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Extreme weather has been more frequent in recent years. Urban agglomerations, as
areas with a high density of human activities, have been plagued by storm flooding.
Historically, themain focus of attention on flood control in urban agglomerations has
gradually shifted from underground pipe networks to the impervious surface,
reflecting profound changes in the influencing mechanism of urban flooding.
Exploring the evolution of the mechanisms influencing urban flooding in the
Guangdong Hong Kong Macao Greater Bay Area (GBA) urban agglomeration is of
great reference significance for formulating flood prevention and control measures
and promoting high-quality development of the GBA city cluster. In this paper, we
fully use the collected information on urban flooding events from 1980 to 2018 in the
GBA city cluster. Correlation analysis and geographically weighted regression (GWR)
are used to analyze the influence of impervious surface percentage (ISP), impervious
surface aggregation index (AI), impervious surface mean shape index (Shape_MN),
vegetation cover (FVC), water surface ratio (WSR), relative elevation (RE) and slope on
flooding in urban clusters and their evolution characteristics over time from a global
perspective and spatial heterogeneity, respectively. The results show that: 1) ISP, AI,
Shape_MN, andWSR are positively correlatedwith urban flooding, while FVC, RE, and
Slope are negatively correlated with urban flooding. The correlations of each factor
showed a general trend of gradual strengthening over time, and the increase rate
slowed down after 2000, while the correlation of WSR showed a relatively noticeable
decrease. 2) TheGWR results show that each factor’s influence on urban flooding has
pronounced spatial-temporal heterogeneity, and each factor shows different
distribution characteristics. This study uses long time series of urban flooding
point data to explore the spatial-temporal evolution of the influencing
mechanism of urban flooding in the GBA urban agglomeration. We hope to
provide a scientific basis for an in-depth understanding of the causes of urban
flooding in the GBA, intending to provide auxiliary decision-making support for the
formulation of waterlogging prevention and control measures.
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1 Introduction

Since the reform and opening up, thanks to the excellent location
conditions, China’s coastal region has been through rapid
development, and the urbanization process has been accelerated
(Chen, 2014; Xu P. F. et al., 2021). Meanwhile, with the
increasingly close communication between regional cities, several
urban agglomerations have emerged in the coastal region, such as
the Beijing-Tianjin-Hebei urban agglomeration, the Yangtze River
Delta urban agglomeration, and the Pearl River Delta urban
agglomeration. As the central region of China’s new urbanization,
urban clusters dominate the lifeline of national economic
development, and the high-quality, sustainable development of
urban clusters profoundly affects the country’s international
competitiveness (Fang, 2015; Tan et al., 2022; Yang et al., 2022;
Feng et al., 2023). The particular geographic location of coastal
areas brings good opportunities for regional development on the
one hand but also makes them more vulnerable to water disasters,
especially heavy rainfall flooding, than inland urban agglomerations
on the other hand (Aerts et al., 2014; Quan, 2014; Duan, 2016; Jeong
et al., 2021). Urban flooding occurs when a short period of heavy
rainfall or continuous rainfall exceeds the city’s drainage capacity,
resulting in extensive flood disasters (Hammond et al., 2015; Wang
and Xie, 2018). Under the current situation of frequent extreme
weather, urban flooding caused by high intensity and frequent
extreme rainfall has posed a serious challenge to the development
of coastal city clusters. For example, the “7.21” extreme rainstorm
event in the Beijing-Tianjin-Hebei urban agglomeration, the “5.7”
extreme rainstorm event in the GBA urban agglomeration, and the
“8.25” extreme rainstorm event in Yangtze River Delta urban
agglomeration have all caused serious flooding disasters, resulting
in heavy casualties and huge property losses. With the advancement of
urbanization in China, flooding in urban agglomerations still tends to
intensify (Li C. et al., 2022; Wang Y. et al., 2022), which seriously
restricts the high-quality and sustainable development of urban
agglomerations (Chan et al., 2021b; Lu et al., 2022). How to
effectively mitigate the impact of urban flooding has become a
major problem that needs to be solved in the development of
urban agglomerations in China (Liu et al., 2021; Luo and Zhang, 2022).

As an infrastructure to resist urban flooding, flood prevention and
control measures have always been an important part of urban
construction (Wang, 2019). Historically, the evolution of the
factors influencing urban flooding has also given rise to different
oriented flood control measures. There are two main causes of urban
flooding, namely natural and human factors (Wang D. et al., 2015;
Miller and Hutchins, 2017; Berndtsson et al., 2019; O’Donnell and
Thorne, 2020). Natural factors are mainly persistent or short-duration
high-intensity precipitation (ten Veldhuis et al., 2018; Wang X. et al.,
2022) and topographic factors (Helderop and Grubesic, 2019), and the
former has a higher impact on flooding than the latter (Huang et al.,
2021). In the context of global climate change, extreme rainstorms are
on the rise in many Chinese cities (He and Zhai, 2018; Li J. et al., 2022;
Qian et al., 2022) and are mainly attributed to the increase in short-
duration rainstorms (Huang et al., 2021). In recent years, the
relationship between precipitation and urbanization has received
continuous attention from scholars. Many studies have shown that
urbanization not only changes the hydrological characteristics of cities
but also exacerbates the extent of extreme precipitation in urban areas,
including an increase in frequency and advancement of flood peaks

(WangW. et al., 2015; Liang and Ding, 2017; Lin et al., 2020; Yan et al.,
2020; Zhang L. et al., 2020). Thus, although precipitation is the direct
cause of urban flooding, the root cause of the increasing severity of
urban flooding is that the construction of flood control measures in
urban areas lags behind the development rate of urbanization.

In the early stage of urbanization, urban flooding was usually
caused by natural factors such as short-term heavy rainfall, which led
to previous flood prevention and control measures mainly through the
construction of drainage networks to speed up the infiltration of
rainwater, and the scale of the network was gradually expanded with
urban development (Xiao, 2019). Since the 1980s, the urbanization
process has been accelerated with the deepening of reform and
opening up (Meng et al., 2020; Liang et al., 2021). The rapid
spread of urban built-up areas has caused a significant reduction of
rainwater infiltration area (Yu et al., 2021), coupled with the fact that
the construction of urban flood control and drainage projects often
lags behind the urbanization process (Fang et al., 2021), resulting in
the aging of drainage networks and mixed flow of rainwater and
sewage (Zhang Q. et al., 2020; Kong et al., 2021). The early planning of
the carrying capacity of the pipe network is no longer applicable in a
relatively short period (Chan et al., 2021a). At this time, the leading
cause of urban flooding is gradually being replaced by human factors
(Yu et al., 2018). Since it is not practical to carry out large-scale pipe
network renovation in highly urbanized areas (Pietrucha-Urbanik,
2015; Zhou et al., 2018), urban flooding prevention and control
measures gradually shifted from underground to above-ground.
Such actions as low-impact development (LID) (Chen and Chen,
2018), sponge city construction (Wang et al., 2017), water-sensitive
urban design (WSUD) (Salinas Rodriguez et al., 2014), sustainable
drainage system (SuDS) (Scholz, 2015), and urban renewal (Liang
et al., 2017; Hudson et al., 2022; Zhou et al., 2022) were proposed one
after another. Therefore, clarifying the influencing factors of urban
flooding and its evolution can provide a scientific theoretical basis for
formulating urban flood prevention and control measures (Wang Y.
et al., 2022).

Guangdong Hong Kong Macao Greater Bay Area Urban
Agglomeration consists of Hong Kong, Macao, and nine cities in
the Pearl River Delta. As one of China’s most open and economically
vibrant regions (Yang et al., 2022), the GBA urban agglomeration has
an important strategic position in the country’s overall development.
However, carrying the grand vision of building a “world-class bay
area”, the GBA urban agglomeration has a considerable gap in flood
prevention and control capacity compared with the world’s first-class
bay area. Urban flooding and the phenomenon of “seeing the sea in
cities” are frequent in the GBA urban agglomeration (Chen H. et al.,
2021). Although national policy documents have clearly required
improving urban flood control and drainage capacity to solve the
problem of urban flooding (Zhu et al., 2021), the current flood
prevention and control measures are still based on passive defense,
and the results are not significant despite the vast investment (Liu
et al., 2019; Zhang et al., 2022). In the face of the increasingly severe
flooding in the GBA, scholars have conducted many studies on
hydrological information extraction (Duan et al, 2021), driving
factors of urban flooding (Liu et al., 2021; Zhang et al., 2021),
contextual simulations (Qiang et al., 2020; Chen X. et al., 2021),
and prevention and control measures (Lourenço et al., 2020; Otsuka
et al., 2022; Wu et al., 2022), having made some progress. However,
due to the difficulty of obtaining long-time series flooding data (Zhang
Q. et al., 2020; Zhang et al., 2021), the analysis of the spatial-temporal
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evolution of the flooding impact mechanism is still lacking. In the
development and formation of the GBA urban agglomeration, how the
spatial pattern of urban flooding changes and how the influencing
factors of urban flooding evolve are still important questions that need
to be explored. Therefore, this paper takes the GBA urban
agglomeration, which is frequently attacked by rainstorms, as the
study area, collects the accumulated 3,592 flood event points that
occurred in the study area from 1980 to 2018, and uses them as the
research object to explore the spatial-temporal evolution of the urban
flooding influence mechanism.We hope to provide auxiliary decision-
making support for flood prevention and control at the urban
agglomeration scale and urban cluster renewal planning.

2 Study area and data

2.1 Study area overview

This paper takes the GBA urban agglomeration as the study area
(Figure 1). The GBA urban agglomeration is located in the core space
of South China composed of Guangzhou, Shenzhen, Dongguan,
Foshan, Zhuhai, Zhongshan, Jiangmen, Huizhou, Zhaoqing, Hong
Kong, and Macao. It is a world-class city cluster with a total area of
56,000 square kilometers. Located at 111°15′~115°30′E and
21°30′~24°30′N, the GBA has a tropical and subtropical marine
monsoon climate with sufficient rain and heat conditions
throughout the year, and the average precipitation for many years
is above 1500 mm. Influenced by the Pacific monsoon, precipitation
activity is mainly concentrated between April and October, with
precipitation accounting for about 80% of the year and often
accompanied by typhoon disasters and frequent rainstorms. With
the rapid development of the GBA, the built-up area is expanding, and
urbanization has brought about a series of urban problems, among
which the impact of heavy rainfall and flooding is particularly severe
for the people in the Bay Area. The cities here are under the threat of
urban flooding all year round. Thus, it can be seen that flooding has
become a primary “urban disease” that has to be solved.

2.2 Data

Analyzing the evolution of influencing factors of flood disasters in
urban agglomerations requires multi-source data. The data types,
formats, time, and data sources used in this paper are shown in

Table 1. We mainly use the textual information of urban flooding
event points, impervious surface data with 30 m spatial resolution
covering the GBA, digital elevation model (DEM) data, and
administrative division data.

To ensure the accuracy of the data, the urban flooding event
points are mainly from mainstream media reports (mostly
authoritative local newspapers) and flooding event points with
accurate time and location information published by local water
authorities, ranging from January 1980 to December 2018. These
urban flooding events usually have caused a significant impact on
the life of residents, social property, and transportation. Through
the collected textual information of urban flooding events, we use
ArcGIS and Google Earth for visual identification, vectorize the
locations of these events, and establish a spatial data set of flooding
points. The vectorization method refers to the method provided by
Yu et al. (2018); Zhang et al. 2018), and finally, 3,592 flooding event
points were obtained.

2.3 Influencing factor selection

Existing studies show that urban flooding is mainly influenced by
natural factors such as precipitation, topography, and hydrology and
human factors such as land use/cover (Zhang et al., 2018; Xu L. et al.,
2021). Based on this, the following seven indicators are selected as the
influencing factors of urban flooding for this paper, which is: the
percentage of impervious surface (ISP), the aggregation of impervious
surface (AI), the mean shape index of impervious surface (Shape_
MN), vegetation cover (FVC), water surface ratio (WSR), relative
elevation (RE), and slope (Slope).

Impervious surfaces are the ground cover that can prevent water
from infiltrating into the soil, mainly composed of various artificial
surfaces, such as asphalt or concrete roads, roofs, parking lots, etc.
(Arnold and Gibbons, 1996). It is the main reason for the increasing
severity of urban flooding (Sohn et al., 2020; Wang K. et al., 2021). In
this paper, we use the impervious surface of the GBA in 1987, 1997,
2007, and 2017 extracted by Liu et al. (2020), and the extraction
accuracy is above 88%, which meets the analysis demand. The
landscape pattern index can highly concentrate the information on
various landscape characteristics of surface elements, reflecting the
spatial configuration and structural characteristics of landscape units
as well as the intrinsic connection between landscape patterns and
ecological processes (Li and Wu, 2004). In this study, based on the
principle that landscape indices should be selected independently of

TABLE 1 List of data.

Data Format Time Source

Flood event points Text 1980–2018 Local water authorities, local newspapers

Impervious Surfaces Raster 1987、1997、2007、2017 Liu et al. (2020)

High-resolution remote sensing images Jpeg 2017 Google Earth Pro

DEM Raster 2009 Geospatial Data Cloud (http://www.gscloud.cn/)

Administrative Divisions Shapefile 2017 National Geomatics Center of China (http://www.ngcc.cn/
ngcc/)

Water network data Raster 1980、1990、2000、2010、2020 Data Center for Resources and Environment Sciences, Chinese
Academy of Sciences (http://www.resdc.cn)
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each other (Riitters et al., 1995) and with reference to existing studies
(Seto and Fragkias, 2005; Zhang et al., 2015), three landscape pattern
indices, namely patch area share (ISP), aggregation (AI) and mean
shape index (Shape_MN), were selected to measure the landscape
pattern changes of impervious surfaces quantitatively. All the indices
were calculated in Fragstats 4.2, and each index’s specific principles
and meanings are shown in Table 2.

Green space, as one of the permeable surfaces, has good
infiltration of rainwater and is one of the important influencing
factors of urban flooding (Alexander et al., 2019; Afriyanie et al.,
2020; Pallathadka et al., 2022). However, with the advancement of
urbanization in the GBA, the rapid expansion of impervious
surfaces has led to a continuous decrease in the area of green
areas, which in turn has reduced the storage capacity of green areas
for rainwater (Li L. et al., 2021). This paper uses fractional
vegetation cover (FVC) to reflect the green space coverage in the
GBA. FVC is the percentage of the projected area of vegetation
(including leaves, stems, and branches) in the vertical projection
plane over the statistical area, with a value between 0 and 1 (Li C.
et al., 2021). It can reflect the size of plants’ photosynthetic area,
and, to a certain extent, the lushness of vegetation (Zhao et al.,
2015). In this paper, the FVC is extracted from NDVI, which is
calculated by the formula

fv � NDVI −NDVI min

NDVI max −NDVI min
(2–1)

where fv is the vegetation cover, NDVI min indicates the minimum
value above 5% of the cumulative frequency of NDVI, NDVImax

indicates the maximum value below 95% of the cumulative frequency
of NDVI.

Topographic factors such as elevation and slope are also
important factors affecting urban flooding. In general, flood is
more likely to occur in flat and low-lying areas because rainfall
runoff always converges from higher to lower areas. Since
topographic factors do not always change in the short term, this
paper selects DEM data with an accuracy of 30 m obtained in
2007 as the data source, and selects two indicators, relative
elevation (RE) and slope, to analyze the influence mechanism of
topographic factors on urban flooding.

In addition, water systems, as important drainage channels,
profoundly affect an area’s stormwater storage capacity and
ecological carrying capacity (Wang T. et al., 2022; Kõiv-Vainik
et al., 2022). However, due to urban construction and human
activities, many water systems have been converted into urban
built-up areas, and this conversion not only destroys the water
network structure but also reduces the rainwater storage capacity of
the area (Guo et al., 2021). Therefore, in this paper, water surface

ratio (WSR) is calculated by obtaining water system data for
different periods and analyzing its influence on urban flooding.

3 Research method

3.1 Correlation analysis

Pearson correlation coefficient is a statistical method that
accurately measures the degree of linear correlation between two
variables. The magnitude of the coefficient reflects the strength of
the linear correlation between two variables, while the positive or
negative correlation reflects whether the variables are positively or
negatively correlated (Wang Z. et al., 2021). In this study, the Pearson
Correlation in SPSS was used to determine the correlation between
each influencing factor and the severity of urban flooding at a global
scale in preparation for further analysis of the spatial variability of the
influencing mechanism of each factor. For the variable X �
[x1, x2, . . . , xn]T and Y � [y1, y2, . . . , yn]T, the Pearson correlation
coefficients are calculated by

r � ∑n
i�1 xi − �x( ) yi − �y( )����������������������∑n

i�1 xi − �x( )2∑n
i�1 yi − �y( )2√ (3–1)

where �x and �y are the average of n data. The range of the correlation
coefficient r is (-1,1), and the closer the value of |r| is to 1, the higher
the correlation between x and y is. If r is negative, it means x and y are
negatively correlated; if r is positive, it implies x and y are positively
correlated; if r equals zero, it means there is no linear correlation
between x and y.

3.2 Geographically weighted regression

The traditional global spatial regression model assumes spatial
smoothness within the whole study area. However, due to the
significant spatial differences in the development of the GBA
urban agglomeration as a whole and within each city, the
influencing factors present a certain degree of spatial non-
smoothness, i.e., the degree of influence of each factor on urban
flooding changes with the change of spatial location. Therefore, the
correlation analysis alone cannot fully reflect the spatial differences
in the changes of the influencing factors of urban flooding within the
GBA, and the geographically weighted regression model can well
compensate for this shortcoming.

Geographically Weighted Regression (GWR) is a spatial
extension of the traditional regression model (OLS model). It
regresses location information into the parameters (Yu et al.,

TABLE 2 Landscape pattern index.

Landscape pattern index Range Meaning

ISP 0≤ISP≤100 This refers to the proportion of the patch area to the overall landscape area, reflecting the dominance of the landscape type

AI 0≤AI≤100 It reflects the degree of non-randomness or aggregation of different patch types in the landscape. The higher the AI value, the
higher the degree of aggregation of the patches, and vice versa.

Shape_MN Shape_MN≥1 The simplest and most direct metric of patch shape complexity. A higher Shape_MN value indicates a higher complexity of the
patch shape.
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2018), which takes into account the spatial heterogeneity and non-
smoothness between geographic data (Gao and Li, 2011), making
the results obtained from regression analysis more objective and
realistic, and is commonly used to explore and describe spatial
variability in the effects of explanatory variables on dependent
variables (Lu et al., 2016). The model is currently widely used in the
fields of population geography, business geography, and health
geography (Wu et al., 2018), but it has been relatively little applied
in the field of stormwater flooding disasters in urban
agglomerations. Therefore, this paper uses the GWR model to
explore the spatial and temporal heterogeneity characteristics of
the influence of each factor on urban flooding in city clusters. The
model is calculated as follows.

yi � βi0 +∑m
k�1

βikxik + εi i � 1, 2, 3, . . . , n( ) (3–2)

where yi denotes the dependent variable of study unit i, βi0 denotes the
intercept of study unit i, βik denotes the regression coefficient of the
kth explanatory variable at study unit i, εi denotes the residuals, xik

denotes the random error of kth explanatory variable at study unit i.
The spatial correlation of the model residuals is judged by the Z-test
value. When the residuals are randomly distributed, it indicates that
the model is plausible.

The spatial weights, which are mainly divided into fixed
bandwidth and adaptive weight functions, are the key to
determining the GWR model’s merits. Since there are obvious
sparsity differences in the spatial distribution of flooding points, if

fixed bandwidth is used, there will be too many points participating in
the regression in data-dense areas and not enough points participating
in the regression in data-sparse areas. Therefore, the adaptive weight
function is chosen in this paper to ensure that there are suitable
samples to participate in the regression. The calculation formula is as
follows.

wij � 1, j belongs to k neighboring points of i
0, j does not belong to k neighboring points of i

{ (3–3)

where k is the number of set neighboring element points. In this paper,
the optimal number of adjacent element points follows the minimum
AICC principle proposed by Fotheringham (Fotheringham et al.,
2002).

4 Results and discussion

4.1 Spatial and temporal evolution of urban
flooding events

As shown in Figure 2, the spatial-temporal distribution and the
number of flooding points in the GBA urban agglomeration have
experienced a significant expansion trend in both time and space.
From 1980 to 1989, there were 211 flooding points in the GBA,
among which a small number of flooding points existed in
Guangzhou, and most of them were concentrated in Hong Kong
with 111 points. From 1990 to 1999, the number of flooding points

FIGURE 1
The geographical location of the study area.
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FIGURE 2
Spatial-temporal distribution of urban flooding points in the GBA.

TABLE 3 Results of correlation analysis of the influencing factors of flooding in the GBA.

Period Correlation coefficient

ISP AI Shape_MN FVC WSR RE Slope

1980–1989 0.224 0.145 0.087 −0.079 0.019* −0.041 −0.060

1990–1999 0.310 0.178 0.122 −0.136 0.025 −0.064 −0.078

2000–2009 0.416 0.213 0.192 −0.281 0.047 −0.151 −0.173

2010–2018 0.391 0.251 0.198 −0.298 0.000 −0.172 −0.191

Note:WSR, is significantly correlated at 95% level during 1980–1989 and not significantly correlated during 2010–2018; the rest of the factors were significantly correlated at 99% level in all periods.

TABLE 4 GWR results of the influencing factors of urban flooding in the GBA.

Period Adjusted R2

ISP AI Shape_MN FVC WSR RE Slope

1980–1989 0.692 0.597 0.358 0.441 0.525 0.950 0.805

1990–1999 0.919 0.863 0.435 0.535 0.550 0.954 0.843

2000–2009 0.921 0.605 0.375 0.450 0.533 0.950 0.801

2010–2018 0.927 0.439 0.436 0.449 0.585 0.960 0.830
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gradually increased to 425 points, mainly concentrated in Hong
Kong, Shenzhen, and Guangzhou. During this period, except for
Zhuhai with no flooding points, the number of flooding points in all
regions shows an increasing trend. From 2000 to 2009, the number

of flooding points in the GBA increased sharply to 1,256, which was
nearly three times larger than the previous period. The flooding
points are mainly distributed in Shenzhen, Foshan, Guangzhou,
Dongguan, and Zhuhai, among which the number of flooding

FIGURE 3
Correlation coefficient change of each influence factor of urban flooding in the GBA.

FIGURE 4
Spatial distribution of regression coefficients for ISP during 1980–2018.
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points in Shenzhen was the largest, reaching 265. During this
period, the number of flooding points in all major cities in the
GBA, except Hong Kong, was on a surge. From 2010 to 2018, the
number of flooding points in the GBA further increased to 1700,
expanding more than eight times compared with the 1980s, and
they were distributed in all cities.

4.2 Changes in the impact of global-scale
urban flooding influencing factors

The average observation distance of the flooding points in the
study area for all four periods was calculated as 1892m by mean
nearest neighbor analysis, and the minimum analysis scale should be
larger than the average observation distance. Therefore, a 2 km grid is
chosen as the analysis scale to better reflect the detailed differences in
spatial-temporal heterogeneity. The kernel density value of flooding
points in the grid is used as the severity of flooding in the grid cell, and
the correlation between each influence factor and the flood severity is
obtained using SPSS software (Table 3). The results show that ISP, AI,
Shape_MN, and WSR are positively correlated with the severity of
flooding, while FVC, RE, and Slope are negatively correlated with the
severity of flooding.

Observing the temporal changes of the correlation coefficients of
each factor (Figure 3), the overall correlation trend showed a gradual

increase. Among the positively correlated factors, ISP, AI, Shape_MN,
and WSR are ranked from highest to lowest correlation coefficients.
ISP always dominates, but its correlation coefficient slightly decreases
during 2010–2018, while AI and Shape_MN both keep increasing,
indicating that urban flooding is gradually influenced more by the
“shape” than by the “quantity” of impervious surface. “The correlation
between WSR and urban flooding tends to increase yearly in the first
and middle periods but decreases to 0 later. Urban drainage networks
mostly have outlets near river waters. However, early urban pipe
network construction is inadequate, and the Bay Area rivers are often
affected by the upwelling of the sea tide. These lead to a rise in the
river’s water level, resulting in an overflow of rainwater at the outlet of
the pipe network forming internal flooding, causing a positive
correlation between WSR and urban flooding severity. With the
continuous optimization of the pipe network construction, this
positive correlation is gradually reduced.

Among the negative correlations, FVC, Slope, and RE are ranked
from the highest to the lowest absolute value of the correlation
coefficients. All three factors show a trend of increasing correlation
year by year, and FVC is significantly larger than Slope and RE in
terms of correlation, which indicates that the correlation between
green space and flooding severity is stronger than the topographic
factor. It can be seen that improving vegetation cover and increasing
rainwater infiltration is an effective way to reduce the risk of
stormwater flooding.

FIGURE 5
Spatial distribution of regression coefficients for AI during 1980–2018.

Frontiers in Earth Science frontiersin.org08

Zhang et al. 10.3389/feart.2022.1113997

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1113997


4.3 Spatial-temporal evolution of factors
influencing urban flooding

In this study, the analysis unit is a grid cell with a resolution of
2 km. The fitting results of each factor were obtained by following the
AICC minimum principle under the premise that the standard
residuals of the model conform to the random spatial distribution
(Table 4). The modeling effect is unsatisfactory due to the small
number of storm inundation event points between 1980 and 1989, and
the adjusted R2 is significantly lower than the other three periods.
Overall, RE, ISP, and Slope were better fitted for urban flooding, and
the adjusted R2 for the three regression models after 1990 were above
0.95, 0.9, and 0.8, indicating the explanatory power of spatial
differences in urban flooding is strong. AI, Shape_MN, FVC, and
WSR have relatively weak explanatory power for the spatial differences
in urban flooding, but most of the regression model-adjusted R2 are
also above 0.4.

The regression coefficient in the output of the geographically
weighted regression model indicates the degree of influence of the
factor on the dependent variable, and the larger the absolute value of
the regression coefficient, the stronger the degree of impact. Since the
density of urban flooding in some areas in the GBA is 0, the
corresponding model regression coefficient is also 0. Therefore, no
data are shown for the areas where the model regression coefficient is
0, and only the areas where the regression coefficient is not 0 are analyzed.

Impervious surfaces increase surface runoff by reducing
stormwater infiltration, contributing to urban flooding. As shown
in Figure 4, the impact of ISP on urban flooding shows the
characteristics of “polycentric diffusion - polycentric
agglomeration”. During 1980–1989, the high-value areas of the
regression coefficient mainly appear in the south of Zhaoqing City
and the border between Shenzhen and Hong Kong.With time passing,
the high value of the regression coefficient also appears to rise
significantly, and there is a more obvious phenomenon of the high-
value area enlarging, showing a spatial trend of polycentric diffusion.
By the period of 2010–2018, the areas with high correlation coefficient
values appear to retract, mainly concentrated in the border between
Foshan city and Guangzhou city, the downtown area of Dongguan
city, and the southern area of Shenzhen City. These areas are the old
urban areas of the cities in the GBA, and the impervious surface in the
region keeps increasing in density with urban development, while the
drainage facilities are often difficult to update and expand, resulting in
frequent urban flooding. The high expansion rate of impervious
surfaces has been the primary cause of the increasing flooding
severity in the GBA.

AI and Shape_MN reflect the morphology of impervious surfaces,
and scholars have paid attention to their effects on urban flooding.
From Figure 5 and Figure 6, it can be seen that the two factors have
similar influence characteristics on the spatial distribution of urban
flooding. The spatial pattern is more prominent, showing the

FIGURE 6
Spatial distribution of regression coefficients for Shape_MN during 1980–2018.
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characteristics of “single-center diffusion - double-center
concentration”. Both AI and Shape_MN are centered on the
Guangzhou-Foshan Co-city area and gradually spread to the
surrounding area. After 2000, a second agglomeration center was
formed in the main urban area of Dongguan city, and since then, these
two centers have continued to spread in all directions. During the
development of the GBA, the city’s impervious surface has been
increasing in density, and the landscape shape has become more
complex (Ma et al., 2021). In the more developed core cities within the
GBA, impervious surfaces not only contribute quantitatively to urban
flooding, but their shape also has an important impact.

As can be seen from Figure 7, the areas with FVC regression
coefficients less than 0 have been increasing over time, showing the
characteristics of “no center - monocentric diffusion - polycentric
diffusion”. During 1980–1989, there was no significant spatial
clustering of negative FVC regression coefficients. During 1990–1999,
the low-value area of negative FVC regression coefficients was mainly
centered on Guangzhou-Foshan Co-city and spread to the surrounding
area. During 2000–2009, the low-value area of the negative FVC
regression coefficient further expanded and evolved from monocentric
to bicentric, spreading in all directions centered on the Guangzhou-
FoshanCo-city area andDongguanCity, respectively. After 2010, the low-
value area of the negative FVC regression coefficient continued to expand,
and the aggregation centers increased to three, spreading in all directions,
centering on Guangzhou-Foshan Co-city, the core area of Dongguan City

and the southern part of Shenzhen City, respectively. At the same time,
the connectivity among the negative low coefficient value areas increased.
In the progress of urban development, the area of vegetation is
continuously encroached by impervious surfaces, which reduces the
infiltration of rainwater and strengthens the risk of urban flooding. At
the same time, there is also a significant clustering of positive FVC
regression coefficients in the northwestern part of Zhongshan City after
2010, which means the influence of vegetation cover on the flooding
severity in this area is not dominant among the factors. These areas may
be dominated by other factors influencing the occurrence of urban
flooding.

The spatial spread pattern of the regression coefficient of WSR is
somewhat similar to that of FVC (Figure 8). The WSR regression
coefficients during the period of 1980–1989 and 1990–1999 have no
significant spatial aggregation, but the coverage area is expanding. The
low-value regions with negative WSR regression coefficients during
2000–2009 began to gather spatially, spreading in all directions with
the eastern part of Foshan City and the core urban area of Dongguan City
as the center, respectively. Between 2010 and 2018, the aggregation centers
of low-value areas with negative WSR regression coefficients further
increased, spreading in all directions with the eastern part of Foshan City,
thewestern part of GuangzhouCity, and the core urban area ofDongguan
City, and forming another sub-center in the Shenzhen City. Water bodies
are important carriers of underground pipe network drainage. The
aggregation of low-value areas with negative WSR regression

FIGURE 7
Spatial distribution of regression coefficients for FVC during 1980–2018.
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coefficients in theGBA core areas indicates, to a certain extent, the gradual
improvement of drainage pipeline construction in these areas.

As can be seen in Figure 9 and Figure 10, the regression coefficients
of RE and Slope are significantly reduced compared to other factors,
indicating that topographic factors have less influence on urban
flooding. Flooding in the GBA mainly occurs in urban areas, while
cities in the region are mainly located in the estuarine plains with less
topographic relief, so the impact on flooding is relatively low. The
2 km grid scale used in this paper can still analyze some local
macroscopic characteristics from a large-scale perspective. In terms
of RE, the low-value region of the negative regression coefficient is in a
significantly increasing trend. The grids with regression coefficients
less than −0.0007 increased from 0 to 460, indicating that the relevance
of topographic factors for urban flooding is strengthening. These low-
value areas are mainly concentrated in the Guangzhou-Foshan Co-
city, the central part of Shenzhen, and some territories of Dongguan
City, and some low-values are also scattered in other areas, with poor
inter-regional connectivity. It is worth noting that since 1990, a large
number of positive high-value regions appear in the core urban areas
of Foshan City and Dongguan City, and negative low-value areas
surround these high-value areas This indicates that other factors
dominate the occurrence of flooding in these areas, and the
presence of such confounding factors leads to different degrees of
variation in the results. In fact, this is also the area where impervious
surfaces play a significant role. Therefore, it can be inferred that

impervious surfaces can not only enhance the flooding severity by
itself but also this enhancement is further enhanced by the low
roughness of the hardened surface coupled with topographic factors.

5 Discussion

By collecting point data on flood events in the GBA urban
agglomeration during 1980–2018, this study uses correlation analysis
and the GWR model to analyze the changes in the impact mechanism of
flooding in the GBA over the past 40 years, to provide additional decision
support for urban flooding prevention and urban cluster renewal
planning at the urban cluster scale. Through the study, this paper
presents the following considerations.

1) The regression coefficients measure the correlation between the
independent and dependent variables in numerical terms, and
cannot determine whether there is necessarily a causal relationship
between the two. Although the GWR model can explore, from the
perspective of spatial heterogeneity, the spatial-temporal variation of
the impact of various factors on urban flooding in the GBA over the
past 40 years, it is not sufficient to explain the causal relationship
between the influence factor and flooding severity. For example, even
if the regression coefficient between ISP and the flooding severity is
high, it is still not possible to determine that urban flooding is solely

FIGURE 8
Spatial distribution of regression coefficients for WSR during 1980–2018.

Frontiers in Earth Science frontiersin.org11

Zhang et al. 10.3389/feart.2022.1113997

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1113997


caused by the expansion of impervious surfaces. The specific causes of
a particular urban flooding event still need to be modeled and studied
from a microscopic, systematic, and dynamic perspective. The
significance of exploring the spatial variability of influencing factors
of flooding from a large regional scale is to draw general patterns from
microscopic data on flooding and influencing factors and to try to
explain the regional anomalies that occur.

2) From a global perspective, impervious surface factors are always in
the dominant position of all influence factors of flooding in the
GBA. Among them, the correlation coefficient of ISP showed a
relatively significant decrease at the end of the study period, and the
results of the GWR model indicated that this decrease might be
mainly due to the decline of ISP correlation coefficients in
Zhaoqing City and the east of Guangzhou City. In addition, the
correlation coefficients of AI and Shape_MN, which reflect the
“shape” characteristic of impervious surfaces, are steadily
increasing compared to ISP, which reflects the “quantity”
characteristic. This shows that in the late development stage of
the GBA urban agglomeration, the impact of impervious surface on
flooding has changed from quantity to shape, which has important
guiding significance for the GBA urban renewal.

At the beginning of the reform and opening up, under the influence of
Hong Kong and policy support, the industrialization of the Peral River
Delta (PRD) region developed significantly, promoting the expansion and

contiguity of towns on the east and west sides of the PRD, and
urbanization showed a spatial integration across administrative
boundaries. At the same time, under the influence of both market
economy and administrative control, the urban space in the PRD has
shown a phenomenon of “park-city separation” in which production
space and living space are separated. Although this phenomenon has
provided ample space and great flexibility for the development of export-
oriented industries, it has also led to several urban problems, such as “tidal
traffic” and “road economy” (Ma et al., 2019). Dismantling existing
infrastructure for re-planning can lead to a massive waste of resources
and economic loss, so the “urban disease” caused by the rough
urbanization development is often difficult to reverse. As one of the
four major global Bay Area economies, the GBA urban agglomeration is
powerfully promoted by the Chinese government. To achieve its high-
quality development must rely on coordinated macroscopic planning and
exploring to build an integrative urban and rural construction land
market. Optimizing the impervious surface spatial pattern within the
GBA urban agglomeration through urban renewal planning will play a
positive role in preventing and controlling urban flooding.

3) The results of the global-scale correlation analysis show that the water
surface ratio (WSR) is positively correlated with the severity of urban
flooding in the early stages, which is inconsistent with the
conventional perception. Generally speaking, the more water
bodies there are, the easier surface runoff will drain into the water

FIGURE 9
Spatial distribution of regression coefficients for RE during 1980–2018.
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bodies, thus reducing the risk of urban flooding, i.e.,WSR is negatively
correlated with the flooding severity. The low urbanization level of the
GBA in the early stage of the study period and its geographical location
by the river and the coast, which is rather vulnerable during extreme
weather, led to early flooding caused mainly by heavy rainfall-induced
river overflows or seawall breaches. Therefore, there was always much
water around the flooding event points in the early stage, causing the
higher the WSR, the higher the urban flooding severity in some areas.
With the increasing level of urbanization, the flooding gradually
migrates to the inner city. The drainage network laid inside the
city can effectively discharge the surface runoff into the water
bodies, and the drainage capacity is relatively better in places with
more river water bodies. Therefore, there are obvious negative
correlation areas in Shenzhen, Dongguan, Guangzhou-Foshan Co-
city, Zhongshan, and Zhuhai, which pulls down the overall correlation
coefficient of WSR. The emergence of this phenomenon further
demonstrates the necessity of using the GWR model to explore the
spatial heterogeneity of the mechanisms of the influencing factors at
large regional scales.

4) Current research also has the following shortcomings. First, the urban
flooding data used in the study are mainly obtained from authoritative
newspapers in various cities in the GBA. These flooding events were
usually reported because they had a greater impact on the safety of
people’s lives and production, which may make some flooding points

to be neglected, resulting in the collected flooding not being
comprehensive and complete. Secondly, in the selection of impact
factors, this paper does not consider the underground drainage
network, which is mainly due to the difficulty of obtaining
underground pipeline data at long time series and large scale.
Finally, this paper does not consider the joint effect of multiple
influencing factors on urban flooding, which need be further
explored in future studies.

6 Conclusion

Urban flooding, especially in city clusters, has become one of the
major urban diseases that threaten the safety of residents and property,
hinder public transportation, and limit the healthy and sustainable
development of cities. Accurate, abundant, and longer time-scale
flooding event points are of great significance for the study of flooding
causes and flooding risk prediction. In this paper, we take the GBA as the
study area, establish a spatial data set by collecting flooding event points in
the Bay Area for the past 40 years from 1980 to 2018, combine Pearson
correlation and GWR model to explore the spatial-temporal evolution of
the impact mechanism of urban flooding at global and local scales and
provide a scientific basis for the prevention and management of flooding
in urban clusters. The main findings of the study are as follows.

FIGURE 10
Spatial distribution of regression coefficients for Slope during 1980–2018.
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1) By conducting a time-series analysis of urban flooding points in the
long-timescale of the GBA, we can dig into the differences in the
impactmechanisms of regional flooding events in time stages, to grasp
the impact characteristics of urban cluster development patterns on
urban flooding, and provide a new idea for urban cluster renewal
planning oriented to urban flooding risk management.

2) The results of Pearson correlation analysis showed that among the
main influence factors of flooding in urban clusters, ISP, AI, Shape_
MN, and WSR are positively correlated with urban flooding, while
FVC, Slope, and RE are negatively correlated with urban flooding. The
correlations of the factors in the time dimension showed a general
trend of gradual strengthening, slowing down after 2000, and the
correlation of the WSR showed a relatively noticeable decline.

3) GWR model results show that there is significant spatial-temporal
heterogeneity in the factors influencing urban flooding in the GBA.
The influence of ISP on the spatial distribution of urban flooding is
characterized by “polycentric diffusion—polycentric
agglomeration”; the influence of AI and Shape_MN on the
spatial distribution of urban flooding is characterized by
“monocentric diffusion - bicentric agglomeration”. The area
with negative values of FVC and WSR is spatially characterized
by “no center - multicenter”. RE and Slope have less influence on
the spatial distribution of urban flooding, and the distribution is
more fragmented in space, and there is no significant spatial
aggregation compared with other factors.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed to
the corresponding authors.

Author contributions

CZ designed the article structure and wrote the manuscript. TX
collected the waterlogging data. TW revised the manuscript. YZ
initiated the idea of this research article and revised the
manuscript.

Funding

This research was supported by the National Natural Science
Foundation of China (No. 41871292), the Marine Economy
Development Foundation of Guangdong Province (No. GDNRC
[2020]051), and The Guangdong Provincial Science and
Technology plan project (No. 2021B1212100003).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Aerts, J., Botzen, W. J. W., Emanuel, K., Lin, N., de Moel, H., and Michel-Kerjan, E. O.
(2014). Evaluating flood resilience strategies for coastal megacities. Science 344 (6183),
473–475. doi:10.1126/science.1248222

Afriyanie, D., Julian, M. M., Riqqi, A., Akbar, R., Suroso, D. S. A., and Kustiwan, I.
(2020). Re-framing urban green spaces planning for flood protection through socio-
ecological resilience in Bandung City, Indonesia. Cities 101, 102710. doi:10.1016/j.cities.
2020.102710

Alexander, K., Hettiarachchi, S., Ou, Y., and Sharma, A. (2019). Can integrated
green spaces and storage facilities absorb the increased risk of flooding due to climate
change in developed urban environments? J. Hydrol. 579, 124201. doi:10.1016/j.
jhydrol.2019.124201

Arnold, C. L., and Gibbons, C. J. (1996). Impervious surface coverage: The emergence of
a key environmental indicator. J. Am. Plan. Assoc. 62 (2), 243–258. doi:10.1080/
01944369608975688

Berndtsson, R., Becker, P., Persson, A., Aspegren, H., Haghighatafshar, S., Jönsson, K.,
et al. (2019). Drivers of changing urban flood risk: A framework for action. J. Environ.
Manag. 240, 47–56. doi:10.1016/j.jenvman.2019.03.094

Chan, F. K. S., Chen, W. Y., Sang, Y., Chen, Y. D., Huang, W. W., Chen, W.-Q., et al.
(2021a). Build in prevention and preparedness to improve climate resilience in coastal
cities: Lessons from China’s GBA.One Earth 4 (10), 1356–1360. doi:10.1016/j.oneear.2021.
09.016

Chan, F. K. S., Yang, L. E., Scheffran, J., Mitchell, G., Adekola, O., Griffiths, J., et al.
(2021b). Urban flood risks and emerging challenges in a Chinese delta: The case of the
Pearl River Delta. Environ. Sci. Policy 122, 101–115. doi:10.1016/j.envsci.2021.04.009

Chen, S., and Chen, X. (2018). Simulation of urban rainfall runoff pollution and control
effect by low impact development. Water Resour. Prot. 34 (05), 13–19. doi:10.3880/j.issn.
1004-6933.2018.05.03

Chen, H., Jiang, Y., and Zhang, L. (2021). Research on resilient waterlogging prevention
system in Guangdong-Hong Kong-Macao greater bay area. China Flood Drought Manag.
31 (04), 25–30.

Chen, X., Zhang, H., Chen, W., and Huang, G. (2021). Urbanization and climate change
impacts on future flood risk in the Pearl River Delta under shared socioeconomic
pathways. Sci. Total Environ. 762, 143144. doi:10.1016/j.scitotenv.2020.143144

Chen, L. (2014). Monitoring and analysis of urban expansion in eastern coastal area of
China based on DMSP/OLS night lights image. Master’s thesis. Changchun: Northeast
Normal University.

Duan, W., He, B., Nover, D., Fan, J., Yang, G., Chen, W., et al. (2016). Floods and
associated socioeconomic damages in China over the last century. Natural Hazards 82 (1),
401–413.

Duan, W., Maskey, S., Chaffe, P. L., Luo, P., He, B., Wu, Y., et al. (2021). Recent
advancement in remote sensing technology for hydrology analysis and water resources
management. Remote sensing 13 (6), 1097.

Fang, Y., Yu, C., Jin, X., Li, J., Xia, L., and Ren, M. (2021). Research on water⁃logging
control effect of mountain sponge city based on SWMM⁃CCHE2D unidirectional coupling
model. Eng. J. Wuhan Univ. 54 (10), 898–906+941.

Fang, C. (2015). Important progress and future direction of studies on China’s urban
agglomerations. J. Geogr. Sci. 25 (8), 1003–1024. doi:10.1007/s11442-015-1216-5

Feng, Y., Lee, C.-C., and Peng, D. (2023). Does regional integration improve economic
resilience? Evidence from urban agglomerations in China. Sustain. Cities Soc. 88, 104273.
doi:10.1016/j.scs.2022.104273

Fotheringham, A., Brunsdon, C., and Charlton, M. (2002). Geographically weighted
regression: The analysis of spatially varying relationships. Chichester: Wiley

Gao, J., and Li, S. (2011). Detecting spatially non-stationary and scale-dependent
relationships between urban landscape fragmentation and related factors using
Geographically Weighted Regression. Appl. Geogr. 31 (1), 292–302. doi:10.1016/j.
apgeog.2010.06.003

Guo, H., Cai, Y., Yang, Z., Zhu, Z., and Ouyang, Y. (2021). Dynamic simulation of
coastal wetlands for Guangdong-Hong Kong-Macao Greater Bay area based on multi-
temporal Landsat images and FLUS model. Ecol. Indic. 125, 107559. doi:10.1016/j.ecolind.
2021.107559

Frontiers in Earth Science frontiersin.org14

Zhang et al. 10.3389/feart.2022.1113997

https://doi.org/10.1126/science.1248222
https://doi.org/10.1016/j.cities.2020.102710
https://doi.org/10.1016/j.cities.2020.102710
https://doi.org/10.1016/j.jhydrol.2019.124201
https://doi.org/10.1016/j.jhydrol.2019.124201
https://doi.org/10.1080/01944369608975688
https://doi.org/10.1080/01944369608975688
https://doi.org/10.1016/j.jenvman.2019.03.094
https://doi.org/10.1016/j.oneear.2021.09.016
https://doi.org/10.1016/j.oneear.2021.09.016
https://doi.org/10.1016/j.envsci.2021.04.009
https://doi.org/10.3880/j.issn.1004-6933.2018.05.03
https://doi.org/10.3880/j.issn.1004-6933.2018.05.03
https://doi.org/10.1016/j.scitotenv.2020.143144
https://doi.org/10.1007/s11442-015-1216-5
https://doi.org/10.1016/j.scs.2022.104273
https://doi.org/10.1016/j.apgeog.2010.06.003
https://doi.org/10.1016/j.apgeog.2010.06.003
https://doi.org/10.1016/j.ecolind.2021.107559
https://doi.org/10.1016/j.ecolind.2021.107559
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1113997


Hammond, M. J., Chen, A. S., Djordjevic, S., Butler, D., and Mark, O. (2015). Urban
flood impact assessment: A state-of-the-art review. Urban Water J. 12 (1), 14–29. doi:10.
1080/1573062x.2013.857421

He, B.-R., and Zhai, P.-M. (2018). Changes in persistent and non-persistent extreme
precipitation in China from 1961 to 2016. Adv. Clim. Change Res. 9 (3), 177–184. doi:10.
1016/j.accre.2018.08.002

Helderop, E., and Grubesic, T. H. (2019). Social, geomorphic, and climatic factors
driving U.S. coastal city vulnerability to storm surge flooding. Ocean Coast. Manag. 181,
104902. doi:10.1016/j.ocecoaman.2019.104902

Huang, H. B., Wang, X., and Liu, L. (2021). A review on urban pluvial floods:
Characteristics, mechanisms, data, and research methods. Prog. Geogr. 40 (06),
1048–1059. doi:10.18306/dlkxjz.2021.06.014

Hudson, P., Raška, P., Macháč, J., and Slavíková, L. (2022). Balancing the
interaction between urban regeneration and flood risk management – a cost
benefit approach in Ústí nad Labem. Land Use Policy 120, 106276. doi:10.1016/j.
landusepol.2022.106276

Jeong, D., Kim, M., Song, K., and Lee, J. (2021). Planning a green infrastructure network
to integrate potential evacuation routes and the urban green space in a coastal city: The
case study of haeundae district, busan, South Korea. Sci. Total Environ. 761, 143179.
doi:10.1016/j.scitotenv.2020.143179

Kõiv-Vainik, M., Kill, K., Espenberg, M., Uuemaa, E., Teemusk, A., Maddison, M., et al.
(2022). Urban stormwater retention capacity of nature-based solutions at different
climatic conditions. Nature-Based Solutions 2, 100038. doi:10.1016/j.nbsj.2022.100038

Kong, F., Sun, S., and Lei, T. J. (2021). Understanding China’s urban rainstorm
waterlogging and its potential governance. Water 13 (7), 891. doi:10.3390/w13070891

Li, H., and Wu, J. (2004). Use and misuse of landscape indices. Landsc. Ecol. 19 (4),
389–399. doi:10.1023/b:land.0000030441.15628.d6

Li, C., Hu, Y., Deng, F., Xu, N., Yang, H., Fu, H., et al. (2021). Spatial and temporal
variation characteristics and influencing factors of vegetation coverage in hubei province.
Resour. Environ. Yangtze Basin 30 (8), 1829–1838.

Li, L., Chan, P. W., Deng, T., Yang, H.-L., Luo, H.-Y., Xia, D., et al. (2021). Review of
advances in urban climate study in the Guangdong-Hong Kong-Macau greater bay area,
China. Atmos. Res. 261, 105759. doi:10.1016/j.atmosres.2021.105759

Li, C., Liu, M., Hu, Y., Wang, H., Zhou, R., Wu, W., et al. (2022). Spatial distribution
patterns and potential exposure risks of urban floods in Chinese megacities. J. Hydrology
610, 127838. doi:10.1016/j.jhydrol.2022.127838

Li, J., Wang, Y., Liu, L., and Yu, S.-Y. (2022). Characteristics and trends of rainstorm
activities and their impacts on seasonal vegetation variations in coastal China. Ecol. Indic.
138, 108851. doi:10.1016/j.ecolind.2022.108851

Liang, P., and Ding, Y. (2017). The long-term variation of extreme heavy precipitation
and its link to urbanization effects in shanghai during 1916-2014. Adv. Atmos. Sci. 34 (3),
321–334. doi:10.1007/s00376-016-6120-0

Liang, Z., Zhao, Y., and Fu, Y. (2017). Optimization of spatial pattern of urban
imperviousness based on the integration of SCS-CN hydrological model and the ant
colony algorithm. J. Geo-inf. Sci. 19 (10), 1315–1326. doi:10.3724/SP.J.1047.2017.01315

Liang, L., Chen, M., Luo, X., and Xian, Y. (2021). Changes pattern in the population and
economic gravity centers since the Reform and Opening up in China: The widening gaps
between the South and North. J. Clean. Prod. 310, 127379. doi:10.1016/j.jclepro.2021.
127379

Lin, L. J., Gao, T., Luo, M., Ge, E. J., Yang, Y. J., Liu, Z., et al. (2020). Contribution of
urbanization to the changes in extreme climate events in urban agglomerations across
China. Sci. Total Environ. 744, 140264. doi:10.1016/j.scitotenv.2020.140264

Liu, C., Lin, S., Jiao, X., Shen, X., and Li, R. (2019). Problems and treatment
countermeasures of water environment in Guangdong-Hong Kong-Macao greater
bay area. Acta Sci. Nat. Univ. Pekin. 55 (06), 1085–1096. doi:10.13209/j.0479-8023.
2019.087

Liu, F., Zhao, Y., Muhammad, R., Liu, X., and Chen, M. (2020). Impervious surface
expansion: A key indicator for environment and urban agglomeration—a case study of
Guangdong-Hong Kong-Macao greater bay area by using landsat data. J. Sensors 2020,
1–21. doi:10.1155/2020/3896589

Liu, F., Liu, X., Xu, T., Yang, G., and Zhao, Y. (2021). Driving factors and risk
assessment of rainstorm waterlogging in urban agglomeration areas: A case study of
the Guangdong-Hong Kong-Macao greater bay area, China. Water 13 (6), 770.
doi:10.3390/w13060770

Lourenço, I. B., Beleño de Oliveira, A. K., Marques, L. S., Quintanilha Barbosa, A. A.,
Veról, A. P., Magalhães, P. C., et al. (2020). A framework to support flood prevention and
mitigation in the landscape and urban planning process regarding water dynamics.
J. Clean. Prod. 277, 122983. doi:10.1016/j.jclepro.2020.122983

Lu, B., Charlton, M., Brunsdon, C., and Harris, P. (2016). The Minkowski approach for
choosing the distance metric in geographically weighted regression. Int. J. Geogr. Inf. Sci.
30 (2), 351–368. doi:10.1080/13658816.2015.1087001

Lu, X., Shun Chan, F. K., Chen, W.-Q., Chan, H. K., and Gu, X. (2022). An overview of
flood-induced transport disruptions on urban streets and roads in Chinese megacities:
Lessons and future agendas. J. Environ. Manag. 321, 115991. doi:10.1016/j.jenvman.2022.
115991

Luo, K., and Zhang, X. (2022). Increasing urban flood risk in China over recent 40 years
induced by LUCC. Landsc. Urban Plan. 219, 104317. doi:10.1016/j.landurbplan.2021.
104317

Ma, X., Chen, Y., and Li, Z. (2019). The history, characteristics and prospects of regional
urban cluster planning in the Guangdong-Hong Kong-Macao Greater Bay Region. Urban
Plan. Forum (06), 15–24. doi:10.16361/j.upf.201906002

Ma, Y. L., Zhang, S. H., Yang, K., and Li, M. C. (2021). Influence of spatiotemporal
pattern changes of impervious surface of urban megaregion on thermal environment: A
case study of the Guangdong - Hong Kong - Macao greater bay area of China. Ecol. Indic.
121, 107106. doi:10.1016/j.ecolind.2020.107106

Meng, L., Sun, Y., and Zhao, S. (2020). Comparing the spatial and temporal dynamics of
urban expansion in Guangzhou and shenzhen from 1975 to 2015: A case study of pioneer
cities in China’s rapid urbanization. Land Use Policy 97, 104753. doi:10.1016/j.landusepol.
2020.104753

Miller, J. D., and Hutchins, M. (2017). The impacts of urbanisation and climate
change on urban flooding and urban water quality: A review of the evidence
concerning the United Kingdom. J. Hydrol. Reg. Stud. 12, 345–362. doi:10.1016/j.
ejrh.2017.06.006

O’Donnell, E. C., and Thorne, C. R. (2020). Drivers of future urban flood risk.
Philosophical Trans. R. Soc. A Math. Phys. Eng. Sci. 378 (2168), 20190216. doi:10.
1098/rsta.2019.0216

Otsuka, C., Fukutomi, H., and Niwa, Y. (2022). Effect of cost–benefit perceptions on
evacuation preparedness for urban flood disasters. Int. J. Disaster Risk Reduct. 81, 103254.
doi:10.1016/j.ijdrr.2022.103254

Pallathadka, A., Sauer, J., Chang, H., and Grimm, N. B. (2022). Urban flood risk and
green infrastructure: Who is exposed to risk and who benefits from investment? A case
study of three U.S. Cities. Landsc. Urban Plan. 223, 104417. doi:10.1016/j.landurbplan.
2022.104417

Pietrucha-Urbanik, K. (2015). Failure analysis and assessment on the exemplary water
supply network. Eng. Fail. Anal. 57, 137–142. doi:10.1016/j.engfailanal.2015.07.036

Qian, J., Du, Y., Yi, J., Liang, F., Huang, S., Wang, X., et al. (2022). Regional
geographical and climatic environments affect urban rainstorm perception
sensitivity across China. Sustain. Cities Soc. 87, 104213. doi:10.1016/j.scs.2022.
104213

Qiang, Y., Zhang, L., and Xiao, T. (2020). Spatial-temporal rain field generation for the
Guangdong-Hong Kong-Macau Greater Bay Area considering climate change. J. Hydrol.
583, 124584. doi:10.1016/j.jhydrol.2020.124584

Quan, R. S. (2014). Rainstorm waterlogging risk assessment in central urban area of
Shanghai based on multiple scenario simulation. Nat. Hazards 73 (3), 1569–1585. doi:10.
1007/s11069-014-1156-x

Riitters, K. H., O’Neill, R. V., Hunsaker, C. T., Wickham, J. D., Yankee, D. H., Timmins,
S. P., et al. (1995). A factor analysis of landscape pattern and structure metrics. Landsc.
Ecol. 10 (1), 23–39. doi:10.1007/bf00158551

Salinas Rodriguez, C. N. A., Ashley, R., Gersonius, B., Rijke, J., Pathirana, A., and
Zevenbergen, C. (2014). Incorporation and application of resilience in the context of
water-sensitive urban design: Linking European and Australian perspectives. WIREs
Water 1 (2), 173–186. doi:10.1002/wat2.1017

Scholz, M. (2015). Sustainable drainage systems. Water 7 (5), 2272–2274. doi:10.3390/
w7052272

Seto, K. C., and Fragkias, M. (2005). Quantifying spatiotemporal patterns of urban land-
use change in four cities of China with time series landscape metrics. Landsc. Ecol. 20 (7),
871–888. doi:10.1007/s10980-005-5238-8

Sohn, W., Kim, J.-H., Li, M.-H., Brown, R. D., and Jaber, F. H. (2020). How does
increasing impervious surfaces affect urban flooding in response to climate variability?
Ecol. Indic. 118, 106774. doi:10.1016/j.ecolind.2020.106774

Tan, F., Gong, C., and Niu, Z. (2022). How does regional integration development affect
green innovation? Evidence from China’s major urban agglomerations. J. Clean. Prod. 379,
134613. doi:10.1016/j.jclepro.2022.134613

ten Veldhuis, M.-C., Zhou, Z., Yang, L., Liu, S., and Smith, J. (2018). The role of storm
scale, position and movement in controlling urban flood response. Hydrol. Earth Syst. Sci.
22 (1), 417–436. doi:10.5194/hess-22-417-2018

Wang, X., and Xie, H. (2018). A review on applications of remote sensing and
geographic information systems (GIS) in water resources and flood risk management.
Water 10 (5), 608. doi:10.3390/w10050608

Wang, D., Jiang, P., Wang, G., and Wang, D. (2015). Urban extent enhances extreme
precipitation over the Pearl River Delta, China. Atmos. Sci. Lett. 16 (3), 310–317. doi:10.
1002/asl2.559

Wang, W., Wang, Q., Lin, H., Gong, D., and Zhang, S. (2015). Summarization and
prospection for the studies on China’s urban water logging. Urban Probl. (10), 24–28.
doi:10.13239/j.bjsshkxy.cswt.151004

Wang, H., Mei, C., and Liu, J. (2017). Systematic construction pattern of the sponge city.
J. Hydraul. Eng. 48 (09), 1009–1014+1022. doi:10.13243/j.cnki.slxb.20170308

Wang, K., Onodera, S.-i., Saito, M., and Shimizu, Y. (2021). Long-term variations in
water balance by increase in percent imperviousness of urban regions. J. Hydrol. 602,
126767. doi:10.1016/j.jhydrol.2021.126767

Frontiers in Earth Science frontiersin.org15

Zhang et al. 10.3389/feart.2022.1113997

https://doi.org/10.1080/1573062x.2013.857421
https://doi.org/10.1080/1573062x.2013.857421
https://doi.org/10.1016/j.accre.2018.08.002
https://doi.org/10.1016/j.accre.2018.08.002
https://doi.org/10.1016/j.ocecoaman.2019.104902
https://doi.org/10.18306/dlkxjz.2021.06.014
https://doi.org/10.1016/j.landusepol.2022.106276
https://doi.org/10.1016/j.landusepol.2022.106276
https://doi.org/10.1016/j.scitotenv.2020.143179
https://doi.org/10.1016/j.nbsj.2022.100038
https://doi.org/10.3390/w13070891
https://doi.org/10.1023/b:land.0000030441.15628.d6
https://doi.org/10.1016/j.atmosres.2021.105759
https://doi.org/10.1016/j.jhydrol.2022.127838
https://doi.org/10.1016/j.ecolind.2022.108851
https://doi.org/10.1007/s00376-016-6120-0
https://doi.org/10.3724/SP.J.1047.2017.01315
https://doi.org/10.1016/j.jclepro.2021.127379
https://doi.org/10.1016/j.jclepro.2021.127379
https://doi.org/10.1016/j.scitotenv.2020.140264
https://doi.org/10.13209/j.0479-8023.2019.087
https://doi.org/10.13209/j.0479-8023.2019.087
https://doi.org/10.1155/2020/3896589
https://doi.org/10.3390/w13060770
https://doi.org/10.1016/j.jclepro.2020.122983
https://doi.org/10.1080/13658816.2015.1087001
https://doi.org/10.1016/j.jenvman.2022.115991
https://doi.org/10.1016/j.jenvman.2022.115991
https://doi.org/10.1016/j.landurbplan.2021.104317
https://doi.org/10.1016/j.landurbplan.2021.104317
https://doi.org/10.16361/j.upf.201906002
https://doi.org/10.1016/j.ecolind.2020.107106
https://doi.org/10.1016/j.landusepol.2020.104753
https://doi.org/10.1016/j.landusepol.2020.104753
https://doi.org/10.1016/j.ejrh.2017.06.006
https://doi.org/10.1016/j.ejrh.2017.06.006
https://doi.org/10.1098/rsta.2019.0216
https://doi.org/10.1098/rsta.2019.0216
https://doi.org/10.1016/j.ijdrr.2022.103254
https://doi.org/10.1016/j.landurbplan.2022.104417
https://doi.org/10.1016/j.landurbplan.2022.104417
https://doi.org/10.1016/j.engfailanal.2015.07.036
https://doi.org/10.1016/j.scs.2022.104213
https://doi.org/10.1016/j.scs.2022.104213
https://doi.org/10.1016/j.jhydrol.2020.124584
https://doi.org/10.1007/s11069-014-1156-x
https://doi.org/10.1007/s11069-014-1156-x
https://doi.org/10.1007/bf00158551
https://doi.org/10.1002/wat2.1017
https://doi.org/10.3390/w7052272
https://doi.org/10.3390/w7052272
https://doi.org/10.1007/s10980-005-5238-8
https://doi.org/10.1016/j.ecolind.2020.106774
https://doi.org/10.1016/j.jclepro.2022.134613
https://doi.org/10.5194/hess-22-417-2018
https://doi.org/10.3390/w10050608
https://doi.org/10.1002/asl2.559
https://doi.org/10.1002/asl2.559
https://doi.org/10.13239/j.bjsshkxy.cswt.151004
https://doi.org/10.13243/j.cnki.slxb.20170308
https://doi.org/10.1016/j.jhydrol.2021.126767
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1113997


Wang, Z., Wang, P., Wang, Y., Peng, H., Hua, P., and Zhang, J. (2021). Wavelet
decomposition and genetic BPNN hybrid model based modelling approach for as
concentration prediction in surface water. Acta Sci. Circumstantiae 41 (7),
2942–2950.

Wang, T., Jian, S., Wang, J., and Yan, D. (2022). Dynamic interaction of
water–economic–social–ecological environment complex system under the framework
of water resources carrying capacity. J. Clean. Prod. 368, 133132. doi:10.1016/j.jclepro.
2022.133132

Wang, X., Xia, J., Zhou, M., Deng, S., and Li, Q. (2022). Assessment of the joint impact of
rainfall and river water level on urban flooding in Wuhan City, China. J. Hydrol. 613,
128419. doi:10.1016/j.jhydrol.2022.128419

Wang, Y., Li, C., Liu, M., Cui, Q., Wang, H., Lv, J., et al. (2022). Spatial characteristics
and driving factors of urban flooding in Chinese megacities. J. Hydrol. 613, 128464. doi:10.
1016/j.jhydrol.2022.128464

Wang, Z. (2019). Research on urban water logging prophylaxis and treatment in Ningbo.
Master’s thesis. Hangzhou: Zhejiang A&F University.

Wu, P., Li, T., and Li, W. (2018). Spatial differentiation and influencing factors analysis
of rural poverty at county scale: A case study of shanyang county in shaanxi province,
China. Geogr. Res. 37 (03), 593–606.

Wu, Y., Yu, G., and Shao, Q. (2022). Resilience benefit assessment for multi-scale
urban flood control programs. J. Hydrology 613, 128349. doi:10.1016/j.jhydrol.2022.
128349

Xiao, N. (2019).Urban waterlogging resilience analysis and study on preventive measures.
Master’s thesis. Dalian: Dalian University of Technology.

Xu, L., Cui, S., Wang, X., Tang, J., Nitivattananon, V., Ding, S., et al. (2021).
Dynamic risk of coastal flood and driving factors: Integrating local sea level rise and
spatially explicit urban growth. J. Clean. Prod. 321, 129039. doi:10.1016/j.jclepro.
2021.129039

Xu, P. F., Lin, M. Y., and Jin, P. B. (2021). Spatio-temporal dynamics of urbanization in
China using DMSP/OLS nighttime light data from 1992-2013. Chin. Geogr. Sci. 31 (1),
70–80. doi:10.1007/s11769-020-1169-1

Yan, M., Chan, J. C. L., and Zhao, K. (2020). Impacts of urbanization on the precipitation
characteristics in Guangdong province, China. Adv. Atmos. Sci. 37 (7), 696–706. doi:10.
1007/s00376-020-9218-3

Yang, Y., Zhao, Y., and Wang, B. (2022). Construction of smart urban agglomeration in
Guangdong- Hong Kong- Macao greater bay area under the system of "one connection
and ecological-living-production space system. J. Geo-information Sci. 24 (06), 1073–1086.

Yu, H. F., Zhao, Y. L., Fu, Y. C., and Li, L. (2018). Spatiotemporal variance assessment of
urban rainstorm waterlogging affected by impervious surface expansion: A case study of
Guangzhou, China. Sustainability 10 (10), 3761. doi:10.3390/su10103761

Yu, H. F., Zhao, Y. L., Xu, T., Li, J. F., Tang, X. Z., Wang, F. F., et al. (2021). A high-
efficiency global model of optimization design of impervious surfaces for alleviating urban
waterlogging in urban renewal. Trans. Gis 25 (4), 1716–1740. doi:10.1111/tgis.12757

Zhang, B., Xie, G.-d., Li, N., andWang, S. (2015). Effect of urban green space changes on
the role of rainwater runoff reduction in Beijing, China. Landsc. Urban Plan. 140, 8–16.
doi:10.1016/j.landurbplan.2015.03.014

Zhang, H., Cheng, J., Wu, Z., Li, C., Qin, J., and Liu, T. (2018). Effects of impervious
surface on the spatial distribution of urban waterlogging risk spots at multiple scales in
Guangzhou, south China. Sustainability 10 (5), 1589. doi:10.3390/su10051589

Zhang, L., Chen, X., and Lai, R. (2020). Urban signatures of sub-daily extreme
precipitation events over a metropolitan region. Atmos. Res. 246, 105204. doi:10.1016/
j.atmosres.2020.105204

Zhang, Q., Wu, Z., Zhang, H., Dalla Fontana, G., and Tarolli, P. (2020). Identifying
dominant factors of waterlogging events in metropolitan coastal cities: The case study of
Guangzhou, China. J. Environ. Manag. 271, 110951. doi:10.1016/j.jenvman.2020.110951

Zhang, Q., Wu, Z., Guo, G., Zhang, H., and Tarolli, P. (2021). Explicit the urban
waterlogging spatial variation and its driving factors: The stepwise cluster analysis model
and hierarchical partitioning analysis approach. Sci. Total Environ. 763, 143041. doi:10.
1016/j.scitotenv.2020.143041

Zhang, Z., Qiu, J., Cheng, T., Huang, B., and Feng, Z. (2022). Urban flood issues and analysis
in the Guangdong-Hong Kong-Macao greater bay area. J. Hydraul. Eng. 53 (7), 823–832.

Zhao, S., Gong, Z., and Liu, X. (2015). Correlation analysis between vegetation coverage
and climate drought conditions in North China during 2001-2013. ACTA Geogr. SIN. 70
(05), 717–729.

Zhou, H., Liu, J., Goa, C., and Ou, S. (2018). Analysis of current situation and problems
of urban waterlogging control in China. J. Catastrophol. 33 (03), 147–151. doi:10.3969/j.
issn.1000-811X.2018.03.028

Zhou, S., Liu, Z., Wang, M., Gan, W., Zhao, Z., and Wu, Z. (2022). Impacts of building
configurations on urban stormwater management at a block scale using XGBoost. Sustain.
Cities Soc. 87, 104235. doi:10.1016/j.scs.2022.104235

Zhu, S., Li, D., Huang, G., Chhipi-Shrestha, G., Nahiduzzaman, K. M., Hewage, K., et al.
(2021). Enhancing urban flood resilience: A holistic framework incorporating historic
worst flood to Yangtze River Delta, China. Int. J. Disaster Risk Reduct. 61, 102355. doi:10.
1016/j.ijdrr.2021.102355

Frontiers in Earth Science frontiersin.org16

Zhang et al. 10.3389/feart.2022.1113997

https://doi.org/10.1016/j.jclepro.2022.133132
https://doi.org/10.1016/j.jclepro.2022.133132
https://doi.org/10.1016/j.jhydrol.2022.128419
https://doi.org/10.1016/j.jhydrol.2022.128464
https://doi.org/10.1016/j.jhydrol.2022.128464
https://doi.org/10.1016/j.jhydrol.2022.128349
https://doi.org/10.1016/j.jhydrol.2022.128349
https://doi.org/10.1016/j.jclepro.2021.129039
https://doi.org/10.1016/j.jclepro.2021.129039
https://doi.org/10.1007/s11769-020-1169-1
https://doi.org/10.1007/s00376-020-9218-3
https://doi.org/10.1007/s00376-020-9218-3
https://doi.org/10.3390/su10103761
https://doi.org/10.1111/tgis.12757
https://doi.org/10.1016/j.landurbplan.2015.03.014
https://doi.org/10.3390/su10051589
https://doi.org/10.1016/j.atmosres.2020.105204
https://doi.org/10.1016/j.atmosres.2020.105204
https://doi.org/10.1016/j.jenvman.2020.110951
https://doi.org/10.1016/j.scitotenv.2020.143041
https://doi.org/10.1016/j.scitotenv.2020.143041
https://doi.org/10.3969/j.issn.1000-811X.2018.03.028
https://doi.org/10.3969/j.issn.1000-811X.2018.03.028
https://doi.org/10.1016/j.scs.2022.104235
https://doi.org/10.1016/j.ijdrr.2021.102355
https://doi.org/10.1016/j.ijdrr.2021.102355
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1113997

	Spatial-temporal evolution of influencing mechanism of urban flooding in the Guangdong Hong Kong Macao greater bay area, China
	1 Introduction
	2 Study area and data
	2.1 Study area overview
	2.2 Data
	2.3 Influencing factor selection

	3 Research method
	3.1 Correlation analysis
	3.2 Geographically weighted regression

	4 Results and discussion
	4.1 Spatial and temporal evolution of urban flooding events
	4.2 Changes in the impact of global-scale urban flooding influencing factors
	4.3 Spatial-temporal evolution of factors influencing urban flooding

	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


