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Introduction: Shale oil and gas reservoirs contain a variety of inorganic and

organic pores that differ significantly from conventional reservoirs, making

traditional experiments ineffective. Instead, the pore-scale imaging and

modeling method, regarded as a novel and practical approach, is proposed

to characterize shale microstructure and petrophysical properties. Therefore, it

is of great significance to accurately reconstruct the three-dimensional (3D)

microstructure of the porous medium, that is, the digital rock. However,

microstructural images of shale at high-resolution, obtained through

scanning electron microscopy (SEM) are constrained in the two-dimensional

(2D) scale.

Method: In this work, a novel iterative algorithm to reconstruct 3D multi-phase

shale digital rock from a 2D image using multi-point statistics has been

proposed. A multi-grid data template was used to capture the conditional

probabilities and data events. The novelty of this work stems from an accurate

representation of different types of pores and the mineral characteristics of

shale rock from 2D images.

Result: A series of simulations were conducted to reconstruct 2D shale digital

rock from a 2D segmented training image, 3D shale digital rock from a 2D

segmented training image, a 2D gray training image to reconstruct 2D shale

digital rock, and a 2D gray training image to reconstruct 3D shale digital rock.

Discussion: To corroborate the accuracy of the reconstructed digital rock and

evaluate the reliability of the proposed algorithm, we compared the

construction image with the training image with the two-point correlation

function, geometry, morphological topology structure, and flow

characteristics. The reconstruction accuracy indicates that the proposed

algorithm can replicate the higher-order statistical information of the

training image.
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1 Introduction

Shale reservoirs are distributed worldwide and are gaining more

attention (Ma et al., 2018; Feng et al., 2020; Kang et al., 2020; Solarin

et al., 2020; Katz et al., 2021; Jiang et al., 2022). The microstructure of

shale is complex and includes different types of inorganic pores,

porous and non-porous organic matter, and various mineral phases.

Furthermore, different phases and their shapes are distributed

randomly and disorderly. Moreover, the pore structures of shale

range from nanometers to micrometers and exhibit multi-scale

features, which make the petrophysical properties and flow

mechanism of shale thoroughly distinct compared with

conventional reservoirs (Josh et al., 2012; Yang et al., 2013;

Sakhaee-Pour and Bryant, 2015; Deng et al., 2016; Ilgen et al.,

2017; Huang et al., 2018). Therefore, traditional, widely used

experimental methods are difficult to apply directly to shale research.

In the last decade, with the increase in computing power and

the development of advanced imaging equipment, pore-scale

imaging and modeling combined with numerical algorithms

have become a new promising and outstanding petrophysical

technology for imaging the microstructure of porous media,

which is utilized to calculate the rock properties such as

porosity, permeability, and relative permeability (Andrä et al.,

2013a; Andrä et al., 2013b). Because of their advantages in terms of

speed, accuracy, low cost, and reuse, pore-scale imaging and

modeling have been widely used in petroleum engineering

(Blunt et al., 2013). This process involves obtaining the shale

rock microstructure and modeling transport in porous media

(Bultreys et al., 2015). It is very important, while building 3D

digital rocks, to get an accurate 3D microstructure of porous

media. This is because the reconstructed porous structure is closely

related to petrophysical properties and flow characteristics. At

present, two main methods can be applied for digital rock

reconstruction, namely physical experimental and numerical

reconstruction approaches (Zhu et al., 2019). Advanced optical

instruments were used in the physical experiments to obtain the

microstructure of the rock samples. These include confocal laser

scanning (Hackley and Kus, 2015; Hackley et al., 2020), X-ray

micro- and nano-computed tomography (XCT) scanning (Gu

et al., 2015; Tang et al., 2016; Zhou et al., 2016), and focused ion

beam scanning electron microscopy (FIB-SEM) imaging (Cnudde

and Boone, 2013; Ma et al., 2017; Zhang et al., 2020). Although

physical experiments can accurately obtain the actual

microstructure of a rock sample, the method is time-

consuming and expensive and cannot balance image resolution

with rock sample size. Due to these disadvantages, it is difficult to

establish a 3D model for heterogeneous shale rock with high

resolution using physical experiments. SEM is easily and widely

used to reveal the microstructure of shale in a two-dimensional

(2D) format with high resolution (Klaver et al., 2016; Saif et al.,

2017). As a consequence, it is of great significance to develop

accurate, stable, and effective 3D digital rock reconstruction

algorithms based on 2D slices.

Numerical reconstruction employs a small amount of

information to reconstruct 3D digital rocks using mathematical

methods. In general, they can be divided into three types. The first

is referred to as a “process-based reconstruction method,” which

simulates the real settlement, compaction, and diagenesis processes of

rocks (Tian et al., 2019). It has the advantage of better connectivity in

reconstructed 3D digital rocks, and the pore structure is ideal. This is

not suitable for shale, which has a complex diagenetic environment.

The second method includes the Gaussian field simulation method

(Hyman and Winter 2014), the simulated annealing method (SA)

(Gerke et al., 2012; Shojaeefard et al., 2016), andMarkovChainMonte

Carlo (MCMC) (Wu et al., 2006), which reconstructs 3D digital rocks

with statistical information such as the connectivity function obtained

from 2D images. The 3D digital rocks constructed according to the

Gaussian field simulation approach exhibit poor connectivity. The SA

method is suitable for reconstructing 3D digital rocks with large

porosity, high permeability, and a simple microstructure. Both

computational efficiency and accuracy decrease with an increase in

microstructure complexity. The MCMC approach is feasible for

building reliable 3D digital rocks. However, it failed to reproduce

the microstructure of the anisotropic porous medium. These two

methods use low-order statistical information from training images.

Thus, it is difficult to reconstruct the global connectivity of the porous

medium. The last method for establishing 3D digital rocks is to use

high-order characteristic information obtained from training images

as well as multi-point statistics (MPS) with spatial uncertainty

interpolation (Wu et al., 2018). Compared to the first two

methods, the MPS method uses high-order statistical information

that reflects the microstructure of the training images. Thus, the

adoption of the MPS method to construct the 3D digital rock can be

viewed as a feasible approach to achieving the best long-term

connectivity. Additionally, newer machine learning algorithms

(Zha et al., 2020; Wang et al., 2021; Shan et al., 2022) for

reconstruction are also widely used, and convolutional deep belief

networks (CDBN) are used to construct stochastic models of porous

media (Cang et al., 2017). To reconstruct relatively homogeneous

sandstone and heterogeneous carbonate samples, generative

adversarial networks and related variant-based methods are used

(Mosser et al., 2017; Feng et al., 2019; Shams et al., 2020). Algorithms

require a large amount of data for training, consume a lot of memory,

limit the size of the reconstructed volume, must be retrained for

different types of rocks, and cannot be migrated.

The MPS method for reconstructing 3D digital rocks

includes three steps. First, we need to define training images

and data templates. Second, it is to sample with the defined

training images and data templates. The last step is to recover the

microstructure based on Monte Carlo simulations and

interpolation. One can divide sampling and recovery methods

into two groups: those that use pixels and those that use patterns.

Okabe and Blunt first proposed the MPS approach for

establishing 3D digital rocks from 2D training images that are

isotropic in each direction (Okabe and Blunt, 2005). Because the

MPS method is restricted by its poor reconstruction efficiency,
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many scholars have transplanted MPS reconstruction from CPU

devices to GPU devices or developed other algorithms to speed it

up (Huang et al., 2013; Zhang et al., 2015). An excellent MPS

approach on the basis of the cross-correlation function

geostatistical method (CCSIM) to reconstruct 3D digital rock

was put forward by Tahmasebi and Sahimi, (2012). The isomap-

based MPS that adopts the isomap approach for reducing

dimensions and redundancy was developed by Zhang et al,

(2016). Also, they came up with a pattern-based method

called FILTERSIM. This method uses filters to reduce the

number of dimensions in patterns and put them into finite

classes (Zhang et al., 2006). In practical applications, it is

often difficult to reconstruct 3D porous media using only 2D

training images. One solution is to build 3D porous media by

rotating 2D training images and establishing probabilities in

different directions to achieve probability fusion, but this

assumes that all directions are isotropic and cannot solve the

problem of anisotropy (Comunian et al., 2012). An alternate

solution is to adopt the MPS algorithm to construct systematic

images based on 2D training images to form a 3D porous

medium by stacking, which leads to the final porous medium

reproducing noise and discontinuous structures (Gao et al.,

2015). To integrate the advantages of both methods, a hybrid

approach generates multiple 2D slices as conditional data and 3D

training images (Tahmasebi et al., 2015), and the rest of the

region is simulated by the MPS algorithm. However, it is

challenging to select an applicable switching point between

these two approaches, and there are still drawbacks. In this

study, an iterative algorithm has been proposed that can use a

single training image to rebuild 3D digital rocks.

Even though the MPS method is the most common way to

reconstruct 3D two-phase (pore and grain phase) digital rock for

conventional reservoirs like sandstone, it still needs to be improved for

unconventional reservoirs like shale reservoirs, especially for

reconstructing 3D multi-phase digital rocks (Yang et al., 2015; Liu

et al., 2018; Yan et al., 2018). Nie et al. came up with a multi-phase

reconstruction method with the MCMC reconstruction algorithm to

obtain a large-scale multi-phase 3D digital rock (Nie et al., 2016). They

also adopted the reconstructed 3D digital rock to perform electrical

simulations. Zhu and Yu proposed an approach to incorporate

cemented phases into digital sandstone rocks that have already been

reconstructed (Zhu et al., 2012). Based on digital rock physics, Saad

et al. could reconstruct a multi-phase porous rock (Saad et al., 2018).

Most methods proposed to generate multi-phase digital rocks are

reconstructed (Li et al., 2022) and then nested directly, without

correlating the geology and minerals (for instance, organics and

pyrite are frequently found inn correlation with one another). In

conclusion, it is a great challenge to reconstruct multi-phase 3D

digital rocks, and more research needs to be conducted in the

future. Given the various types of pores and mineral characteristics

found in shale, developing multi-phase digital rocks from shale is

critical and must be pursued further.

In this study, we adopted multi-point statistics to generate a 3D

multi-phase shale digital rock considering minerals, different types

of pores, and organic components from 2D images. The remaining

parts of this paper are structured as follows: In Section 2, the MPS

method and workflow for reconstructing the 3D multi-mineral

shale digital rocks are explained. Section 3 introduces the evaluation

methods for the reconstruction of shale digital rocks. Section 4

depicts various reconstruction cases, such as a 2D segmented

training image to reconstructed 2D shale digital rocks, a 2D

segmented training image to reconstructed 3D shale digital

rocks, and a 2D grayscale training image to reconstructed 3D

shale digital rocks. The study is summarized in Section 5.

2 Methodology of multi-point
statistics

In this section, the basic theory related to MPS is introduced.

The basic principle for reconstructing digital rocks based onMPS

is briefly described to explain why the simulation spaces can

FIGURE 1
Illustration of (A) an image used for training purposes, split into a grain phase (black) and a pore phase (white), (B) a 9×9 2D data template, and (C)
a data event acquired after a 9×9 2D data template scanned the training image.
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reproduce the microstructure of the training images. A

reconstruction workflow is also presented.

2.1 Basic concepts of multi-point statistics

MPS were proposed using traditional two-point statistics

based on variograms. The key components include training

images, data templates, and data events (Caers and Zhang,

2004; Pyrcz and Deutsch, 2014). The training images contain

various feature patterns to be reconstructed in the simulations, as

shown in Figure 1A). The black region indicates the grain phase,

while the white one depicts the pore phase. It is a collection of

conceptual feature patterns that require stability instead of high

precision or specific distribution. The training image directly

determines the reconstruction quality.

A data template consists of n vectors, which is set to τn={hα;
α=1, 2, . . . , n}. The point u in the template is the center, while the

additional positions are denoted by the notation uα=u+ hα, where
α can represent any value from one to n. Figure 1B shows a 2D

data template consisting of 9×9 nodes, where uα is decided by the
center point u and 80 vectors hα.

For a data template with attribute S representing the pore,

grain, mineral or organic phases, it can takem state values {sk; k =

1, 2, . . . ,m}. The “data event” d(u) consisting of n state values of

the n vector uα positions in the data template, is expressed as:

d u( ) � S uα( ) � Skα; α � 1, 2,/, n{ } (1)

where S (uα) represents the state value at the uα position, d(u)
represents the S (u1), . . ., S (un) of the n vectors, and is the state

value sk1 , . . ., skn . Figure 1C) shows one of data events captured

by the two dimensional data template of Figure 1B) to scan the

training image of Figure 1A).

2.2 Basic principles for reconstructing
digital rock based on multi-point statistics

Data templates are used to scan training images to capture

the data events, which can be considered as microstructure

features of the training data. It is possible to obtain all of the

data events contained in the training image if the training images

are scanned while simultaneously moving data templates from

the top left to the bottom right node, one node at a time. During

the course of scanning the training image with any data template,

a data event (composed of the simulated point data u and the

condition data in its data template) is captured by the data

template. As to the training image, if a data event is repeated N

times, the number of repetitions is N. For any point u to be

simulated, it is necessary to decide on a function referred to as the

conditional probability distribution function (CPDF) of attribute

S(u) which can be expressed by the Bayesian conditional

probability formula, for any K state value at the condition of

a given n data value S (uα) as:

P S u( ) � sk|dn{ } � P S u( ) � sk ∩ S uα( ) � skα; α � 1,/, n{ }
P S uα( ) � skα; α � 1,/, n{ } (2)

where the denominator is the pattern occurrence probability, and

the numerator is the probability that a pattern and a state value to

be simulated occur simultaneously. Therefore, the above

expression can be rewritten as:

P S u( ) � sk|S uα( ) � skα; α � 1,/, n{ } � ck dn( )
c dn( ) (3)

Here, c (dn) stands for the total number of times a particular

pattern is repeated, and ck (dn) is the number of points S(u) to be
simulated in the repeated pattern, equal to sk.

The “search tree” consists of a set of nodes, where each node in

the tree data structure is a data event. The memory space and the

scanned training images can be reduced when the CPDF are stored

using the data structure of the “search tree.” Using numerous data

templates is a viable option for extracting detailed information about

the pore structure at multiple scales from the training image. This

method not only improves sampling efficiency but also allows for

the collection of large-scale porous geometry from training images.

The MPS method has mainly been applied in the field of

macroscopic geological modeling since it was proposed. For

digital rock reconstruction, the MPS method is applied to

homogeneous and two-phase (pore and grain) sandstone rocks,

based mainly on the pixel method. This approach is ineffective for

reconstructing the shale digital rock, particularly multi-scale and

multi-phase shale digital rock. The microstructure of shale is

heterogeneous, and the long-distance connectivity functions of

the different phases are inconsistent. In the process of

reconstructing a digital rock using the MPS technique, it may be

necessary for recovering the pore structure of the training images via

spatial interpolation in the area to be simulated. A pixel-based

method is used to recover the pore structure of the training images.

Based on the microstructure information of the training images, the

areas were simulated using the Monte Carlo method, restricted by

the CPDF and data events. Once the area to be simulated was

traversed, the spatial structure of the entire area to be simulated was

reconstructed. Because the probability estimation method was

adopted, the simulation results were random. In addition, the

entire process was based on the information from the training

images, so it could reveal the various possible distributions of the

state values in space very well.

2.3 Procedures for reconstructing shale
3D multi-phase digital rock using the
multi-point statistics method

Step 1: Input a representative 2D shale image, which is a gray-

scale image or segmented image with different phases. The
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training image can be obtained using different scanning

equipment such as XCT, SEM, etc.

Step 2: Set the representative 2D shale image as the

training image. Multiple data templates were used to scan

and store the obtained data events and CPDF in the

search tree.

Step 3: Specify a random path to access the path of the

simulated area. A selected phase (such as the pore, grain, or

another phase) is randomly placed in the path, which is treated as

the starting point of the simulation. The CPDF is updated and the

next simulation point based on a random path using the Monte

Carlo method is generated.

Step 4: Determine the dimensionality of the space to be

simulated, as shown in the workflow in Figure 2. If the simulation

space is 2D, the 2D digital rock will be generated directly based

on steps 1–3.

Step 5: If the simulation is 3D, based on Step 4, a 2D selection

will be generated and regarded as a new training image, as shown

in the workflow in Figure 2. Repeat steps one to four to generate

another new cross-section. The 3D digital rock was reconstructed

from the series of 2D cross-sections one by one on the basis of the

interactive approach.

3 Evaluation method

After reconstructing the multi-mineral shale digital

rock, it is necessary to analyze its quality by evaluating

FIGURE 2
Flow chart of multi-mineral shale digital rock reconstruction using MPS.
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the divergence between the reconstructed results and the

training image of the shale. The feasibility of

this reconstruction method should also be evaluated.

Then, the two-point correlation function, the

petrophysical properties, and the pore structure would

be compared.

The MPS reconstruction method differs significantly from

traditional reconstruction methods, particularly with respect

to quality evaluation standards. The similarity between the

reconstructed image obtained by the traditional

reconstruction approach and the original image is evaluated

by the ratio of voxels with the same state value at the same

position as the total voxel. A higher ratio indicates better

reconstruction similarity. However, this criterion does not

apply to MPS reconstruction. The MPS simulation doesn’t

rely on an exact match between the simulated and training

images during reconstruction. The primary goal is to extract

details about the training image’s microstructure and replicate

them in the digital rock that has been reconstructed. Multiple

results can be obtained using the MPS simulation, and all of

these results can reflect the microstructure characteristics of

the training image. The quality of the reconstruction results

depends on whether these microstructural features can be

copied to the reconstructed digital rock.

3.1 Two-point correlation function

When the spatial microstructure changes, the two-point

correlation function can show how the phases are related and

how they vary and can be used as the evaluation basis of the

reconstruction. If two images have the same trend in the two-

point correlation function, this indicates that the attribute phases

have similar microstructural features, and vice versa. For the

evaluation of multi-mineral shale digital rocks, the two-point

correlation function can be defined as the possibility that two

voxel positions with a spacing h in the digital rock image

demonstrate the same phase state and can be expressed as

(Hashemi et al., 2014):

Sj ��fj u( )*fj u + h( ) (4)
where Sj is the j phase two-point correlation function, such as the

pore, matrix, organic matter, or pyrite phase, fj(u) and fj(u + h)
is the phase function of the j phase at position vector u and u + h,
respectively, h represents the positional vector.

3.2 Pore structure analysis

In the context of statistical analysis, the two-point

correlation function just reflects the similarity degree

between the training and the reconstruction images.

However, it usually occurs when the low-order statistical

functions of each phase in the training image are identical

but the morphological microstructure is very different. From a

practical application point of view, the reconstructed digital

rocks will be adopted to investigate their reservoir physical

properties, such as flow features and conductivity. These

physical properties are closely correlated to the spatial

features, pore structure, distribution, and different phases.

Therefore, we need to evaluate the reconstructed digital

rocks by analyzing the morphological characteristics of the

different attribute phases.

Due to the inherent differences in scale between 2D and

3D images, different morphological feature parameters must

be chosen in order to probe the discrepancy between the

reconstructed model and the training model used as a

benchmark. For comparison and evaluation with 2D

images, the percentage of different attribute phases,

number, and variety of pore characteristics such as

average radius, tortuosity, and fractal dimension were

analyzed as the criteria for morphological feature analysis

(Maurer et al., 2003; Müllner et al., 2016). Similarly, for

comparison and evaluation with 3D images, the percentages

of different attribute phases, radius distribution curves

(Dong and Blunt, 2009), fractal dimension, tortuosity, and

coordination number distribution were used for comparison

and evaluation with 3D images.

The percentage of different attribute phases is the

proportion of voxels in the overall space of the target

attribute phase. Porosity, for example, is the percentage of

the pore phase. The radii of the different attribute phases are

defined here as the equivalent circle or sphere radius of the

FIGURE 3
Schematic showing the pore radius location of the 2D image,
pure white shown in solid pixels, and different depths of blue
represent the process of locating the pore radius.
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target attribute phase, as shown in Figure 3, to solve the pore

radius of the 2D image. The number of equivalent circles or

spheres is the number of target attribute phases, and the

distribution curve of the radii of the whole number

corresponds to the target attribute phase radius

distribution curve. Fractal dimensions can be adopted

to show the spatial topology of different attribute phases.

The size of the target attribute phase is self-similar to that of

the interval with (λ min, λmax), and the higher and lower limits

are the maximum and minimum pore sizes of the target

attribute phase, respectively. The relationship between

the percentage of the target attribute phase ϕp and the

fractal dimension Df as well as the maximum and

minimum dimensions is (Sakhaee-Pour and Li, 2016; Xia

et al., 2019):

ϕp � λ min

λ max
( )

De−Df

(5)

where De is the Euclidean dimension, which is two and three for

2D and 3D space, respectively. The fractal dimension ranges

from one to two for 2D space and from two to three for 3D space.

The tortuosity, as an important parameter describing the

seepage path, depends mainly on material transport properties,

including permeability, electrical and thermal conductivity in

porous rocks, and is calculated as the proportion of the real

length of the seepage channel to the apparent length through the

porous medium (Latour et al., 1995; Fu et al., 2021). The

coordination number, which is also an important parameter

influencing the seepage law, refers to the number of throats

connecting the pore to the surrounding pores.

TABLE 1 Petrophysical properties and pore structure parameters of the training image and two realizations obtained by the proposed approach.

Contents Training image Realization 1 Realization 2

The petrophysical properties Organic pores proportion/% 1.48 1.46 1.42

Organic proportion/% 6.80 6.58 6.59

Inorganic pores proportion/% 8.52 8.78 8.58

Matrix proportion/% 71.23 76.00 75.16

Pyrite proportion/% 11.97 7.18 8.25

The pore structure parameters Organic pore Number 1366 1399 1358

Average radius/voxel 10.69 10.46 10.43

Fractal dimension 1.315 1.316 1.313

Tortuosity in X-direction 1.0175 1.0185 1.0179

Tortuosity in Y-direction 1.0109 1.0100 1.0100

Organic Number 1193 1305 1236

Average radius/voxel 56.97 50.41 53.33

Fractal dimension 1.537 1.496 1.495

Inorganic pore Number 1934 1937 1941

Average radius/voxel 44.03 45.35 44.19

Fractal dimension 1.616 1.617 1.612

Tortuosity in X-direction 1.1371 1.1512 1.1349

Tortuosity in Y-direction 1.0737 1.0705 1.0655

Matrix Number 131 135 129

Average radius/voxel 543.76 562.94 582.67

Fractal dimension 1.786 1.755 1.760

Pyrite Number 71 59 60

Average radius/voxel 168.93 104.02 137.52

Fractal dimension 1.592 1.500 1.532
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3.3 Flow characteristic

Investigating fluid flow in digital rocks, as well as the coexistence

and distribution pattern of multi-phase fluids, will shed light on the

relationship between a rock’s morphological structure and its flow

characteristics and provide a solid scientific foundation for studies of

relevant applications. The image-basedmicroscopic flow simulation

method was developed based on digital rocks combined with

computational fluid dynamics methods, which is a common

method to simulate the unidirectional and two-phase seepage

characteristics of complex rock structures.

For single-phase fluid flow, the finite volumemethodwas utilized

to calculate the incompressible Navier–Stokes Equation to determine

the velocity field of the digital rocks (Aziz et al., 2018), and the

permeability of the digital rocks was calculated. In the flow direction,

the inlet and outlet are imposed constant pressure boundary

conditions. The fluid-solid interface is a non-slip boundary.

For water-oil two-phase flow, the entire experimental process

included oil and water immersion. To simulate oil accumulation in

the reservoir, the digital rock was first saturated with water in a

drainage process followed by an oil imbibition process. The pore was

completely occupied by water after the drainage due to its

hydrophilicity. After oil imbibition, the non-wetting oil phase

was usually in the pore center, while the wetting water phase

preferred to stay at the corners. Then water was injected from

the inlet to displace the oil, which aimed to imitate the water

flooding process in the realistic reservoir. The simulation

approach described above led to the determination of the relative

permeability of phases (Soulaine et al., 2021; Yang et al., 2021).

4 Results and discussion

Four different types of reconstructed simulation cases were

adopted to illustrate the practical application capability of the

developed algorithm. The two-point correlation function was

viewed as a statistical indicator. To evaluate the reconstructed

reliability of images and validate the accuracy of the proposed

method, the training (reference) image and the reconstructed

models were compared with morphological pore structure and

fluid flow parameters incorporating absolute and relative

permeability curves.

4.1 Reconstruction of 2D shale digital
rocks from 2D segmented images

The reconstruction of 2D shale digital rocks based on 2D

segmented images was chosen as the first case of reconstruction

simulation in this study because it is the basis for the subsequent

construction of 3D models based on 2D images. In this simulation

case, a 2D shale segmentation image of 1000×1000 pixel size was

selected as the training image, as illustrated in Figure 4A), which was

scanned at a resolution of 60 nm/voxel and generated through

combining the proposed algorithm to obtain realizations 1 and 2,

as depicted in Figures 4B, C. The images contained organic and

inorganic pores, organic matter, matrix, and pyrite. Visually

comparing the reconstructed images and the training image, it was

found that there was a good similarity between different phases, both

in terms of their appearance and shapes. Despite the visual similarity,

the visual perception was relatively subjective and could not be

quantified for comparison. Therefore, for quantitative comparison,

three parameters were selected, namely, the two-point correlation

function, morphological structural characteristics, and fluid flow

characteristics.

The two-point correlation function was plotted for the

evaluation of the statistical change characteristics of the

topological relationship between the training image and the

reconstructed model, as plotted in Figure 5. The x-axis

indicates the hysteresis distance, and the y-axis depicts the

FIGURE 4
Comparison of 2D shale segmented digital rocks from the training image and different realizations. (A) Training image. (B) and (C) Realization
1 and 2, respectively, which were reconstructed using the suggested model. Red indicates the organic pore phase, green shows the organic matter
phase, purple indicates the inorganic pore phase, yellow indicates the matrix, and light blue indicates the pyrite phase.
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TABLE 2 Petrophysical properties and pore structure parameters of the reference image and two realizations obtained from the proposed approach.

Contents Reference Realization#1 Realization#2

Organic pores proportion/% 12.70 11.29 11.54

Organic proportion/% 25.57 23.86 24.74

Matrix proportion/% 45.77 55.22 56.52

Pyrite proportion/% 15.96 9.63 7.20

Permeability/10−3μm2 5.83 × 10−3 5.66 × 10−3 5.38 × 10−3

Organic pore Fractal dimension 2.615 2.572 2.574

Tortuosity in x-axis 1.2110 1.2101 1.1792

Tortuosity in y-axis 1.1948 1.1745 1.2532

Tortuosity in z-axis 1.0462 1.0309 1.0401

Organic Fractal dimension 2.757 2.732 2.736

Matrix Fractal dimension 2.843 2.879 2.825

Pyrite Fractal dimension 2.559 2.482 2.454

FIGURE 5
Two-point correlation functions of different phases for the training image and two realizations generated by the suggested model, (A), (B), (C),
and(D) are comparisons of two-point correlation functions of the training image and different realizations (realizations one and 2) for organic pore,
organic matter, inorganic pore, and pyrite phase, respectively. Black represents the training image, red represents realization one and blue is
realization 2.

Frontiers in Earth Science frontiersin.org09

Liu et al. 10.3389/feart.2022.1104401

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1104401


calculated value of the two-point correlation function of the

training image and different reconstructed models of organic and

inorganic pores, organic matter phases, and pyrite phases, which

show a high degree of agreement, as reflected by the

corresponding values of the hysteresis distance and two-point

correlation function when the curve ripples and begins to

smooth.

In a statistical perspective, the two-point correlation

function may not be a reliable indicator of spatial

morphology and geometric structure, and spatial pore

structures with similar two-point correlation functions can

also have very different morphological characteristics. For this

reason, the relevant morphological structural characteristics are

summarized in Table 1. From the percentage of different phases,

the values of the percentage of organic pores, organic matter, and

inorganic pores in realizations one and two and the training

image are very similar. The error ratios are calculated using Eq. 6

to quantify the difference between the reconstructed and

training models in terms of the percentage of different

phases. Compared with the training images, the error ratios

of the percentages of organic pores, organic matter, and

inorganic pores in realization one are 1.35%, 3.24%, and

3.05%, respectively, and 4.05%, 3.09%, and 0.7%, respectively,

in realization 2. The values of the percentages of matrix and

pyrite in realizations one and two are different from those in the

training image. Compared with the training image, the error

ratios of the percentages of matrix and pyrite in realization one

were 6.7% and 40.02%, respectively, and the error ratios of the

percentages of matrix and pyrite in realization two were 5.52%

and 31.08%, respectively.

δi � ϕti
i − ϕre

i

∣∣∣∣ ∣∣∣∣
ϕti
i

× 100% (6)

where δi represents the reconstructed model error relative to the

training image in the i phase, ϕtii is the proportion of the i phase in

the training image, and ϕrei indicates the proportion of the i phase

proportion in the reconstructed model.

Considering the number of equivalent regular structures,

average radii, and fractal dimensions of organic and inorganic

pores, organic matter, matrix, and pyrite, it can be seen that the

numerical differences between realizations one and two and the

training image are not significant, which indicates that the

reconstructed models and the training image exhibit similar

morphological structural characteristics. Realizations one and

two agree well with the training image in relation to the tortuosity

of organic and inorganic pores in x and y-directions, which

shows that the reconstructed model and the training image have

similar connectivity. The above analysis further confirms the

reliability of the proposed algorithm. Because the 2D images

involved in this simulation example are mostly discrete,

unconnected organic and inorganic pore spaces, the

simulation of unidirectional and two-phase fluid flow cannot

be carried out, so the permeability and relative permeability

cannot be calculated. Therefore, a comparison of the relevant

fluid flow characteristics could not be carried out in this

simulation example.

4.2 Reconstruction of 3D shale digital
rocks from 2D segmented images

This study further developed the method of constructing 3D

shale digital rocks based on 2D segmented images based on the

reconstruction of 2D shale digital rocks based on 2D segmented

images to evaluate the algorithm’s practical application

capability. Figure 6A and B show a real reference model with

a pixel size of 400 × 400 × 400 used in this simulation and a cross-

Section 2D shale segmentation image selected as the training

image, which was scanned at a resolution of 4 nm/voxel and

reconstructed by combining the algorithm proposed in this paper

to obtain realizations one and two Figure 6C and D. From the

figures, it is visible that the images are made of organic pores,

organic matter, matrix, and pyrite. Moreover, comparing the

reconstructed images with the reference image shows that there is

some noise in the reconstructed models, which is unavoidable in

the stochastic method. However, there is a lot similarity between

the different phases in terms of their appearance and shape.

Despite the visual similarity, visual perception is relatively

FIGURE 6
Comparison of (A) the 2D training image (B) 3D reference
image and (C) and (D) realizations one and two which are
reconstructed from the training image using the proposed
approach. Black indicates the organic pores, light blue
indicates the organic matter, yellow indicates the matrix, and pink
represents the pyrite.
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subjective and cannot be compared quantitatively; thus, two-

point correlation function, morphological structure features, and

fluid flow features are selected for quantitative comparison.

Figure 7 shows the change in the two-point correlation

function with distance for different phases. The results

demonstrate a high degree of consistency, which is reflected in

the corresponding values of the hysteresis distance and two-point

correlation function when the curve ripples and begins to

smooth. When the curve is smoothed, the two-point

correlation functions of the matrix have different values

compared to the ones of organic pores and organic matter.

This discrepancy can be traced back to a proportional change

in the matrix between the reference image and the reconstructed

versions of the image. However, the consistent trends of both

curves indicate that the statistical characteristics of the matrix are

similar.

Spatial pore structures with similar two-point correlation

functions may have very different morphological characteristics.

Table 2 calculates the petrophysical properties and pore structure

parameters. The percentage values of the organic pores and

organic matter in realizations 1 and 2, and the reference

image were very close. Furthermore, the percentage values of

matrix and pyrite in realizations 1 and 2, and reference image

were somewhat different. In order to further quantify the

percentage values of the various phase differences in the

considered images, the error ratios were calculated using Eq.

6. Compared with the reference image, the error ratios of the

occupancy ratios of organic pores and organic matter in

realization one were 11.10% and 6.80%, respectively, and

9.13% and 3.25% in realization 2. On the other hand, the

error ratios of the percentages of matrix and pyrite in

realization one were 20.65% and 39.66%, respectively, and

23.49% and 54.86% in realization 2. Despite the significant

differences in the ratios of matrix and pyrite in the

reconstructed models, the pore space parameters of organic

pores and organic matter have the most impact on the flow.

Comparing the equivalent rule radius distributions of organic

pores, organic matter, matrix, and pyrite, as depicted in Figure 8,

the distribution curves of both realizations one and two are close

to those of the reference image. This demonstrates that the

reference and reconstructed images have similarity in

morphological structure characteristics, which can also be

confirmed by the comparison of the fractal dimensions in

Table 2. The distribution curves of the coordination numbers

of the models are calculated and plotted, as shown in Figure 8B,

showing a similar distribution, which indicates that the reference

and reconstructed images have similar connectivity. The above

analysis provides proof that the proposed algorithm is reliable.

FIGURE 7
Comparison of two-point correlation functions of reference image and reconstructed images for different phases(A) organic pore phase (B)
organic phase, (C) matrix phase Black represents the training image, red represents realization one and blue represents realization 2.
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An examination of the two-point correlation function and

morphological structure features shows that the proposed

algorithms are accurate. However, both parameters are based

on small amounts statistical data, and the prediction of absolute

and relative permeability based on fluid flow simulation laws is

the key to assessing the quality of the reconstructed images.

Table 2 shows that the difference between the absolute

permeability of the reconstructed images and that of the

reference image is small, which further verifies the reliability

of the reconstructed model. Compared with the testing of

absolute permeability, the testing of the relative permeability

is quite difficult because it is highly sensitive to the morphological

structure and 3D connectivity. By plotting the relative

permeability of the reconstructed models and the reference

model, one can note that for the relative permeability of

water, the reference and reconstructed model curves follow

the same trend and almost overlap (see Figure 9). However,

for oil-phase permeability, they have some differences, but their

basic curve trends are similar. Comparing the values of connate

water saturation, residual oil saturation, and iso-permeability

point, the reconstructed models were close to the reference

model.

4.3 Reconstruction of 2D shale digital
rocks from 2D gray images

The simulation cases illustrate how the proposed

algorithm is used in this study for multi-mineral digital

rock reconstruction with segmented images. In the

FIGURE 8
Comparison of pore structure distribution of the reference image and two realizations for different phases. (A) Distribution of organic pore
radius, (B) distribution of organic pore coordination, (C) distribution of organic matter radius, (D) distribution of matrix radius, and (E) distribution of
pyrite radius.
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simulated instances below, we further exhibit the capability of

the algorithm in continuous-phase porous media

reconstruction applications. As shown in Figure 10A, a 2D

shale gray image of 1000×1000 pixel size was chosen as the

training image. It was scanned at a resolution of 60 nm/voxel,

combined with the proposed algorithm for obtaining

realizations one and 2 (see Figure 10B and C).

Figure 11 shows the gray value distribution curves of the

reconstructed and the training images. It can be shown that the

gray value distribution curves of the reconstructed and the training

images show a similar three-peak distribution, especially the

performance at the peak, which indicates that the two have

similar texture characteristics. Based on the delineated gray value

as the threshold, the gray image is segmented into different organic

pores, organicmatter, inorganicmatter pores, matrix, and pyrite (see

Figure 12). A visual comparison between the reconstructed models

and the training image revealed a good similarity between the

different phases, both in terms of their appearance and shape.

Although the visual perception is relatively subjective and cannot

be quantified, two-point correlation functions, morphological

structure features, and fluid flow characteristics were selected for

quantitative comparison.

To evaluate the variation features of the spatial distribution

on the reconstructed and training images for different phases, the

change of the two-point correlation function was plotted

(Figure 13). As evidenced by the corresponding values of the

lag distance when the curves ripple trend and the points start to

smooth out, the two-point correlation functions of the training

image and various reconstructed models of different phases such

as the organic pore, organic matter, inorganic pore, and pyrite

phases exhibit a high degree of agreement.

The reconstructed models were eventually used to simulate

the fluid flow process and predict the seepage properties, which

mainly depend on the morphological structure characteristics

computed in Table 3. In terms of the percentage of different

phases, the percentages of different phases in realizations one and

two and the training image are very close to each other.

Compared with the training image, the error ratios of the

percentages of the organic pore, organic matter, and inorganic

pore phases in realization one were 0.68%, 4.56%, and 4.23%,

respectively, and 3.38%, 3.82%, and 0.59%, respectively, in

realization 2. The values of the percentages of matrix and

pyrite in realizations one and two and the training image are

somewhat different. Compared with the training image, the error

ratios of the percentages of matrix and pyrite in realization one

are 6.25% and 36.84%, respectively, and the error ratios of the

percentages of matrix and pyrite in realization two are 3.96% and

20.55%, respectively.

Considering the number of equivalent regular structures,

mean radii, and fractal dimensions of phases, it can be

understood that the numerical differences between

realizations one and two and the training image are not

FIGURE 9
Comparison of the predicted relative permeability during the
imbibition displacement. Black represents the computed relative
permeability of reference, and red and blue are the computed
relative permeabilities of realizations 1 and 2, respectively.
The solid line is the water relative permeability, and the dashed line
is the oil relative permeability.

FIGURE 10
Comparison of 2D shale gray digital rocks (A) Training image, (B) realization 1and (C) realization 2. Realizations are reconstructed based on the
training image using the proposed approach.
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significant, which indicates that the reconstructed model and

the training image have similar morphological structure

characteristics. The tortuosity of Realizations one and two

match well with the training image for organic and inorganic

pores in x and y directions, which shows that the

reconstructed model and the training images have similar

connectivity. The above analysis further confirms the

reliability of the proposed algorithm. Unidirectional and

two-phase fluid flow simulations cannot be performed in

this simulation example because the majority of the 2D

images are discontinuous, disconnected organic and

inorganic pore spaces. As a result, the permeability and

relative permeability cannot be obtained. Therefore, a

comparison of the relevant fluid flow characteristics is not

carried out in this simulation example.

4.4 Reconstruction of 3D shale digital
rocks from 2D gray images

The study further develops the construction of 3D models

based on 2D gray-scale images to evaluate the practical

application capability of the proposed algorithm. In this

simulation case, a 400×400×400 pixel size is chosen as the

real reference model, as shown in Figure 14B, from which a

cross-sectional 2D shale gray image is chosen as the training

image (see Figure 14A), which was scanned at a resolution of

4 nm/voxel, and reconstructed by combining the proposed

algorithm in this paper to obtain realizations 1 and 2, as

depicted in Figure 14C and D.

Figure 15 shows the gray value distribution curves of the

reconstructed and the reference images. It can be shown that the

TABLE 3 Petrophysical properties and pore structure parameter of the training image and the realizations obtained by segmenting the reconstructed gray
images.

Contents Training image Realization#1 Realization#2

The petrophysical properties Organic pores proportion/% 1.48 1.49 1.43

Organic proportion/% 6.80 7.11 6.54

Inorganic pores proportion/% 8.52 8.16 8.47

Matrix proportion/% 71.23 75.68 74.05

Pyrite proportion/% 11.97 7.56 9.51

The pore structure parameters Organic pore Number 1366 1433 1368

Average radius/voxel 10.69 10.43 10.43

Fractal dimension 1.315 1.328 1.313

Tortuosity in x-direction 1.0175 1.0175 1.0174

Tortuosity in y-direction 1.0109 1.0102 1.0105

Organic Number 1193 1211 1235

Average radius/voxel 56.97 58.70 52.96

Fractal dimension 1.537 1.508 1.494

Inorganic pore Number 1934 1974 1927

Average radius/voxel 44.03 41.31 43.97

Fractal dimension 1.616 1.605 1.612

Tortuosity in x-direction 1.1371 1.1352 1.1333

Tortuosity in y-direction 1.0737 1.0685 1.0677

Matrix Number 131 139 131

Average radius/voxel 543.76 544.49 565.29

Fractal dimension 1.786 1.755 1.768

Pyrite Number 71 66 64

Average radius/voxel 168.93 114.52 148.55

Fractal dimension 1.592 1.503 1.576
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gray value distribution curves of the reconstructed model image

and the reference image show a similar multi-peak distribution,

especially the performance at the peak, which indicates that the

two have similar texture characteristics. Based on the demarcated

gray values as the thresholds, the gray image is segmented into

different organic and inorganic pores, organic matter, matrix,

and pyrite (see Figure 16). From the figure, it can be shown that

the image contains organic pores, organic matter, matrix, and

pyrite and visually compares the reconstructed models with the

reference image. However, there is considerable noise in the

reconstructed model, which is inevitable with the stochastic

method. There is a good resemblance between the various

phases in terms of their appearance and shape. However, it

cannot be quantitatively compared since it is so subjective. As

a result, three types of indicators were chosen for quantitative

comparison: two-point correlation functions, morphological

pore structure features, and fluid flow features.

Here again, the two-point correlation functions of the reference

images of organic pores (see Figure 17A) and organic matter (see

Figure 17B) of different reconstructed models and the reference

image show a high degree of consistency, which is reflected when

the curve ripples and begins to smooth. Compared to the organic

pore and organic matter, the two-point correlation function of the

matrix (see Figure 17C) has different values when it is smoothed,

which is related to the difference in pyrite in the reconstructed

images. This is related to the difference in the proportion of pyrite in

the reconstructed image and the reference model. However, the

consistent trends of the two curves indicate that the statistical

characteristics of pyrite are similar.

The relevant pore structure parameters are computed in Table 4,

and the occupancy ratio values of the organic pore and organicmatter

in realizations one and two and the reference image are very close. For

further quantitative measurements of the different phase occupancy

ratios in the reconstructed and the reference models, differences were

evaluated by calculating the error ratios defined in Eq. 6. Compared

with the reference image, the error ratios of organic pores and organic

matter occupancy ratios in realization one were 2.13% and 0.82%,

respectively, and 0.008% and 2.62%, respectively, in realization 2. The

values of the percentages of matrix and pyrite in realizations one and

two and the reference image were somewhat different. Compared

with the reference image, the error ratios of the percentage of matrix

and pyrite in realization one were 12.37% and 35.84%, respectively,

and the error ratios of the percentages of matrix and pyrite in

reconstructed realization two were 18.72% and 49.56%,

respectively. In spite of the significant disparities in the

reconstructed models’ percentages of pyrite and matrix, the pore

structure characteristics had the biggest impact on the fluid flow

characteristics.

FIGURE 11
Comparison of the gray value distribution of the training
image and different realizations based on the proposed method.
Black is the gray value distribution of the training image. Red and
blue are the gray value distributions of realizations 1 and 2,
respectively. The green dotted line is the gray value used to
segment 2D shale gray digital rocks to obtain 2D shale segmented
digital rocks.

FIGURE 12
2D shale segmented digital rocks (A) training image, (B) and (C) are realizations 1 and 2, respectively, which are obtained by segmenting the
reconstructed gray images. Red indicates the organic pore phase; green indicates the organic matter phase, purple indicates the inorganic pore
phase, yellow indicates the matrix, and light blue indicates the pyrite phase.
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Comparing the equivalent rule radius distributions of

organic pores, organic matter, matrix, and pyrite, as

depicted in Figure 18, the distribution curves of both

realizations one and two are close to those of the reference

image. This means that the reconstructed images and the

reference image show similar morphological and structural

features, which can also be confirmed by the comparison of

fractal dimensions in Table 4. Furthermore, the plot of their

coordination numbers reveals similarity in distribution, which

means that they have similar connectivity (see Figure 18). The

above analysis further confirms the reliability of the proposed

algorithm.

Once again, the assessment of the two-point correlation

function and morphological structure features shows that the

proposed algorithms are accurate. However, as previously

stated, both have the disadvantage of being limited to small

data sets. Thus, the prediction of absolute and relative

permeability based on fluid flow simulation laws is the key

to assessing the quality of the reconstructed images. The

results in Table 4 reveal that the difference between the

absolute permeability of the reconstructed images and that

of the reference image is slight, further validating the

accuracy of the proposed approach. Testing the oil-water

relative permeability is difficult, because it is highly sensitive

to the morphological structure and 3D connectivity. By

plotting the relative permeability of the reconstructed

images and the reference image, as depicted in Figure 19,

it can be shown that for the relative permeability of water,

their curves follow a similar trend and almost overlap, but for

oil relative permeability, the reconstructed models differ

slightly from the reference model. However, their basic

trends are similar. Compared to the values of the connate

water saturation, residual oil saturation, and iso-permeability

point, the reconstructed models are close to the reference

model.

5 Conclusion

Given that shale oil and gas reservoirs develop multiple types

of complex pores and minerals and exhibit multi-scale

characteristics, the most widely used experimental physical

methods are limited by the contradiction of resolution and

representative elementary volume, which makes it difficult to

accurately construct shale multi-mineral digital rocks and thus

carry out subsequent fluid flow simulation studies. Therefore, it is

of utmost importance to develop a numerical approach to

construct shale multi-mineral digital rocks.

FIGURE 13
Different phases two-point correlation functions (A)Organic pore, (B) organic, (C) inorganic pore phase, and (D) pyrite phase. It should be noted
that the images were obtained by segmenting the reconstructed gray images.
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1 This paper proposes an innovative approach for constructing

shale multi-mineral digital rocks from 2D images (segmented or

gray), which is based onmulti-point statistics, and can realize the

construction of segmented and gray phase shale multi-mineral

digital rocks in 2D and 3D. This work shows that it is possible to

obtain 3D shale multi-mineral digital rocks using only one 2D

training image as the input, combined with the proposed

algorithm, while reproducing the pore structures in a real model.

2 In different simulation cases, the two-point correlation

function and morphological pore space features of each

TABLE 4 Petrophysical properties and pore structure parameters of the training image and two realizations were obtained through segmentation of the
reconstructed gray images.

Contents Reference Realization#1 Realization#2

Organic pores proportion/% 12.70 12.97 12.71

Organic proportion/% 25.57 25.36 24.90

Matrix proportion/% 45.77 51.43 54.34

Pyrite proportion/% 15.96 10.24 8.05

Permeability/10−3μm2 5.83 × 10−3 5.98 × 10−3 5.45 × 10−3

Organic pore Fractal dimension 2.615 2.586 2.580

Tortuosity in X-direction 1.2110 1.1865 1.1940

Tortuosity in Y-direction 1.1948 1.1627 1.1706

Tortuosity in Z-direction 1.0462 1.0720 1.0409

Organic Fractal dimension 2.757 2.742 2.737

Matrix Fractal dimension 2.843 2.837 2.825

Pyrite Fractal dimension 2.559 2.452 2.332

FIGURE 14
Comparison of 3D shale digital rocks (A) Training image, (B)
Reference model, (C) and (D) are realizations one and two which
are reconstructed based on the training image using the proposed
method. Red represents the organic pore phase; green
represents the organic phase, purple represents the inorganic pore
phase, yellow represents the matrix phase, and light blue
represents the pyrite phase.

FIGURE 15
Comparison of the gray value distribution of the reference
image and different realizations based on the proposed approach.
The green dotted line is the gray value used to segment 3D shale
gray digital rocks to obtain 3D shale segmented digital rocks.
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FIGURE 16
3D shale segmented digital rocks (A) Reference image, (B) and (C) are realizations one and two which are obtained by segmenting the
reconstructed gray images. Black represents the organic pore phase, light blue represents the organic phase, yellow represents thematrix phase, and
pink represents the pyrite phase.

FIGURE 17
Two-point correlation functions of different phases for the training image and two realizations obtained by segmenting the reconstructed gray
images, (A), (B), and (C) are comparisons of two-point correlation functions of the reference image and different realizations (realization one and 2)
obtained by segmenting the reconstructed gray images for the organic pore, organic matter, and matrix phase, respectively. Black represents the
training image, red represents realization one and blue represents realization 2.
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phase are well reproduced in the process of constructing 2D

shale digital rocks based on 2D training images, both in the

segmented and gray regions. However, for the process of

constructing 3D shale digital rocks based on 2D images,

the two-point correlation function and morphological

structure of organic pores and organic matter are well

reproduced, both in the segmented and gray, unfortunately,

the matrix and pyrite are relatively poorly reconstructed.

Mathematically, the construction of 3D images from 2D

images can be viewed as a spatially inverse problem that

only borrows the pore structure from 2D images and

restores the pore structure in 3D images, which has a large

amount of randomness and uncertainty. However, based on

the performance of absolute and relative permeability, the

values and curve distributions of the reconstructed images are

similar to those of the reference image, which indicates

that the reconstructed model reproduces the microstructure

of the real 3D space. Improving the accuracy of the algorithm

is a critical task for moving the research forward in the

next step.

FIGURE 18
Comparison of pore structure distribution of the reference model and two realizations reconstructed by the proposed approach. (A) Organic
pore radius distribution, (B) organic pore coordination distribution, (C) organic radius distribution, (D) matrix radius, and (E) pyrite radius. In the
pictures (A), (C), (D), and (E), black is the training image distribution, and red and blue are the distributions of realizations 1 and 2, respectively. In (B),
green is the training image distribution, and red and blue are the distributions of realizations 1 and 2, respectively.
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3 The algorithm proposed in this paper provides a

straightforward and fast tool for 3D multi-mineral

reconstruction of 2D slices. The application of the

proposed algorithm through multiple simulation cases

shows that the algorithm is reliable and time- and cost-

effective compared to experimental methods. Although

the algorithm is proposed in the context of shale, but the

algorithm can be extended to other types of reservoirs

as well.
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