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Computing forecasts of hazards, such as tsunamis, requires fast reaction times and high
precision, which in turn demands for large computing facilities that are needed only in rare
occasions. Cloud computing environments allow to configure largely scalable on-demand
computing environments. In this study, we tested two of the major cloud computing
environments for parallel scalability for relevant prototypical applications. These
applications solve stationary and non-stationary partial differential equations by means
of finite differences and finite elements. These test cases demonstrate the capacity of cloud
computing environments to provide scalable computing power for typical tasks in
geophysical applications. As a proof-of-concept example of an instant computing
application for geohazards, we propose a workflow and prototypical implementation
for tsunami forecasting in the cloud. We demonstrate that minimal on-site computing
resources are necessary for such a forecasting environment. We conclude by outlining the
additional steps necessary to implement an operational tsunami forecasting cloud service,
considering availability and cost.
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1 INTRODUCTION

Tsunami forecasting and hazard assessment procedures require modeling as one integral part. As an
example, the accreditation of tsunami service providers in the North-East Atlantic, Mediterranean,
and Connected Seas region requires model-based forecasting of tsunami hazard information
(NEAMTWS, 2016).

In operational tsunami forecasting, either pre-computed scenario based hazard assessment or online
simulation based approaches are common [see e.g., Behrens et al. (2010), Løvholt et al. (2019)]. Another
approach—so far not operationally implemented—is statistical emulation, in which a relatively small
number of true offline scenarios is used to populate a statistical interpolation (emulation) function for
deriving forecasts including uncertainty values for real events (Sarri et al., 2012).

An optimal workflow for tsunami forecasting—both in near and in far field hazard
forecasting—would consist of a reliable source determination followed by an integrated tsunami
propagation and inundation simulation with an instant visualization and dissemination of results
(Wei et al., 2013). This case would require large and scalable computing resources in case of an event
for the simulation part involved in the workflow. Depending on budget and facilities, this
requirement could pose unacceptable restrictions or would impose inefficient use of limited
resources (since the computing resources would mostly idle, waiting for the event).
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Since very flexible and large scalability is available in cloud
computing environments, a straight forward strategy is to utilize
the cloud for an instant computing framework for tsunami
forecasting. An accepted definition for cloud computing reads
(Mell and Grance, 2011):

Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal
management effort or service provider interaction.

It is this minimal management effort and flexibility that lead
scientists to explore possibilities and evaluate performance of
cloud computing environments for scientific computing
applications early on [e.g., Foster et al. (2009); Zhang et al.
(2010); Fox (2011)].

Utilizing cloud computing environments for tsunami hazard
assessment not only enables great scalability in an early warning
setting, but allows for deployment of modeling capabilities to
users who do not have direct access to corresponding facilities. In
fact other groups have started to provide tsunami forecasting
services via web services, even calling their service “cloud.” For
example, the TRIDEC cloud is an online service providing
simulation capabilities for tsunami forecasting (Hammitzsch,
2021). Implementing a similar workflow as the approach
documented here and funded from the EU FP7 project
ASTARTE, the IH-TsuSy tsunami simulation system obtains
earthquake parameters from USGS, computes a tsunami wave
propagation, based on corresponding sources and provides
graphical information about the maximum wave height and
arrival times (IH Cantabria, 2016). However, both services are
strictly speaking no cloud computing efforts, since the computing
devices are located at the hosting institute’s premises. A server,
available to the public and capable of instantly computing
tsunami scenarios, however manually triggered, is the TAT
server, maintained by the Joint Research Center of the
European Commission in Ispra (European Commission, 2022
Security andMigration Directorate—JRC Ispra Site). The services
are provided by web interfaces and as such could be considered as
a so-called platform as a service (PaaS) model. These services are
not configurable and call for provider interaction to be used.

Other possible cloud computing utilization for geoscientific
applications are possible and will be further discussed in the next
section. This report aims at assessing performance and feasibility
of cloud computing in particular for tsunami hazard modeling.
The service accessed in the cloud is a so-called infrastructure as a
service (IaaS) model. We document a preliminary assessment of
computational performance for scientific computing on two of
the major cloud computing platforms, i.e., the Amazon Web
Services (AWS) andMicrosoft Azure. Additionally, a prototypical
implementation of an early warningmodeling framework, using a
Python script for controlling the workflow and utilizing Amazon
Web Services (AWS) cloud computing facilities is described. The
prototype demonstrates the ease of use and cost effectiveness of
such cloud computing environments for online tsunami

forecasting simulations. We stress, however, that the
demonstrator is by far not fit for operational services, since
more optimization of the tsunami model, more fine-tuning of
the required data, quality control, and testing would be necessary,
which is outside of the scope of this study.

2 MOTIVATION

As described in the introduction (Section 1), one of the main
motivations for an instant computing framework using cloud
instances is to perform online tsunami forecast simulations
efficiently and reliably in the event of a tsunamogenic
earthquake. This section intends to motivate the use of such
facilities in some more detail and strives to assess the strengths
and weaknesses of the approach.

One of the first motivations for using the cloud for tsunami
modeling in case of early warning use cases was the cost effectiveness
of cloud computing. In fact, an hour of CPU time on a reasonably
sized cloud device costs approximately 2.00 USD. This includes
investment, energy, cooling, maintenance and administration, as
well as utility costs and needs to be spent only if used. Some
additional costs are to be allocated for storage and network traffic,
however this is very difficult to assess, since it depends very much on
the actual situation and usage. Therefore, we will compare very coarse
estimates in the following. We are aware of the preliminary character
of this assessment, but think it is nevertheless useful as a guiding
example.

Let us compare a cloud computing approach to on-premise
computing for a usual deprecation period (for computing
hardware) of 3 years and let us assume a (relatively high) number
of processed tsunami events of 50 per year (or roughly 1 per week). In
the cloud, every event needs computing time, so we assume approx.
ten aggregated CPU hours of computing time per event. An
appropriate medium size general purpose Amazon EC2 instance
of 32 vCPUs (virtual CPUs), 128 GB of RAM and approx. 1,000 GB
SSD intermediate storage costs (e.g., m5.8xlarge1) approx. 2.00 USD
per hour or 20.00 USD per event, totaling to 3,000.00 USD over the
period of 3 years. The same applies to an Azure D32 v3 instance2,
comprising also 32 CPUs, 128 GB of RAM, and 800 GB of local
storage. We might need to add some cost for implementation and
testing, but since this can be done on smaller instances, the cost
should not exceed approx. 1,000.00 USD. Furthermore, we assume
approx. 50.00 USD per month for storage and data transfer,
amounting to a total of 1,800.00 USD over the period of 3 years.

For the on-premise cost comparison we assume a reasonable
server of 64 GB main memory, similar number of cores as for the
cloud instances (e.g., 4 nodes of 8 cores each), and an appropriate
hard drive installation totaling an investment of approximately
10,000.00 USD. Furthermore, such device consumes approx. one
kilo Watt of electrical power per hour and we assume the cost for

1According to https://aws.amazon.com/de/ec2/pricing/on-demand/, last accessed
2022-01-21.
2According to https://azure.microsoft.com/de-de/pricing/calculator/, last accessed
2022-01-21.

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 7627682

Behrens et al. Cloud Computing Performance for Geohazards

https://aws.amazon.com/de/ec2/pricing/on-demand/
https://azure.microsoft.com/de-de/pricing/calculator/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


energy with 20 cents per kWh. Furthermore, we need to provide
cooling, which we have assumed of the same order as the energy
costs. Maintenance can be achieved by assuming one 10th of a full
time equivalent of a technician, costing approx. 7,500 USD per year.
We neglect utility costs and costs for repairs for now. A summary of
these estimations can be found in Table 1. All in all, the cost for on-
premise computing can be estimated with 42,900.00 USD versus
costs for on-demand cloud computing of 5,800.00 USD. We repeat
at this point that these numbers are very preliminary and may vary
substantially with location, since labor costs as well as energy costs
are quite different in different parts of the world.

An important argument for keeping computing facilities on-
premise is the availability. In order to have a redundant
computing environment that is fail-save in case of emergency,
two computing devices would be necessary and in principle, these
should be maintained at different locations. With cloud
computing devices, the location can be everywhere. The above
mentioned Amazon EC2 instance is available in more than 20
locations worldwide on all continents (except Antarctica). The
service level agreement of the Amazon EC2 guarantees 99.95%
availability for one of the locations. When assuming (as stated in
the agreement) a month of 30 days, the system may fail for up to
21 min. However, in this case yet another of the locations could be
reached. It is hard to achieve such low failure rate with an on-
premise service, in particular in less developed areas.

Of course, a communication network needs to be in place. But
again, it can readily be argued that in times of abundant
redundant mobile communication networks, establishing a
communication to a cloud server might be more reliable than
an on-premise solution. Even in case of failed local
communication, ad-hoc peer-to-peer networks of mobile
devices are ready to be established (ASTARTE Project, 2017b).

One particular advantage of a cloud computing solution is its
accessibility from everywhere. Even in remote areas, where
maintaining compute infrastructures may not be feasible, a
communication (e.g., via satellite link) to a cloud computing
device could be established and would allow for scalable modern
computing capabilities. Additionally, the cloud instance can be
accessed from mobile devices.

Since the cloud infrastructure is easily scalable, it is possible to run
several computations in parallel. A common practice in numerical
weather forecasting—namely ensemble forecasts—could be
established in tsunami modeling for capturing the uncertainty and
quantifying it by varying the source parameters (Selva et al., 2021).

Access to the cloud infrastructure works with web interfaces and
secure shell access. Web interfaces are used to start, control, and stop

the cloud instance, which in our demonstration cases are always stored
as virtual Linux machines. While the cloud instance is not running,
storage of these several tens of gigabyte large files generates costs of the
order of a few dollars per month. The virtual machine is pre-
configured with compiled versions of the simulation code,
repositories for bathymetry and topography data, post-processing
tools, and possibly visualization pipelines. In the presented
prototype, the sources are computed from moment tensor
solutions available by web service from the GEOFON web page
(GEOFON, 2021). Bathymetry and topography data are prepared
and stored in the virtual machine, but could potentially also be
retrieved on demand. In our case, visualization is performed on a
local personal computer, but it would also be possible to configure a
second cloud instance especially dedicated for high-performance
visualization such that the results can readily be obtained by
mobile devices such as smart phones or public projection screens.

Looking beyond hazard computing, cloud computing enables
researchers and institutions without funding for large investments
access to large scale computing facilities. Since cloud computing
instances can be tailored and scaled to the requirements during
development and production phases on demand, cost efficiency
can be achieved and large computations are accessible with low
budgets. Even in research environments, where larger budgets are
generally available, it may be difficult to allocate investments into large
computing infrastructures. In that case cloud computing costs can be
accounted to research projectmaterial expenses and do not necessitate
any investments.

Another important advantage goes beyond the application of
tsunami hazard assessment. The cost efficient availability of cloud
computing infrastructure would allow countries without locally
available large-scale computing resources to run local hazard
assessments in case of, e.g., potentially severe weather events
where devastating effects of such events have greater human
impact than in industrial countries with advanced computing and
warning infrastructure that run their own weather services.

Last but not least, large on-premise computing hardware has a
significant disadvantage in countries, where energy costs are high, such
as in central Europe or in very warm countries. An enormous amount
of energy is required for cooling. Cloud computing hardware can be
placed anywhere. As an example, in Iceland cloud computing facilities
can be run and cooled using geothermal energy only. Thus the impact
of running cloud computing hardware on the environment can be
minimized in contrast to on-premise solutions.

3 PERFORMANCE ASSESSMENT

In order to assess the feasibility of large scale geoscientific
computing in cloud infrastructures, we perform benchmark
tests representing numerical operations typically occurring in
applications such as tsunami simulations, shown in the next
section, as well as other geoscientific applications with high
computational demands. We employ different sets of
benchmarks in different cloud computing environments. Our
tests were performed on the AWS cloud, employing a Fortran
program for solving an elliptic partial differential equation by
classical iteration, parallelized alternatively with OpenMP or

TABLE 1 | Cost comparison of cloud and on-premise computing.

Cloud (AWS/Azure) On-premise

Investment — 10,000.00 USD
Energy — 5,200.00 USD
Cooling — 5,200.00 USD
Maintenance — 22,500.00 USD
Preparation/testing cost 1,000.00 USD —

Storage/data transfer 1,800.00 USD —

Event computing cost 3,000.00 USD —

Total 5,800.00 USD 42,900.00 USD
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MPI. These tests were performed in a comparison with an on-
premise computer in the context of the ASTARTE project
(ASTARTE Project, 2017a) and documented in an internal
report. They are reported here for reference and for a better
comparison and understanding.

The second set of benchmarks is performed using a mixed
OpenMP-MPI parallelized C/C++ implementation of advection-
diffusion type partial differential equations. These types of
equations are typical for all kinds of geoscientific phenomena
and are often used as a first representation for the development of
numerical algorithms in this application field. Tsunamis can be
represented by a non-linear generalization of such equation type.
This benchmark will be tested on a number of differently sized
instances of the Azure cloud computing platform.

3.1 Description of Elliptic PDE
Benchmark—AWS Cloud
The elliptic partial differential equation solved in this benchmark
represents a simple Poisson equation in two spatial dimensions:

−Δu � f in Ω � 0, 1[ ]2 ⊂ R2,
u � g on Γ � δΩ.

We use f (x, y) = 2 (x + y − x2 − y2) and g ≡ 0. u(x, y) ∈ R is an
unknown potential. The domain Ω is discretized by a uniform
equidistant grid (xi, yj) = (iΔx, jΔx), with Δx � 1

n, i, j = 0: n, of (n +
1) × (n + 1) grid points, and δΩ is the boundary ofΩ. Discretizing

this equation by a finite difference operator and solving by an
iterative Gauß-Seidel procedure results in an inner loop operation
of the form

u k+1[ ] i, j( ) � 1
4
(u k+1[ ] i − 1, j( ) + u k[ ] i + 1, j( ) + u k+1[ ] i, j − 1( )
+u k[ ] i, j + 1( ) + Δx2f i, j( )), (1)

where u (i, j) = u (xi, yj), and k represents the iteration count. The
discrete form requires an access pattern to the nearest neighbors.
When ordering the grid points in a white-black checkerboard
pattern, the white and the black points can be processed in
parallel and only one barrier synchronization is necessary
within each iteration. The access pattern is visualized in
Figure 1. The unknowns are distributed to processors in equal
sized areas with full columns. Each processor has read access to
one column to the left and right of its own domain, so that after
each iteration these rows need to be communicated among
neighbors, when local memory message passing (MPI) is
employed. Computation of white nodes and black nodes is
completely independent and could also be distributed in a
different way. Within each iteration a synchronization is
necessary, when switching from black to white nodes. A five
point stencil is marked for the access pattern in Equation 1.

3.2 Description of Elliptic PDE
Benchmark—Azure Cloud
The same model as in Section 3.1 is tested in Microsoft’s Azure
cloud environment with a modified right hand side:

f x, y( ) � 1 if y< 1
2
+ 1
4
sin 4πx( ),

−1 otherwise.

⎧⎪⎨
⎪⎩ (2)

It is a modified version of an example within the Deal.II
library (“step 40”). We solve the model using a computationally
more demanding adaptive finite element method (FEM) in
2D on a distributed mesh with parallel linear algebra. The
solver is implemented using the Deal.II library (Arndt et al.,
2020).

Essentially, this is the same test case that has been conducted
in Bangerth et al. (2012) on an on-site high-performance cluster
to show the scalability of certain functionality within Deal.II
whereas we exploit this well tested high-performance computing
software to show the suitability of scalable cloud environments.
Note that the right-hand side constitutes a discontinuous forcing.
This causes the solution to display large gradients at the
discontinuity and hence the mesh is expected to be refined
there allowing us to test the performance in a sequence of
refinement cycles that constitute different problem sizes. The
test is conducted on two cluster settings:

3.2.1 Small Setup
This setup consists of a small sized master node that does not
participate in the actual computation but serves as a load balancer
running a SLURM scheduler (Yoo et al., 2003). This master node
distributes the MPI-parallel computation across ten compute

FIGURE 1 | Access pattern and domain decomposition of the red-black
relaxation method used in the algorithm for performance testing in Section
3.1. Underlying colors indicate the distribution to processors, only interior
nodes are processed. The access stencil is indicated by arrows. Green
lines indicate the region, where read access to neighboring nodes is
necessary.
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nodes each equipped with an Intel® Xeon® Platinum 8272CL,
2.1 GHz, with 2 cores and 8 GB of RAM. This is also the setup for
the master node. The nodes are connected in a fast and modern
Infiniband network which facilitates a high communication
throughput. A shared SSD data storage of 256 GB was
mounted on each of the compute nodes.

3.2.2 Large Setup
The same load balancer as in the small setup is reused with ten
compute nodes each equipped with an Intel® Xeon® Platinum
8168, 3.4 GHz, with 32 CPU cores (16 physical and 16 virtual)
and 64 GB of fast main memory.

3.3 Description of Bouyancy-Boussinesq
PDE Benchmark
This test case is the basis for the large scale framework ASPECT
(Bangerth et al., 2015) that serves the purpose of the simulation of
convection processes inside the earth mantle. As in Section 3.2
we run it with essentially the same parameter configuration as in
Bangerth et al. (2012) but yet, again, to demonstrate the feasibility
of well tested high performace software for cloud computations.
The model is essentially a temperature feedback driven
incompressible Stokes model with an advection-diffusion
equation for the temperature variable. The model equations
are given by

−∇ · 2ηϵ u( )( ) + ∇p � ρ T, Tref, ρref( )ger,
ϵ u( ) � 1

2
∇u + ∇uT( ),

∇ · u � 0,

ztT + u · ∇T � ∇ μ∇T( ) + f.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Here, u is the velocity, T the temperature, p the pressure, ρ a
density, μ is a thermal conductivity of the medium, ϵ ist the
symmetric gradient (strain), g the gravitational constant, er the

outward normal vector, Tref and ρref reference temperature and
density, respectively. The implementation uses H1-conformal
linear finite elements for velocity and temperature and L2-
conformal (discontinuous) elements for the pressure and is
again a modified version of an example of the Deal.II library
(“step 32”).

3.4 AWS Benchmark Results
While the elliptic test problem does not cover all different
computational aspects of a tsunami simulation—in particular
not with the discontinuous Galerkin approach, used in the
prototypical implementation in Section 4—it is suited to give
a good first impression of the computational capabilities of cloud
instances in real life application scenarios. In order to assess the
expected performance of a cloud instance in comparison with an
on-premise compute server tests with up to 8 processors are
conducted. It turns out that the test program does not scale very
well, but it is not the purpose of this test to see optimal parallel
performance but to be able to compare cloud vs. on-premise
computing devices. Parallelization is implemented by the
Message Passing Interface (MPI) parallel programming model,
and no specific action is taken to optimize parallel efficiency. Note
that these tests were performed some time ago and are included in
this report for reference.

The tests are performed with the following configurations. The
on-premise computer is a 2 node 2.67 GHz Xeon X5650 server
with 12 cores, which is used with up to 16 processes
(hyperthreading). It is equipped with 32 GB of main memory.
The AWS EC2 cloud instances are of type c3.8xlarge, which is a
Xeon E5-2680 based architecture with 32 virtual processors,
60 GB of main memory, and 10 GBit high speed networking.
The performance results are shown in Figure 2. It can be seen
from the figure that the local on-premise computation is a factor
of 2 slower due to different processor generations, but the parallel
scaling shows approximately the same behavior for the cloud as
well as for the on-premise servers.

FIGURE 2 | (A) Compute time comparison for parallel execution of benchmark program in Section 3.1 on an on-premise computer in comparison with AWS EC2
cloud instances. (B) The speedup (strong scaling) of the corresponding benchmark tests.
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As a preliminary conclusion, it can be stated that the same
kind of performance can be expected from an on-premise server
as well as from a cloud instance. Performance-wise there is no
specific advantage using an on-premise computer. In particular
looking at the cost comparison of the previous chapter 2, the
cloud instance can be regarded as the advantageous architecture.

3.5 Azure Benchmark Results
3.5.1 Elliptic PDE Benchmark
We perform weak and strong scaling tests, i.e., we take timings
with fixed allocated hardware and gradually increase the problem
size (weak scaling) as well as timing tests, where we fix the
problem size and gradually allocate more compute resources
(strong scaling). Both scaling tests are performed on the small
and the large setup as described in Section 3.2. Although both our
small and large setup are rather small compared to the cluster
setup used in Bangerth et al. (2012), allowing only qualitative

comparisons, similar (linear) scaling effects for differently sized
problems are clearly visible for weak and strong scaling, see
Figure 3. The scaling tests show timings of the main building
blocks of adaptive FEMs which are essentially the setup of the
mesh and the distribution of the degrees of freedom (dof setup),
the assembly of the (sparse) system (assembly), the conjugate
gradient solver preconditioned with algebraic multigrid (solver), a
posteriori error estimation and adaptive coarsening and
refinement of the mesh including rebalancing the mesh
(coarsen/refine), and the data output (output). Figure 4
additionally shows the partitioning of the adaptive mesh
among 20 MPI processes.
Remark. We pass on timing the output in the weak scaling tests
Figures 3A,C in our parallel setting since its overhead becomes
very dominant for problem sizes with a number of degrees of
freedom at a magnitude 108 and higher and simply does not fit
nicely in the plot of (Figure 3C). Also, Figures 3B,D do not show

FIGURE 3 | (A) Weak scaling in the small setup for the test case in Section 3.2 computed on 20 distributed CPUs with up to 17 million degrees of freedom. (B)
Strong scaling for selected parts of the algorithm for the small setupwith 4.2 million degrees of freedom on up to 16 distributed cores. (C)Weak scaling in the large setup
for the test case in Section 3.2 computed on 320 distributed CPUs with up to 270 million degrees of freedom. (D) Strong scaling for the large setup with 67 million
degrees of freedom on up to 320 distributed cores. Both weak scaling plots do not show timings for the data output since its overhead becomes dominant at
around 108 Dofs. Both strong scaling plots do not time coarsening and refinement since the runs are not adaptive.
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timings of refinement and coarsening, because it was disabled for
the strong scaling setup since we used a fixed number of degrees
of freedom and only increased the number of processors.

3.5.2 Bouyancy-Boussinesq PDE Benchmark
This is an example of a massively parallel implementation since
idle cores on each node will also be used for local shared memory
parallelism. Thus for a substantial test of strong scalability taking
full control over local threading and carefully choosing the
balance of participating compute nodes versus the number of
local cores on each node and the accessibility of memory banks is
necessary. We pass on this and only show weak scaling results on
160 CPU cores on all ten machines. Note that the remaining
virtual cores are used for threading the assembly of the system
matrices and right-hand sides. Also note that we do not scale to
the same large number of DoFs as in the test of Section 3.2 since
the problem is numerically much more challenging. Figure 5
shows a snapshot of the Bouyancy-Boussinesq problem applied to
mantle convection applications. Figure 6 shows the weak scaling
effects on 160 cores in the large setup for 100 time steps and
increasing problem sizes due to adaptive mesh refinement. Note
that coarsening and refinement includes re-balancing the mesh,
and that the solvers scale slightly better than linearly since the
solution at the preceding time step is used as an initial guess. The
overall solution times for each iteration show slightly better
scaling than linear, most likely because we are not in the
asymptotic regime.

Overall, these scaling examples demonstrate the capacity of
cloud facilities for typical numerical computation primitives.
Scaling as well as absolute performance indicators are similar

to on-premise computing facilities, at least for reasonably sized
computers. The software environments of cloud instances are
very similar to on-premise computing facilities, since the cloud
instances can be configured analogously, providing Linux
operating systems with the usual libraries and compilers, and
even specialized libraries can be installed into the virtual
machines running in the cloud environments.

4 EXAMPLE WORKFLOW FOR TSUNAMI
HAZARD COMPUTING

A prototypical workflow for an instant computing scenario in
tsunami early warning could be given by the following sequence:

1. Trigger: Earthquake detected through network of
seismometers and suitable processing, information available
via web service [e.g., GEOFON (2021)]

2. Gather Boundary Data: Bathymetry/topography data
(possibly pre-) processed from online resources for the
computational domain of interest.

3. Derive Initial Data: Obtain rupture parameters (Okada
parameters) from earthquake parameters, e.g., through
scaling laws (Mansinha and Smylie, 1971; Okada, 1985;
Kanamori and Brodsky, 2004).

4. Simulation: Run tsunami forecasting simulation with initial
conditions (Okada) and boundary data from previous
two steps.

5. Deploy/visualize results: Visualize simulation results, and
deploy additional products through web services from data,
which were generated and stored in files during the simulation.

This workflow is given in Figure 7 as a flow diagram.
In order to implement a prototypical realization of this

workflow, several pre-fabricated tools were available and have

FIGURE 4 |Distributedmesh (20 CPUs on 10 nodes, small setup) for the
test case in Section 3.2. Each color indicates a different processor owning a
part of the mesh.

FIGURE 5 | Snapshot of the solution of the Boussinesq test case of
Section 3.3. A crossection of the earth’s mantle is shown with the adaptively
refined mesh. Arrows indicate the flow direction and speed. Color also
indicates flow speed.
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FIGURE 6 | Weak scaling on 160 CPU cores with local threading on ten nodes for the test in Section 3.3 (large setup).

FIGURE 7 | Prototypical workflow for tsunami forecasting.
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been used. As a first step, however, a well configured AWS EC2
virtual machine instance needs to be generated. Since the EC2
instances are scalable, the configuration concerns in particular the
connectivity of the cloud machine. In our case access to the
machine is established via secure shell (SSH) on port 22, and the
(secure) HTTP/HTTPS protocols via ports 80 and 443
respectively. Corresponding keys need to be generated and
stored appropriately.

The workflow is implemented by a 250 line Python script. In
order to be able to achieve this brevity, several pre-fabricated
libraries are used. The Boto library (AmazonWeb Services, 2021)
helps to start and configure the EC2 instance out of the python
run-time environment. To simplify the interaction with the EC2
instance via SSH the Paramico library (Forcier, 2021) is used.

The general architecture of the implementation is shown in
Figure 8. The Python controller script can run either on a very
small/weak cloud instance or on any computer on-premise. It
uses hardly any resources and will just listen to incoming mail
from the triggering earthquake alert service. When the workflow
is triggered by an earthquake alert message, the controller starts

the EC2 instance, which is stored as a pre-fabricated and
configured virtual machine. This consists of a current Debian
Linux operating system, a repository of bathymetry/topography
data for the region of interest (in our case the western
Mediterranean), a compiled simulation program
(StormFlash2d, see below) with all necessary libraries, and
post-processing tools. Once the EC2 instance is running, it
provides an HTTP-interface for clients, including mobile
devices, to retrieve simulation results.

In this prototypical implementation the trigger for activating
the workflow is an email sent by the GEOFON server (GEOFON,
2021) in case of an earthquake. The alerting email contains
information on the earthquake’s epicenter location, time,
source parameters, and a unique event identifier. For
reasonably significant earthquakes moment tensor parameters
are automatically computed and can be accessed via web
interfaces. The python controller parses relevant values from
the text file containing the moment tensor parameters and derives
the corresponding input to be used in the Okada model for
tsunami sources (Okada, 1985). The empirical formulas are taken
from Pranowo (2010) and are based on Kanamori and Brodsky
(2004); Mansinha and Smylie (1971) and others.

Once the Okada parameters are derived, the corresponding
source serves as initial condition for starting the simulation.
Other boundary conditions (bathymetry/topography) are
obtained from previously prepared and stored data. The
propagation and inundation is computed by the simulation
software StormFlash2D, an adaptive discontinuous Galerkin
non-linear shallow water model (Vater et al., 2015, 2019). The
output of StormFlash2D—wave height and velocity on adaptively
refined triangular meshes—is stored in NetCDF files (Unidata,
2021), following the UGRID conventions (Jagers, 2018). These
files are then further processed and visualized, utilizing the
pyugrid Python library (Barker et al., 2021). Post-processing
can then be applied to the stored files, in order to derive
forecasting products, such as arrival time maps, mareograms, etc.

In this prototypical implementation that serves mainly the
purpose of demonstrating feasibility, we use parameters similar to

FIGURE 8 | Architecture of the prototypical cloud based tsunami
forecasting system.

FIGURE 9 | Three snapshots of an animation result from the prototypical cloud based tsunami simulation. x- and y-axis represent degrees East longitude and North
latitude, colors/contour lines indicate wave amplitude in meters. This is a scenario with a synthetic source of an earthquake tsunami originating in the North Algerian
subduction zone. The images cover a map area reaching from approximately Valencia/Spain in the West to Monaco in the East and from a little South of Algier/Algeria in
the South to Montpellier/France in the North.
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the 2003 Zemmouri-Bourmedes tsunami event at the coast of
Algeria in the Mediterranean (Alasset et al., 2006). The example
email triggering the workflow contains the earthquake magnitude
(MW 6.8) and location data (epicenter 36.83 N, 3.65 E, and depth
8 km). Further local tensor data are assumed to be strike 54°, dip
50° and rake 90°. Applying the above mentioned empirical scaling
laws to the earthquake magnitude, we set a slip of little less than
1 m, a length of the Okada plate of 30.2 km and a width of
15.1 km. A single plate is assumed.

The only product delivered to a potential user in this feasibility
study is a short animation of waves propagating over the ocean area
of interest (see Figure 9). This sequence is computed using standard
gebco bathymetry GEBCO (2014), which is interpolated linearly to
the triangular mesh. Themesh for this computation was not adapted,
but used in a uniformly refined version with 16 refinement levels,
corresponding to a grid of approx. 260,000 grid cells or to a resolution
of approx. 1,300m. Note that in the visualization, there are some
numerical artifacts (secondary waves) caused by a somewhat sloppy
implementation of the interpolation of the Okada initial conditions
(computed on a rectangular mesh) to the triangular computational
mesh of StormFlash2d.

The above steps, i.e., listening to incoming email, parsing data into
files controlling the execution of the tsunami model, and collecting
output data, are performed by a small Python script on a local laptop
or desktop computer. Starting the EC2 AWS instance takes less than
30 s. Run time for this serial computation on one node of the AWS
instance takes approx. 100 s, the time for output being less than 1% of
the total computing time.

While this proves the feasibility of implementing suchworkflow in
IaaS type cloud services, it is by no means useful for real world
operations. The adaptive tsunami simulation—while potentially
efficient and accurate—is not applied to local resolutions of 10 s
ofmeters for usefully precise forecast information. If this was the aim,
additional resources and performance optimizations would be
necessary. Additionally, a more diverse and more quality
controlled post-processing pipeline would be necessary. Usually,
wave arrival time maps, wave height maps, possibly inundation
maps, and even flow speed assessments would be of practical interest.

5 SUMMARY AND CONCLUSION

In this study we assess the feasibility of on-demand cloud computing
for tsunami hazard assessment as well as other demanding
geophysical applications. On the one hand, we test the capacity of
cloud computing environments to provide scalable high-performance
computing capabilities. A number of advantages of such cloud-based
computing facilities motivate us to further investigate their usability
for more practical applications. Therefore, we propose a simple
workflow that can be implemented in a cloud environment. While
we are aware that there exist similar workflows in tsunami hazard
assessment, they are all based on remotely accessible, but local on-
premise computing environments.

A simplified prototypical workflow, utilizing cloud instances is
implemented and demonstrates the overall feasibility of our
approach. More work needs to be invested to empower this
approach for operational use:

• Some manual work is required to obtain quality controlled
bathymetry/topography data.

• A permanent control process needs to be instantiated in
order to listen to relevant trigger data (such as earthquake
portals) and compute robust and useful sources from
earthquake parameters. The prototypical application is
much too simple for operational purposes.

• More relevant output formats and better visualization needs
to be implemented to interact with the instant computing
workflow.

• The simulation software StormFlash2D needs thorough
parallelization and optimization to be used in an
operational environment.

• It would be desirable to also include other operational
models for assessing the uncertainty in the forecast,
related to the modeling technique.

• Instantiating several on-demand computations with a
variation in the earthquake parameters within the data
uncertainty, would create an ensemble of forecasts,
allowing for probabilistic forecasts such as those
proposed by Selva et al. (2021).

By conducting the scalability tests with selected benchmarks
we could show that cloud computing environments are capable of
providing the required performance for many geoscientific
applications at reasonable costs. Therefore further exploration
and development of standardized interfaces for managing and
controlling the cloud computing infrastructure is worthwhile.
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