluate models and
understand the causes of differences with observations.

This study is designed to address two knowledge gaps: 1)
continued evaluation of surface turbulent flux representation and
inter-model spread across contemporary climate models and 2)
exploration of the use of observational constraints of surface
turbulent fluxes to constrain projected Arctic warming during the
winter, which we define as October-January. To do this we use the
observation-derived turbulent flux dataset produced using
NASA’s Atmospheric Infrared Sounder (AIRS) (Boisvert et al.,

2013; Boisvert et al., 2015a; Boisvert et al., 2015b; Taylor et al.,
2018) together with CMIP6 models to perform the model
evaluation and assess inter-model spread. From the outset, we
knew that this comparison would be challenging due to the
substantial natural variability in the Arctic not being synced in
models and observations, which has not been fully considered in
previous assessments of climate model representation of surface
turbulent fluxes. To account for this, we adopt a sea ice regime
compositing approach to control for the inter-model differences
in the natural variability of sea ice (Section 3a). By controlling for
sea ice trend differences, this approach gives insights into the
physical reasons for the errors in the parameterizations and input
variables which are driving the intermodal differences. Guided by
previous studies (Screen and Simmonds, 2010a; Sejas and Cai,
2016; Boeke and Taylor, 2018), we also hypothesize that models
that more efficiently produce larger surface turbulent fluxes
produce more winter warming and sea ice loss.

DATA AND MODELS

Atmospheric InfraRed Sounder Surface
Turbulent Fluxes
The Atmospheric Infrared Sounder (AIRS) onboard NASA’s
Aqua satellite was launched in May 2002 and has been
collecting twice daily, global data ever since. AIRS has 2,378
infrared channels and a 13.5 km spatial resolution. The AIRS
instrument was designed to produce highly accurate temperature
and humidity profiles globally (Susskind et al., 2014), which is
important in the Arctic where data is sparse and clouds are
prevalent. We use version 7, level 3 daily skin temperatures,
925–1,000 hPa air temperatures, 925–1,000 hPa relative humidity
and 925–1,000 hPa geopotential heights to derive SHF and LHF.
Level 3 data is produced on a 1° × 1° grid with retrievals from data
quality control flagged as best and good quality (Susskind et al.,
2014). Unfortunately, the Advanced Microwave Sounding Unit-
A2 (AMSU-A2) instrument, used in the creation of AIRS/AMSU
combined data products, lost power in September 2016 causing
these data products to no longer be produced, thus we use the
AIRS-only products for October-January 2002–2020 for
consistency. AIRS temperatures and humidity products have
been compared with a variety of in-situ data and have shown
to have modest uncertainty in skin temperature (±2.3 K), 2-m air
temperature (±3.41 K) and specific humidity (±0.54 g kg−1)
(Boisvert et al., 2015a; Taylor et al., 2018).

Daily 10-m wind speeds are taken from NASA’s Modern Era-
Retrospective Analysis for Research and Applications, version 2
(MERRA-2) (Gelaro et al., 2017) and are used in the calculations
of the surface turbulent fluxes. MERRA-2 winds perform well
when compared to radiosonde sounding data over the Arctic
Ocean and are deemed reliable for turbulent flux computations
over sea ice (Graham et al., 2019).

Sea ice concentrations (IC) are produced using the Defense
Meteorological Satellite Program (DMSP) Special Sensor
Microwave Imager (SSMI) on board the F-13 satellite (31
January 2003-31 December 2007), the Special Sensor
Microwave Imager/Sounder (SSMI/S) on board the F-17
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satellite (1 January 2008- April 1, 2016), and SSMI/S on board the
F-18 satellite (April 1, 2016—present). The daily IC is derived from
the NASA Team sea ice algorithm (Cavalieri et al., 1996, updated
2020) and is used in the calculations of the surface turbulent
fluxes. Accuracy of the IC product is between 5 (winter)-15
(summer)% (Cavalieri et al., 1992).

The SHF and LHF are calculated via the bulk method using the
Monin Obukhov Similarity Theory and are given by

SHF � cp Sr [CSz,i IC(TS,i − TA) + CSz,w(1 − IC)(TS,w − TA)]
(1)

LHF � ρ Sr [CEz,i Li IC(qS,i − qA) + CEz,w Lw(1 − IC)(qS,w − qA)]
(2)

where ρ is the air density, cp is the specific heat of air, Li (Lw) is the
latent heat of sublimation (vaporization) over ice (water), CSz

(CEz) is the sensible (latent) heat transfer coefficient over ice (i)
and water (w), IC is the sea ice concentration, Sr is the effective
wind speed at 10 m (m s−1) (Andreas et al., 2010b), TS (qS) is the
surface temperature (specific humidity) of either sea ice (i) or
water (w), and TA (qA) is the air temperature (specific humidity)
at 2 m. Extensive in situmeasurements were made over the Arctic
sea ice during the Surface Heat Budget of the Arctic Ocean
Experiment (SHEBA) campaign in 1997–1998 and Grachev
et al. (2007) used these to create a highly accurate flux profile
algorithm for stable conditions over the ice. This algorithm better
fits the very stable boundary layer conditions in the Arctic and are
used in our calculations over sea ice. Andreas et al. (2010a),
Andreas et al., 2010b used roughness lengths measured from the
SHEBA campaign to create an algorithm over the sea ice in the
winter when the ice is covered with compact, dry snow and in the
summer when the ice is covered with wet snow, melt ponds and
leads. As these are the most accurate estimates made for the sea
ice in different seasons, these new roughness lengths are used in
our turbulent flux scheme.

The updated flux profile algorithm from Launiainen and
Vihma (1990) includes these changes, which improve the
accuracy of the turbulent flux calculations over grid points
that contain sea ice (Boisvert et al., 2015a). This method also
allows for the input parameters of temperature, humidity and
wind speed to be taken at various heights above the surface and
uses an iterative calculation that accounts for the stability of the
boundary layer in calculating the values at a predetermined
reference height (e.g., 2 m) (Launiainen and Vihma, 1990).
Readers are referred to Boisvert et al., 2013, Boisvert et al.,
(2015a) for a full description of the model used to calculate
the turbulent fluxes over the sea ice. These Arctic sea ice specific
changes made to this algorithm, to the best of our knowledge,
have not been adopted in any other climate models or reanalysis
products. This algorithm is better suited to simulate turbulent
fluxes over the Arctic Ocean and when compared with in situ data
from the N-ICE2015 campaign, AIRS-derived LHF (SHF) had a
root mean square error of 0.74 Wm−2 (5.32 Wm−2) (Taylor et al.,
2018). Overall, these comparisons indicate an uncertainty of
~20% in the AIRS-derived surface turbulent fluxes, however
we can’t say for certain that this uncertainty is the same over
all sea ice types and seasons with a lack of in situ data. The native

resolution of this data set is 25 × 25 km, however these fluxes have
been interpolated onto a common 1° × 1° grid for this study.

Coupled Model Intercomparison Project 6
Model results are calculated from 18 CMIP6 models (Table 1)
participating in the historical and SSP5-8.5 (shared
socioeconomic pathway) scenarios (Eyring et al., 2016). To
cover the entire 2002–2020 observational time period, monthly
data from the historical simulations for the period 2002–2015 is
merged with the first 5 years of the SSP5-8.5 future scenario
(2015–2020). We just use one ensemble member per model.
Model-simulated surface turbulent flux differences are poorly
understood due to insufficient observational datasets; further,
substantial across-model spread in turbulent fluxes has remained
consistent from CMIP5 to CMIP6 (Wild, 2020). Models often
lack the complexity required to represent the processes affecting
the simulation of surface turbulent fluxes (e.g. evaporation/
precipitation, sea ice/snow cover, wind speed) (Wild, 2020).
All CMIP6 model output has been interpolated onto a
common 1° × 1° grid.

METHODOLOGY

Sea Ice Regimes
Models and observations represent unique perspectives of the
climate system, such that differences between them cannot always
be interpreted as model error. Meaningful observation-model
comparisons require the rectification of these different
perspectives. Common challenges include rectifying differences
in quantity definitions (e.g., cloud fraction; Bodas-Salcedo et al.,
2011) and differences in spatial and temporal resolution. When
comparing trends, natural variability differences must also be
accounted for.

Coupled, free running atmosphere-ocean models used to
simulate the recent climate (Table 1) produce their own
natural variability that is not synced with observed variability.
Thus, a direct comparison of the spatial patterns of modeled and
observed trends does not provide a meaningful evaluation. This is
a substantial challenge in the Arctic where natural variability is
especially large (e.g., Kay et al., 2012). We adopt a sea ice regime
compositing approach to control for the effects of Arctic sea ice
variability on our comparison.

The sea ice regime compositing approach defines four regimes
based upon trends in IC: persistent sea ice, and slow, moderate,
and fast sea ice loss. The four sea ice regimes are defined by the
quartiles of observed IC trends:

C Persistent regime: IC trends > −0.27% decade−1

C Slow sea ice loss: −0.27% decade−1 > IC trends > −2.4%
decade−1

CModerate sea ice loss: −2.4% decade−1 > IC trends > −7.5%
decade−1

C Fast sea ice loss: IC trends < −7.5% decade−1

Figure 1 depicts the sea ice regimes for passive microwave
observations and four CMIP6models. These models highlight the
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inter-model range in sea ice loss trends. While ACCESS-CM2
(Figure 1B) simulates sea ice retreat regimes similar to
observations (Figure 1A), the other models vary drastically
(Figures 1C–E). These differences in IC trends across the
models indicate that the location and number of grid boxes in
each sea ice loss regime also differ. Overall, the observed IC trends
are found within the model range. Our approach is to compare
SHF and LHF from models and observations within these sea ice
loss regimes to control for the large differences in IC trends.

Diagnostic Approach Assessing Sensitivity
of Surface Turbulent Fluxes to Controlling
Factors
Amulti-linear regression approach is developed to determine the
most impactful variables on surface turbulent fluxes (namely, air-sea
temperature (TS−TA) and moisture (qS−qA) gradients, 10-m wind
speed (Ū), IC) and to provide a means of consistently intercomparing
models without knowing the specific model bulk formula. The full
regression equation below is fit to observations and models.

SHF � β0 + βTS−TA
· (TS − TA) + βIC · IC + β �U · �U + βIC ·TS−TA

·

[IC · (TS − TA)] + β �U·TS−TA
· [ �U · (TS − TA)] (3)

LHF � β0 + βqS−qA · (qS − qA) + βIC · IC + β �U · �U + βIC ·qS−qA·

[IC · (qS − qA)] + β �U·qS−qA · [ �U · (qS − qA)] (4)
For CMIP6models,Ūwas calculated asŪ � 







(u2 + v2)√

where
u and v are the 10-m Ū components. All other variables were
obtained from the CMIP6 archive except for qS, which was
calculated using the Clausius-Clapeyron equation and
model temperature output. Before performing the
regression, the linear trend at each grid box was removed
for each variable and it was normalized by its standard
deviation over the time period of the study. This step is
performed to account for the differences in the variability of
each of these terms across models. Further, the multi-linear
regression model was applied using all available grid boxes
within a regime to create a set of Arctic domain coefficients
for each model and for observations.

TABLE 1 | Summary of CMIP6 models used in this study.

Model Modeling agency References

ACCESS-CM2 CSIRO, ARCCSS Dix (2019)
ACCESS-ESMI-5 CSIRO Ziehn et al. (2019)
BCC.CSM2-MR Beijing Climate Center, China Meteorological Administration Wu et al. (2018)
CanESMS Canadian Centre for Climate Modelling and Analysis Swart et al. (2019)
CESM2 National Center for Atmospheric Research Danabasoglu (2019)
CESM2-WACCM National Center for Atmospheric Research Danabasoglu (2019)
FIO-ESM-2-0 First Institute of Oceanography, Qingdao National Laboratory for Marine Science and Technology Song et al. (2019)
FGOALS-f3-L Chinese Academy of Sciences Yu et al. (2019)
FGOALS-g3 Chinese Academy of Sciences Li (2019)
GFDL-ESM4 NOAA/Geophysical Fluid Dynamis Laboratory Krasting et al. (2018)
INM-CM4-8 Institute for Numerical Mathematics Volodin et al. (2019)
INM-CM5-0 Institute for Numerical Mathematics Volodin et al. (2019)
IPSL-CM6A-LR L’Institut Pierre-S imon Laplace Boucher et al. (2021)
MIROC6 Japan Agency for Marine Earth Science and Technology, Atmosphere and Ocean Research Institute, National Institute for

Environmental Studies, RIKEN Center for Computational Science
Shiogama et al. (2019)

MPI-ESM1-2-HR Max Planck Institute for Meteorology Jungclaus (2019)
MPI-ESM1-2-LR Max Planck Institute for Meteorology Wieners (2019)
MRI-ESM2-0 Meteorological Research Intitute Yukimoto et al. (2019)
NESM3 Nanjing University of Information Science and Technology Cao and Wang (2019)

FIGURE 1 |Winter (October-January) sea ice loss regimes for observations (A) and four CMIP6 models (B–E) ACCESS-CM2, CESM2-WACCM, INM-CM4-8 and
MRI-ESM2-0. White and grey (land) portions are areas not included in our discussion. Black lines denote regions of interest (clockwise): Beaufort-Chukchi seas, Laptev-
East Siberian seas, Barents-Kara seas and the Central Arctic in the areas around the North Pole.
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The slopes βTS-TA, -βIc, and -βU represent the linear response of
SHF (LHF) to TS-TA (qS-qA), IC, and Ū. Two covariance terms
[βIC ·TS−TA

(βIC ·qS−qA) and β �U·TS−TA
(β �U·qS−qA)] are included in the

regression due to the strong covariation between TS-TA (qS-qA)
with both IC and Ū. The relationship between TS-TA (qS-qA) and
IC is because less sea ice coverage potentially allows for a larger
air-sea temperature (moisture) gradient; incorporating a product
term [IC*(TS-TA); IC*(qS-qA)] approximates this interaction. TS-
TA (qS-qA) also covaries with Ū, whereby higher Ū tends to occur
with a larger air-sea temperature (moisture) gradient. The
significance of these terms is tested for each model and in
observations by computing the extra sum of squares (ESS) and
performing an F-test (Ramsey and Schafer, 2012). ESS is a
measure of how much the unexplained variance in SHF (LHF)
decreases with the addition of the covariance terms and is
calculated as, ESS = Sum of squared residuals in reduced
model−Sum of squared residuals in the full model, where the
reduced model is the regression equation without the covariance
term and the full model is the regression equation including the
covariance term. The full model variance is used in the
denominator of Eq. 5 because the purpose of this test is to
evaluate the statistical significance of adding covariance terms
to the regression model. The significance test was performed for
observations and each model individually for each ice loss regime.

The F-statistic based on the ESS is defined in Equation 5 and is
used to obtain a p-value at the desired level of confidence.

F − statistc �
[ ESS
# of β′s being tested

]
σ2from full model

(5)

If the p-value is small then we can conclude that the reduced
model without the covariance terms is incorrect and accept the
full model. In Equation (5), σ2 is the variance from the full model
including covariance terms. The full model is appropriate for all
ice regimes for the SHF and LHF regressions. The significance of
each term (β) for CMIP6 models and observations are found in
Supplementary Table S1.

RESULTS

Models that produce a stronger increase in SHF and LHF for the
same sea ice loss are hypothesized to warm more over the
Arctic. We address this hypothesis by 1) evaluating the SHF
and LHF climatological distribution in CMIP6 models
against observations, 2) comparing observed and
simulated SHF and LHF trends within sea ice retreat
regimes, 3) analyzing SHF and LHF sensitivities to
controlling factors, and 4) analyzing relationships with
projected Arctic warming. We separate the discussion of
observed and model-simulated trends deliberately to
reduce the temptation to directly compare observed and
model-simulated trends and limit observation-model
comparison to the appropriate circumstances when the
influence of sea ice natural variability is controlled for or
small: 20-year mean state and sea ice loss regimes. In the
discussion below, positive (negative) fluxes denote energy

exchange from the surface to the atmosphere (atmosphere
to the surface).

Observed Surface Turbulent Flux Mean
State and Trends
The Arctic surface is a net heat sink to the Arctic atmosphere
during winter with the strongest sink in the central Arctic and a
heat source in the Barents-Kara (B-K) seas region (Figure 2). The
central Arctic is characterized by a broad region of negative SHF and
LHF values that contribute to the Arctic average SHF and LHF values:
−31.8 ± 5.19Wm−2 and−3.1 ± 1.88Wm−2, respectively (Table 2 and
3). The primary mechanism of turbulent heat transfer from the
atmosphere to the surface is the SHF; central Arctic LHF values
are an order of magnitude smaller than SHF. The magnitude of the
heat sink is reduced by the positive SHF and LHF fluxes in the B-K

FIGURE 2 | Average winter (ONDJ) SHF and LHF from 2002 to 2020 for
AIRS-derived (A,B) and CMIP6 (C,D) and across-model spread represented
as the standard deviation (E,F).
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seas, providing a narrow area of surface heat source to the atmosphere.
The contributions to the B-K sea heat source are roughly equally
distributed between SHF and LHF.

The observed SHF and LHF trends suggest that the changing
Arctic surface is altering the character of the atmosphere’s heat sink in
the winter (Figure 3). Turbulent flux trends (Figure 3F) show
increases across much of the central Arctic, weakening the heat
sink. SHF trends, rather than LHF, account for most of this
weakening and are driven by a thinning of the multi-year sea ice
(Kwok, 2018), which allows for more conduction through the sea ice
from the ocean and warming surface temperatures, along with a
potential weakening of the surface-based temperature inversion.
Additionally, there is a strengthening surface heat source near the
sea ice edge in the B-K seas region, roughly evenly distributed between
SHF and LHF trends (Figure 3). There is also a weakening of the heat
source farther south in theNorthAtlantic potentially related to surface
cooling from Greenland melt water (Allan and Allan, 2019). These
SHF and LHF trends are consistent with the AIRS-observed changes

in TS−TA and qS−qA (Figures 3C,D), and are largest in regions of
substantial sea ice loss (Figure 3E).

Analysis of trends within the sea ice loss regimes shows that
the fast sea ice loss regime exhibits the largest trends, further
highlighting the relationship between sea ice and SHF and LHF
(Figure 4). LHF trends increase from the slow to fast sea ice loss
regime (Figure 4). The regime-to-regime differences in SHF
trends from observations are constant in all regimes and
increase for the fast sea ice retreat regime. The SHF trends are
positive in all sea ice loss and persistent regimes, whereas the LHF
trends are slightly negative in the slow sea ice retreat and
persistent regimes. The trends in SHF and LHF are consistent
with the trends in TS−TA and qS−qA. Overall, in the entire Arctic,
the SHF and LHF trends in the observations are positive.

The presence of sea ice modifies the SHF and LHF frequency
distributions (Figure 5). The mode of the AIRS-derived LHF is
slightly negative and the SHF is more negative. The SHF
distribution shows a broader distribution than LHF. All sea ice

TABLE 2 | Summary of mean values and their standard deviation (decadal trends and their standard deviations in parenthesis) for AIRS-derived and CMIP6 models SHF for
October-January 2002–2020. Values are stratified by Arctic sea ice loss regimes.

Fast loss Mod loss Slow loss Persistent All

ACCESS-CM2 23.9 ± 19.2 9.84 ± 14.2 −1.74 ± 6.91 −6.57 ± 2.92 0.77 ± 14.5
— (8.36 ± 8.07) (1.97 ± 2.67) (0.97 ± 1.27) (0.685 ± 0.653) (1.96 ± 4.12)
ACCESS-ESM1-5 5.4 ± 7.21 4.83 ± 13.2 −2.28 ± 12.2 −1.23 ± 12.3 −0.395 ± 12.5
— (3.63 ± 2.27) (2.07 ± 2.2) (0.965 ± 1.2) (−0.212 ± 2.23) (0.849 ± 2.12)
BCC-CSM2-MR 25.0 ± 17.4 6.46 ± 8.72 2.18 ± 7.07 −1.69 ± 6.94 −0.185 ± 8.31
— (1.91 ± 2.32) (0.715 ± 1.56) (0.874 ± 1.53) (0.211 ± 1.04) (0.36 ± 1.23)
CanESM5 17.8 ± 17.2 2.21 ± 12.8 −8.02 ± 7.24 −9.67 ± 2.8 −1.75 ± 14.7
— (15.2 ± 13.3) (1.92 ± 3.71) (1.14 ± 2.13) (0.544 ± 0.433) (3.85 ± 8.39)
CESM2 8.32 ± 9.29 11.2 ± 16.2 0.83 ± 6.2 4.46 ± 7.87 4.64 ± 10.2
— (3.6 ± 1.65) (1.13 ± 1.51) (0.649 ± 0.87) (0.028 ± 1.13) (0.87 ± 1.59)
CESM2-WACCM 13.8 ± 10.6 10.2 ± 13.7 4.46 ± 8.84 2.90 ± 6.84 4.71 ± 9.2
— (3.17 ± 1.32) (0.892 ± 1.18) (0.039 ± 0.937) (−0.248 ± 1.04) (0.14 ± 1.35)
FIO-ESM-2-0 4.09 ± 8.38 6.38 ± 16.7 3.71 ± 16.8 −0.694 ± 14.2 4.47 ± 13.9
— (3.08 ± 1.42) (1.0 ± 1.79) (0.387 ± 1.6) (-0.131 ± 1.21) (1.65 ± 1.98)
FGOALS-f3-L 36.8 ± 13.7 16.7 ± 18.1 2.87 ± 10.2 −1.52 ± 6.57 0.392 ± 9.66
— (4.79 ± 2.5) (1.91 ± 1.94) (0.818 ± 1.25) (-0.19 ± 1.05) (0.122 ± 1.33)
FGOALS-g3 14.7 ± 21.4 11.9 ± 21.1 −1.98 ± 15.9 −8.43 ± 7.84 −6.21 ± 11.9
— (3.22 ± 5.0) (1.03 ± 3.66) (0.393 ± 2.42) (0.023 ± 1.22) (0.206 ± 1.88)
GFDL-ESM4 21.3 ± 12.8 13.6 ± 14.8 5.21 ± 10.5 −0.314 ± 6.32 2.27 ± 9.93
— (5.35 ± 2.71) (2.09 ± 2.15) (0.26 ± 1.47) (−0.395 ± 1.06) (0.11 ± 1.84)
INM-CM4-8 33.1 ± 35.9 11.9 ± 21.6 −2.73 ± 8.37 −2.81 ± 8.2 −0.918 ± 12.5
— (0.403 ± 6.45) (−1.09 ± 4.03) (0.095 ± 1.35) (−0.161 ± 1.18) (-0.137 ± 1.9)
INM-CM5-0 20.3 ± 8.84 10.9 ± 15.5 −0.581 ± 13.4 −2.12 ± 9.92 -0.39 ± 12.1
— (4.29 ± 3.28) (2.31 ± 2.6) (0.549 ± 1.42) (−0.398 ± 1.51) (0.103 ± 1.86)
IPSL-CM6A-LR 7.49 ± 10.3 5.53 ± 15.0 −4.63 ± 5.95 −4.89 ± 6.4 1.22 ± 11.5
— (4.40 ± 4.06) (0.306 ± 1.77) (-0.304 ± 0.987) (-0.506 ± 1.13) (1.25 ± 3.3)
MIROC6 4.25 ± 5.45 3.67 ± 9.32 −1.71 ± 6.84 −3.15 ± 6.38 −1.36 ± 7.55
— (3.55 ± 1.32) (1.2 ± 1.35) (0.13 ± 0.907) (−0.376 ± 1.05) (0.161 ± 1.39)
MPI-ESM1-2-HR 37.8 ± 27.6 25.2 ± 19.1 12.9 ± 13.1 8.17 ± 7.32 11.5 ± 13.0
— (4.64 ± 4.14) (0.769 ± 1.95) (−0.426 ± 1.38) (−0.876 ± 1.31 (−0.481 ± 1.84)
MPI-ESM1-2-LR 23.9 ± 17.4 19.9 ± 18.1 4.87 ± 7.87 7.82 ± 9.51 8.2 ± 12.0
— (4.37 ± 3.28) (0.835 ± 1.83) (−0.489 ± 0.948) (−0.974 ± 1.16) (−0.252 ± 1.68)
MRI-ESM2-0 7.87 ± 16.0 2.14 ± 14.5 −7.30 ± 6.22 −9.11 ± 5.35 0.151 ± 14.1
— (5.15 ± 4.41) (1.22 ± 1.62) (1.12 ± 0.586) (0.75 ± 0.319) (2.41 ± 3.23)
NESM3 15.0 ± 14.4 6.29 ± 12.0 2.47 ± 6.23 −2.03 ± 5.36 8.74 ± 13.2
— (5.76 ± 2.89) (2.83 ± 3.28) (1.7 ± 3.12) (0.534 ± 1.57) (3.7 ± 3.51)
ENSEMBLE 17.8 ± 10.8 9.94 ± 6.16 0.474 ± 5.02 −1.72 ± 5.15 1.99 ± 4.34
— (4.72 ± 3.1) (1.28 ± 0.90) (0.492 ± 0.594) (−0.094 ± 0.492) (0.937 ± 1.3)
AIRS −28.2 ± 5.86 −32.8 ± 4.49 −34.6 ± 3.74 −31.5 ± 4.13 −31.8 ± 5.19
— (3.16 ± 2.46) (1.51 ± 2.99) (1.59 ± 2.45) (1.57 ± 1.73) (1.96 ± 2.56)
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regimes have a similar slightly negative mode of the SHF and
LHF, however regions of faster sea ice loss exhibit a broader
distribution of SHF and LHF (Figure 5). The frequency of slightly
negative SHF and the frequency of moderate and strong positive LHF
increases as sea ice loss becomes stronger. The fast sea ice loss regime
has a much higher frequency of positive LHF values compared to any
of the other sea ice regimes. Changes in the SHF andLHFdistributions
by sea ice regime correspond to differences in the TS−TA and qS−qA
distributions (Figures 5E,G) showing that faster sea ice loss regimes
correspond to greater TS−TA and qS−qA values. Thus, faster
wintertime sea ice loss corresponds with larger TS−TA and qS−qA
gradients and positive SHF and LHF trends.

CMIP6Models Surface Turbulent FluxMean
State and Trends
While capturing key features of the observed spatial variations in
SHF and LHF (Figures 2A,B), models represent the Arctic

surface as a heat source, not a heat sink, to the winter Arctic
atmosphere (Figures 2C,D). The model ensemble shows weak
negative SHF and LHF across much of the central Arctic and
strong positive SHF and LHF in the B-K seas region. The
ensemble mean also shows similar magnitudes of the SHF and
LHF across the Arctic suggesting that the two flux terms are of
equal importance to the central Arctic surface energy budget,
different from observations. The B-K seas region heat source is
approximately 34 times stronger than in observations (CMIP6
ensemble average SHF + LHF: 70.1 W m−2; AIRS-derived SHF +
LHF: 2.1 W m−2). While Table 2 indicates that the magnitude of
the surface heat source varies strongly, most models simulate the
winter Arctic surface as a heat source to the atmosphere
indicating a different role of surface-atmospheric coupling in
the simulations compared to observations.

CMIP6 SHF and LHF trends indicate a narrowing area of the
surface atmospheric heat sink and a broadening of the heat
source, as observed, in concert with the declining sea ice cover

TABLE 3 | Summary of mean values and their standard deviation (decadal trends and their standard deviations in parenthesis) for AIRS-derived and CMIP6 models LHF for
October-January 2002–2020. Values are stratified by Arctic sea ice loss regimes regions.

— Fast loss Mod loss Slow loss Persistent All

ACCESS-CM2 21.1 ± 14.3 10.2 ± 9.74 1.87 ± 3.92 −0.165 ± 1.32 4.61 ± 10.1
— (7.56 ± 5.31) (1.94 ± 1.48) (0.53± 0.545) (0.111 ± 0.185) (1.46 ± 3.23)
ACCESS-ESM1-5 9.13 ± 5.3 9.38 ± 10.6 3.31 ± 9.85 4.77 ± 10.3 5.09 ± 10.2
— (3.28 ± 1.47) (1.85 ± 1.73) (0.45 ± 0.840) (−0.361 ± 1.61) (0.522 ± 1.67)
BCC-CSM2-MR 21.9 ± 9.79 8.1 ± 4.95 4.24 ± 3.83 2.07 ± 4.0 3.1 ± 5.06
— (1.29 ± 0.935) (0.832 ± 0.756) (0.341 ± 0.643) (0.0378 ± 0.435) (0.156 ± 0.571)
CanESM5 16.3 ± 9.49 7.43 ± 7.03 2.69 ± 3.64 1.61 ± 1.48 5.81 ± 7.83
— (9.04 ± 7.73) (1.19 ± 1.82) (0.70 ± 1.06) (0.333 ± 0.198) (2.31 ± 4.87)
CESM2 7.5 ± 7.09 10.3 ± 13.7 1.28 ± 5.04 4.1 ± 5.47 4.46 ± 8.29
— (3.32 ± 1.2) (1.34 ± 0.822) (0.208 ± 0.365) (−0.657 ± 0.666) (0.482 ± 1.40)
CESM2-WACCM 10.3 ± 7.6 7.79 ± 11.0 2.6 ± 5.34 1.59 ± 4.75 3.05 ± 6.75
— (3.42 ± 1.04) (1.38 ± 0.817) (0.342 ± 0.475) (−0.0393 ± 0.501) (0.402 ± 1.06)
FIO-ESM-2-0 6.44 ± 5.42 7.81 ± 11.4 6.58 ± 13.0 4.40 ± 8.93 6.79 ± 9.65
— (3.01 ± 1.01) (1.04 ± 0.845) (0.278 ± 0.935) (0.284 ± 0.988) (1.63 ± 1.51)
FGOALS-f3-L 26.6 ± 8.81 12.6 ± 12.3 4.02 ± 6.2 1.26 ± 3.99 2.47 ± 6.08
— (2.02 ± 2.65) (1.05 ± 1.0) (0.398 ± 0.565) (−0.0861 ± 0.552) (0.069 ± 0.689)
FGOALS-g3 13.3 ± 11.7 11.7 ± 11.9 4.13 ± 8.94 0.764 ± 4.07 1.95 ± 6.44
— (2.1 ± 2.25) (0.822 ± 1.78) (0.178 ± 1.04) (−0.049 ± 0.436) (0.0808 ± 0.856)
GFDL-ESM4 16.9 ± 9.4 11.7 ± 10.9 5.74 ± 7.17 2.26 ± 4.17 4.0 ± 6.84
— (3.8 ± 1.51) (1.76 ± 1.5) (0.403 ± 0.796) (−0.125 ± 0.527) (0.244 ± 1.18)
INM-CM4-8 28.7 ± 22.8 12.8 ± 13.7 1.37 ± 4.49 1.18 ± 4.48 2.71 ± 7.97
— (3.85 ± 4.53) (0.291 ± 2.05) (0.0626 ± 0.580) (−0.0608 ± 0.383) (0.0768 ± 1.05)
INM-CM5-0 23.4 ± 12.2 12.7 ± 12.2 3.88 ± 7.66 2.31 ± 6.66 3.78 ± 8.31
— (3.89 ± 3.24) (1.95 ± 2.08) (0.270 ± 0.622) (−0.277 ± 0.894) (0.0833 ± 1.26)
IPSL-CM6A-LR 11.1 ± 8.55 9.87 ± 13.1 1.42 ± 4.58 2.53 ± 5.12 6.23 ± 9.52
— (4.18 ± 3.65) (0.829 ± 1.73) (−0.126 ± 0.699) (−0.433 ± 0.778) (1.36 ± 2.97)
MIROC6 5.59 ± 2.69 5.55 ± 6.99 2.12 ± 5.67 1.04 ± 4.89 2.25 ± 5.72
— (3.33 ± 0.840) (1.47 ± 0.783) (0.24 ± 0.542) (-0.0969 ± 0.623) (0.378 ± 1.03)
MPI-ESM1-2-HR 22.7 ± 14.4 14.9 ± 12.4 6.29 ± 8.09 3.39 ± 3.69 5.54 ± 7.82
— (4.15 ± 2.58) (0.798 ± 1.17) (0.206 ± 0.824) (−0.388 ± 0.499) (−0.0293 ± 1.14)
MPI-ESM1-2-LR 13.6 ± 7.99 11.6 ± 10.2 2.99 ± 4.03 4.26 ± 4.85 4.79 ± 6.46
— (3.06 ± 1.67) (1.14 ± 0.872) (0.150 ± 0.327) (−0.236 ± 0.582) (0.294 ± 0.902)
MRI-ESM2-0 12.0 ± 11.7 8.18 ± 10.6 1.57 ± 4.66 0.741 ± 3.86 6.72 ± 10.2
— (4.63 ± 3.57) (1.14 ± 1.15) (0.339 ± 0.292) (0.142 ± 0.136) (1.91 ± 2.82)
NESM3 9.69 ± 7.87 4.35 ± 5.42 2.09 ± 2.56 0.393 ± 1.1 5.89 ± 6.85
— (4.1 ± 1.40) (2.0 ± 1.10) (1.15 ± 0.796) (0.289 ± 0.508) (2.61 ± 1.70)
ENSEMBLE 15.3 ± 7.17 9.83 ± 2.75 3.23 ± 1.68 2.09 ± 1.5 4.40 ± 1.57
— (3.89 ± 1.83) (1.27 ± 0.484) (0.34 ± 0.271) (−0.104 ± 0.255) (0.78 ± 0.856)
AIRS −3.28 ± 2.72 −3.66 ± 1.65 −2.99 ± 1.43 −2.39 ± 1.02 −3.1 ± 1.88
— (0.823 ± 1.23) (0.146 ± 0.908) (−0.154 ± 0.512) (-0.097 ± 0.489) (0.179 ± 0.933)
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(Figure 6). Surface temperature, SHF, and LHF trends are
strongest in the Beaufort-Chukchi (B-C) and B-K seas regions
with the most rapid sea ice decline. While the ensemble mean and
observed patterns in the SHF and LHF trends are similar, the
magnitudes are weaker than observations due to the averaging
over multiple models. Moreover, the correspondence between the
observed and ensemble mean spatial patterns of SHF and LHF
trends may be misleading as the observations represent only a
single realization of natural variability. The inter-model spread of
these trends is substantial (Figures 6F–J) and is also strongest in
the regions of the largest sea ice loss. As a result, the degree of sea

ice loss and the resulting surface energy budget changes may serve
as a useful observational constraint (Section 4d).

Model SHF and LHF trends within sea ice loss regimes tell a
story consistent with observations, highlighting the sea ice
influence on the inter-model trend differences (Figure 4).
Model simulated SHF and LHF trends increase with greater
sea ice loss and increases in TS-TA. The largest discrepancies
between models and observations occur in the fast sea ice loss
regime. For all sea ice loss regimes, the model ensemble LHF
trends are always greater and more than double the observed
value. With respect to SHF, there is a large observed trend in the
persistent regime not found in models indicating that the models
are struggling to capture the observed increase in TS-TA. This
difference could also result from differences in the conductive
heat flux through sea ice in the presence of thinning. The inter-
model differences in SHF and LHF trends (Figure 4, error bars)
are smaller within the sea ice loss regime framework than within
the spatial distribution indicating that much of the inter-model
differences in SHF and LHF flux trends correspond to differences
in sea ice loss.

The SHF and LHF distributions within sea ice regimes indicate
that the character of model-observational differences stems in
part from different distributions of TS−TA and qS−qA (Figure 5).
Model simulated SHF and LHF distributions show similar high
frequencies of slightly negative SHF values and near zero LHF
values as observations, however do not capture the frequency of
negative SHF or LHF values. The dependence of the model-
simulated SHF and LHF distributions on the sea ice loss rate
exhibits similar behavior as observations. However, the model
SHF distributions show moderate negative values for all sea ice
regimes, but do not show values that reach < −20W m−2 as in
observations. These differences stem from models not simulating

FIGURE 3 |Winter (ONDJ) decadal trends in (A) AIRS surface skin temperature, (B) AIRS surface air temperature, (C) AIRS TS−TA, (D) AIRS qS−qA, (E) observed
IC, (F) AIRS-derived surface turbulent flux, (G) AIRS-derived SHF and (H) AIRS-derived LHF.

FIGURE 4 | Bar plot summarizing the Arctic winter (ONDJ) surface
turbulent flux trends (Wm−2 per decade) by sea ice loss regime. Average
trends for both AIRS-derived and CMIP6 ensemble-means are shown in the
bars. The standard error of the AIRS-derived turbulent flux trends are
shown in the error bars and the error bars for the CMIP6 ensemble-mean
turbulent flux trends represent the inter-model spread.
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as strongly negative TS−TA values. The mode of the observed
TS−TA distribution is ~ −3 K which is not found in the model
simulated range (Figure 5E). Similarly, the model LHF
distributions for all sea ice regimes show a larger frequency of
positive values than observed and rarely produce negative values.
These model-observation differences in the LHF distribution are
driven by the differences in the qS-qA distributions; observations
indicate frequent negative qS−qA values (Figure 5G), whereas the
models rarely simulate negative qS−qA gradients. Radiosondes

taken during the SHEBA campaign showed that specific humidity
and temperature consistently increased with height near the
surface due to frequent wintertime inversions (Yu., 2019; Yu
et al., 2019) and qS−qA measurements taken during the Tara
drifting station in spring and summer 2007 showed slight
negative differences (Boisvert et al., 2015a) when surface-based
inversions are weaker than the winter. Thus, these negative
gradients in satellite-derived qS−qA appear realistic and are not
captured in CMIP6 models. The underlying model-observations

FIGURE 5 | PDFs of surface turbulent fluxes and surface-air temperature and moisture gradients for AIRS (A,C,E,G) and CMIP6 (B,D,F,H) for the four ice loss
regimes for the Arctic winter (ONDJ). Insets represent difference plots (CMIP6—AIRS).
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differences in the SHF and LHF values are related to the
differences in the TS−TA and qS−qA distributions.

Since it appears that the source of the model and observational
differences in SHF and LHF are largely driven by the difference in
TS−TA and qS−qA, the turbulent fluxes are stratified by TS−TA,
qS−qA for each sea ice regime (Figure 7). Qualitatively, the
dependence of the mean SHF and LHF stratified by TS−TA
and qS−qA is similar between models and observations;
however quantitatively, the models show larger SHF values for

the same TS−TA and much larger values for LHF for the same
qS−qA. Especially surprising in Figure 7, is that models
substantially differ from observed SHF and LHF values when
the TS−TA and qS−qA values are the same. Especially troubling is
that for negative qS-qA gradients, models are largely unable to
produce a negative (atmosphere-to-surface) LHF. Figures 5, 7
together indicate that the larger SHF and LHF for models is from
both more frequent TS−TA and qS−qA positive values and the
larger SHF and LHF values at the same TS−TA and qS−qA values.

FIGURE 6 |Winter (ONDJ) decadal trends for CMIP6 for (A) TS, (B) TA, (C) IC, (D) SHF and (E) LHF, and the across model spread for (F) TS, (G) TA, (H) IC, (I) SHF
and (J) LHF.

FIGURE 7 | Arctic winter (ONDJ) SHF (LHF) binned by TS−TA (qS−qA) for AIRS (A,B) and CMIP6 (C,D). Data is further separated into the four ice loss regimes,
denoted by color: fast loss (red), moderate loss (yellow), slow loss (light blue), and persistent regimes (royal blue). If a given TS−TA (qS−qA) bin lacked sufficient data points
to compute a box and whisker, the bin was omitted (e.g, AIRS SHF for the largest TS−TA bin for moderate, slow and persistent ice loss regimes).
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Surface Turbulent Flux Controlling Factors
Understanding which factors are most important for controlling
surface turbulent flux variability and which factors contribute
most strongly to the differences with observations is needed to
improve the model representations of Arctic surface turbulent
fluxes. We first considered applying a sensitivity study
methodology to surface turbulent flux parameterizations from
individual models to quantify the contributions of the component
terms. However, compiling a complete set of STF
parameterizations used by CMIP6 models would be complex
and is beyond the scope of this study. Instead, we develop a multi-
linear regression approach (Section 3b) to quantify the
contributions from individual factors to SHF and LHF
variability that can be consistently applied across models.

The multi-linear regression approach reasonably captures the
variance in SHF and LHF for observations and models at the
monthly mean timescale. The method is applied consistently to
observations and models using 1° × 1° monthly mean fields to
create a single, Arctic-wide set of coefficients. The root mean
square error of the multi-linear regression (Figures 8F, 9F) shows
a range in reliability; root mean square error values range from 5
to ~60% depending upon the model and sea ice regime. In most
cases, the root mean square error values are <30% and the
approach is better at representing LHF than SHF. While

imperfect, the root mean square errors indicate that this
approach captures the majority of SHF and LHF variability
and captures physically-valid relationships.

Regression model robustness is also supported by the
consistency in sign and magnitude across the CMIP6 model
results (Figures 8, 9). Error bars are not included in Figures
8, 9 since the accurate statistical error analysis is not considered
trustworthy enough given the potential for spatial autocorrelation
in the residuals. However, the overall consistency across the 18
CMIP6 models in the sign and magnitude of the dominant
coefficients (βTs−Ta, βIC, and βqs−qa; Figures 8, 9) provides
confidence that the regression model approach is robust and
indicates substantial model-observational disagreements in the
importance of specific terms.

Applying the approach yields some expected features, such as
the importance of TS−TA, and some unexpected features, such as
the strong negative sign of the wind term for observations. βTs−Ta
is the largest term in the majority of models with values from 0.3
to nearly 1.0 Wm−2 per unit anomaly (Figure 8E). This is the case
across all sea ice regimes. βTs−Ta is also an important term for
observed SHF variability; however, most climate models possess a
βTs−Ta nearly double the observational value.

βIC, the largest magnitude observational slope, and βŪ terms
are associated with negative SHF anomalies. The βIC represents

FIGURE 8 | Slopes obtained from the multi-linear regression on SHF (A–E) for observations (black) and CMIP6 models (colored) for the four ice loss regimes during
Arctic winter (ONDJ). RMS for the fit is shown in (F).
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the influence of sea ice surface properties and atmospheric
conditions, such as stability, that correlate with IC. The models
show a wider range of βIC and βŪ values compared to βTs−Ta
(Figure 8). For βIC, the large spread in the values suggests that sea
ice surface properties that influence SHF (e.g., surface roughness,
atmospheric stability, sea ice topography, etc.) are either
represented differently by models and/or their effects on SHFs
are parameterized differently. The importance of βIC in producing
SHF variability is much larger in observations than in most
models.

The observational βŪ value may seem slightly counterintuitive
when not considering the mean state context. The majority of
observational grid boxes have negative mean TS−TA values such
that months with anomalously strong winds drive a more
negative SHF. Stated plainly, this result indicates that a
positive monthly mean wind anomaly drives a more negative
SHF anomaly. The model βŪ values are similarly tied to the
background mean SHF value and stronger winds reinforce the
background SHF. This explains the model behavior in the overall
progression of βŪ values to be generally positive over fast loss
regime and generally negative over the persistent regime due to
the smaller and negative mean state SHF values (Table 2).

As opposed to the SHF, observed variability of LHF is
dominated by a single term, βqs−qa. The observed βqs−qa

exceeds 0.9 W m−2 per unit anomaly for all sea ice regimes
(Figure 9E). All models show a consistent sign of βqs−qa, in
line with observations, with a substantial inter-model spread in
the magnitude. βIC and βŪ (Figures 9A,C) are substantially
weaker than βqs−qa in observations; specifically, observed βIC is
near zero. However, βIC is of equal importance as βqs−qa to
explaining variability of LHF in models. βŪ is of similar
magnitude as βIC and βqs−qa for a few models, but overall
accounts for small contributions to LHF variability.

Lastly, the inclusion of covariance terms is compelled by the
statistical analysis and improves the explained variance of the
model. Figures 8B,D, 9B,D indicate, however, that most of these
values are less than 0.1 Wm−2 per unit anomaly. The slopes of the
covariance terms are small, show a narrower inter-model spread,
and contribute little to the variance in SHF and LHF.

As shown in Figures 5, 7, a portion of the discrepancy with the
observed and model mean SHF and LHF results from different
distributions of surface-air temperature andmoisture gradients in
models. In this section, we learn that substantial differences exist
between the sensitivity of SHFs and LHFs to perturbations in
relevant controlling factors (e.g., Eqs. 1, 2. Models are muchmore
efficient, by ~50%, at turning a TS−TA anomaly into a SHF
anomaly relative to observations. Further, the influence of IC
on SHF is more important in observations than in models. The

FIGURE 9 | Slopes obtained from the multi-linear regression on LHF (A–E) for observations (black) and CMIP6models (colored) for the four ice loss regimes during
Arctic winter (ONDJ). RMS for the fit is shown in (F).
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opposite is found for LHF variability in models; LHF is more
sensitive to an IC anomaly. Thus, the sea ice surface property
influence on variability in SHF and LHF are inconsistent with
observations and with each other. These results (Figures 8, 9)
illustrate that the most important terms for the model SHF and
LHF flux variability are TS−TA and qS−qA.

Relationships With Projected Arctic
Warming
There is a great deal of interest around constraining Arctic
projections with observations to reduce uncertainty and make
projections more actionable. We address the possibility of the
above analyses being applied in this manner. Boeke and Taylor
(2018) found that seasonal energy exchanges in sea ice retreat
regions contribute significantly to the spread inmodel projections
of Arctic amplification, whereby models that more efficiently
disperse the energy stored in the ocean from summer via surface
turbulent fluxes warm more. Dai et al. (2019) also found that
increased turbulent heat fluxes from ice-free ocean in sea ice
retreat regimes contributes to Arctic amplification. Given the
importance of turbulent heat fluxes in recent literature, the
SHF (LHF) regression slopes from Figures 8, 9 are tested as a
possible emergent constraint (EC)--an approach that uses an
ensemble of models to connect an observable process from
present-day to future climate projections to narrow the
uncertainty.

Given the dominance of the βTs-Ta (βqs−qa) terms in determining
SHF (LHF), we hypothesized thatmodel capability in turning a strong
surface-air temperature (moisture) gradient into SHF (LHF) would
correlatewith projectedArcticwarming and couldmake a suitable EC.
While significant correlations with projected Arctic winter warming
are found for some of the regression slopes, none of the regression
slopes are good ECs because the observed regression slopes typically
fall outside the model range. Despite this, we found that present-day
trends in surface turbulent fluxes, IC and TS in ice-retreat regions
correlate strongly with projected winter warming and could serve as a
useful EC (Figure 10); for these quantities the observed trends fall
within the model range, and the range in model values is large relative
to the observational uncertainty (grey shading in Figure 10). To
ensure that CanESM5 is not driving these relationships, we computed
the regression again, removing CanESM5. The slopes and y-intercept
values are very similar to those obtained using all the models, and
while the correlation coefficient is smaller, it is still significant at the
95% level, therefore this relationship is robust. The relationships in
Figure 10 indicate a constrained Arctic winter warming range of
~14–17 K, substantially smaller than the 10–21 K inter-model range
in warming.

DISCUSSION

The results presented in this study are not unique to the current
generation of climate models. In fact, the previous generation of

FIGURE 10 | Barents-Kara Seas present-day trends for sea ice gridboxes (>15% IC) in (A) TS, (B) IC, (C) SHF and (D) LHF correlated with projected Arctic winter
(ONDJ) warming. CMIP6 models are colored triangles while the dashed line indicates the present-day trend found for observations with the grey shading ± the
observational standard deviation.
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climate models and current reanalyses both have turbulent flux
biases when compared with observations in the Arctic. For
instance, Taylor et al. (2018) show substantial model-
observational differences between CMIP5 models and the
previous version of the AIRS-derived SHF and LHF dataset
that also indicate that the magnitude of the central Arctic
surface heat sink is too weak. However, in situ observations
show that negative fluxes in the winter over sea ice are a
realistic phenomenon (e.g. SHEBA: Persson et al., 2017;
N-ICE2015: Walden et al., 2017), and SHF were found to
range between −20 and −30W m−2, consistent with the AIRS-
derived SHF magnitudes. Here, we have shown that the
unrealistically weak heat sink also persists in the current
generation of CMIP6 models and could in part be driven by
the poor representation of the stable boundary layer over ice in
winter, which can underestimate the magnitude of the fluxes
(Grachev et al., 2007; Boisvert et al., 2015a). These results are also
consistent with comparisons of reanalyses and in situ data. For
example, Graham et al. (2019) compared six widely used
reanalysis products with in situ flux measurements taken
during the N-ICE2015 campaign during winter, summer and
spring of 2015. They found that the reanalyses got similar
magnitudes for SHF and an order of magnitude difference in
LHF, however the direction of the fluxes were often wrong. Thus,
the inability to represent the sign and magnitude of the SHF and
LHF is also present in reanalysis.

Our results have also shown that models have a positive bias in
TS-TA and qS-qA when compared to observations, which may be
related to the model representation of the strong wintertime
surface-based inversions over sea ice. Arctic temperature
inversions and associated near-surface variables are poorly
represented in climate models (CMIP3: Medeiros et al., 2011;
CMIP5: Pithan et al., 2014) and reanalyses (Serreze et al., 2012),
and are influenced by how they simulate the stable boundary layer
turbulence, surface energy budget, clouds, radiative transfer, and
their vertical resolution (Lammert et al., 2010; Kilpeläinen et al.,
2012). However, the accurate representation of these temperature
and humidity inversions have important implications for the
magnitude and sign of the turbulent fluxes (Bintanja et al., 2011;
Devasthale et al., 2011; Vihma, 2014). These misrepresented
temperature and humidity inversions could be contributing to
biases in TA and qA, and would mean that the magnitude of TS-TA

and qS-qA would be smaller and/or greater than zero depending
on the situation, thus affecting the direction andmagnitude of the
fluxes in the Arctic.

Sea ice cover also influences the thermodynamic structure of
the Arctic atmosphere by promoting more frequent temperature
inversions, particularly in winter (Pavelsky et al., 2011; Taylor
et al., 2015). Once sea ice forms in fall and winter, its lower
effective heat capacity means the surface can cool more rapidly
than the air above it leading to the development of temperature
inversions, indicating a downward turbulent flux. Thus, how
climate models represent the sea ice is very important, not just
for the surface-based inversions, but also TS and qS and the
boundary layer structure. However, climate models continue to
struggle to represent sea ice cover extent and recent decline
compared to observations (Schweiger et al., 2011; Stroeve

J. et al., 2014; Holland et al., 2010; Jahn et al., 2012; SIMIP
Community, 2020, Smith et al., 2020; Crawford et al., 2021; Watts
et al., 2021; Figure 1), let alone the snow and ice thickness and
surface characteristics. These sea ice and snow properties (e.g.
location, compactness, roughness, and thickness) affect TS and qS,
and the drag coefficients and roughness lengths, all which
influence the boundary layer representation, and in turn the
magnitude of the fluxes.

Observations are not free from bias, and the current
limitations of satellite retrievals might contribute to the
apparent model biases. For example, the vertical resolution of
AIRS is 1 km and the instrument is therefore not able to resolve
near surface variables (Susskind et al., 2014). In order to get the 2-
m TA and qA variables, an iterative technique is used following
Launiainen and Vihma (1990) to estimate these values from
standard pressure levels using various boundary layer stability
assumptions. These estimated TA and qA have been compared
previously with in situ observations and have root mean square
errors of 3.41 K and 0.54 g kg−1, respectively, demonstrating that
this iterative technique produces realistic results (Boisvert et al.,
2015a; Taylor et al., 2018). Future satellite missions, as part of the
Decadal Survey Planetary Boundary Layer, will work on having
better resolution near the surface (Teixeira et al., 2021), which
would improve the near surface temperature and humidity
retrievals and reduce some of the errors in the fluxes.

Additionally, the observations might be biased towards clear
sky or heterogeneous cloud cover conditions. Accurate retrievals
can be derived for all channels under most cloud conditions,
except for overcast or near-overcast conditions within the AIRS
footprint Susskind et al. (2003), Susskind et al. (2014). Pithan
et al. (2014) have shown that surface-based inversions were
weaker during cloudy wintertime conditions than during clear
conditions, and because under some extreme cloud conditions
AIRS cannot retrieve variables, occurrences of smaller gradients
in TS-TA and qS-qA might sometimes be missed. Regardless of
these potential biases, AIRS captures wintertime Arctic
temperature and humidity inversions well Devasthale et al.
(2010), Devasthale et al. (2011).

While some CMIP6 ensemble member modeling groups have
not made any changes to the turbulent flux scheme over sea ice
(e.g. CESM2, Danabasoglu et al., 2020), others like the BCC-
CSM2-MR have specifically made changes to improve these
fluxes (Wu et al., 2019). Like the AIRS-derived scheme, they
incorporate a gustiness parameterization, have updated the bulk
parameterizations, changed the roughness lengths to be different
based on season, and adopted the scalar roughness as a function
of the Reynolds number. However, the gustiness
parameterization used in BCC-CSM2-MR is one computed
over the Western Pacific and tropical North Atlantic oceans
(Zeng et al., 2002) and is not an Arctic sea ice specific
parameterization that is different in stable and unstable
conditions (Andreas et al., 2010b), which is adopted in the
AIRS-derived scheme. The bulk parameterizations are taken
from Zeng et al. (1998), which were produced using data from
the tropical ocean, whereas in the AIRS-derived scheme, the bulk
parameterizations are taken from Grachev et al. (2007), which
were produced using SHEBA data and are specifically for Arctic
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sea ice. The roughness lengths do change according to TS being <
or > −2°C in BCC-CSM2-MR, but are fixed numbers and are the
same for heat and moisture. The AIRS-derived scheme has
varying roughness lengths by season, by ice concentration, and
differs for heat and moisture following Andreas et al. (2010a),
Andreas et al. (2010b). The sea ice thickness and concentration
are simulated using a sea ice simulator (Winton, 2000) in BCC-
CSM2-MR, which might not reproduce the same sea ice cycle and
trends that are observed in observations. While these adjustments
to the BCC-CSM2-MR turbulent flux scheme are an example of
climate models trying to improve the flux estimates over sea ice,
large differences between BCC-CSM2-MR and the AIRS-derived
fluxes still exist (e.g. BCC-CSM2-MR LHF: 3.1 ± 5.06 W m−2,
SHF: −0.185 ± 8.31 W m2; AIRS-derived LHF: −3.1 ± 1.85, SHF:
−31.8 ± 5.19W m−2).

While there are some diagnostic analyses of the sensitivity of
surface turbulent fluxes (e.g. Reeves Eyre et al., 2021), multiple
studies have compared bulk algorithms over the global oceans
(Zeng et al., 1998; Brunke et al., 2002; Brunke et al., 2006; Brodeau
et al., 2016), and some bulk algorithm parameterizations have
been compared over Arctic sea ice (Andreas, 2002; Brunke et al.,
2006; Grachev et al., 2008; Lu et al., 2013), there does not appear
to be large-scale sensitivity analysis of these fluxes undertaken
specifically over the Arctic sea ice. The multi-linear regression
approach described here appears to be a first attempt to
consistently evaluate the causes of inter-model differences in
the surface turbulent flux calculations. While the approach
provides a means of intercomparing models, we think that it
represents just the ‘tip of the iceberg’ and we encourage and are
pursuing additional techniques.

CONCLUSION

The Arctic is rapidly warming; this warming is most pronounced
near the surface and during the winter months and is expected to
continue in the future. Recent works have attributed this surface-
based warming to a loss in sea ice cover and an increase in surface
turbulent fluxes. Currently, there are large inter-model spreads in
present day sea ice loss, turbulent fluxes and wintertime warming.
This uncertainty hinders our ability to predict the magnitude of
future wintertime warming. Here we use observational AIRS-
derived turbulent fluxes computed from an Arctic-specific
turbulent flux scheme to assess CMIP6 models in the winter
months (October-January) between 2002 and 2020 to constrain
future projections of wintertime warming.

The results show that CMIP6 models represent the surface
turbulent fluxes in the central Arctic differently from
observations, as a heat source rather than a heat sink to the
winter Arctic atmosphere like observations. CMIP6 models
produce mostly positive fluxes (from the surface to the
atmosphere) in winter, meaning that the surface temperature
and humidity is consistently larger than that of the overlying air,
even in areas of persistent sea ice cover. These biases are likely
driven by the models’ inability to reproduce the strong surface-
based inversions over the sea ice in the winter. The poor
representation of these fluxes by climate models is a severe

limitation to reducing uncertainties in projected Arctic
warming. To evaluate model surface turbulent fluxes, a sea ice
loss regime approach was used to account for the natural
variability differences between climate models and
observations. Both observations and models show that the
turbulent fluxes have increased the most in areas of fast ice
loss, whereas in areas of persistent ice cover there has been
relatively little change.

When using a multiple regression approach to diagnose the
influence of various controlling factors on surface turbulent flux
variability, it was found that models exhibit much stronger
sensitivities to a TS-TA anomaly than is found in observations.
Models also exhibit a much weaker IC damping effect than
observations, suggesting that specific surface properties and
characteristics associated with the sea ice surface type (e.g.
strong stability) are represented differently between models
compared to observations. Hence, the differences in observed
and modeled surface turbulent fluxes is not solely due to
parameterization differences. Differences in the air-sea
temperature and moisture gradient distributions make a
substantial contribution.

The magnitudes of differences of air-sea temperature and
moisture gradients between observations and models is large,
and is likely a driving factor in the magnitude of differences seen
in the turbulent fluxes. One hypothesis for these differences is that
models struggle to produce strong surface-based inversions over
the sea ice in winter. Another hypothesis is that the models can
not accurately parameterize the stable boundary layer
characteristics over sea ice. While it remains difficult to
pinpoint the exact causes of the differences between the
models themselves and observations, due to the different
turbulent flux schemes and representation of sea ice, future
work should focus on understanding the driving factors for
the differences.

There is a clear relationship between modeled trends in
turbulent fluxes and sea ice loss with projected wintertime
Arctic warming. Models that simulate larger surface turbulent
flux trends and more sea ice loss show larger amounts of winter
warming. Using trends in the observations to constrain these
models, our results indicate that Arctic winter warming could fall
within the range of ~14–17 K in the Barents-Kara seas, compared
to the unconstrained ~10–21 K intermodel spread.

There is still a long road ahead to improve turbulent flux
representation in the Arctic, especially over sea ice. These include:
1) turbulent flux schemes need to use more parameterizations
that are ‘Arctic specific’ in order to represent the very stable
boundary layer conditions over sea ice, particularly during the winter,
2) the representation of sea ice and snow properties and characteristics
(e.g. snow and ice thickness, roughness, concentration, floe size
distribution) need to be improved so that the surface drag
coefficients and roughness lengths can be accurately assessed and
surface and near surface variables can more closely match observed
values, 3) spatial and vertical resolution of climate models and satellite
observations need to increase so that the boundary layer and sub-grid
scale processes that are not currently resolved can be simulated, and 4)
better collaboration between those taking themeasurements and those
who produce the models.
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Recent field campaigns, such as MOSAiC, provide valuable
measurements for use in improving these turbulent flux
parameterizations in the Arctic. We can use these
measurements to build upon what was learned from the
SHEBA campaign more than 20 years ago. The future Decadal
Survey mission, aimed to improve our understanding of the
planetary boundary layer, will increase the vertical resolution
from satellites, thus enhancing our retrievals of these near surface
variables. These current and future measurements could
significantly improve the representation of surface turbulent
fluxes in the Arctic and hence Arctic wintertime warming.
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