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Soil-rock mixtures are geological materials with complex physical and mechanical
properties. Therefore, the stability prediction of soil-rock mixture slopes using
machine learning methods is an important topic in the field of geological
engineering. This study uses the soil-rock mixture slopes investigated in detail as
the dataset. An intelligent optimization algorithm-weighted mean of vectors
algorithm (INFO) is coupled with a machine learning algorithm. One of the new
ensemble learningmodels, which named IN-Voting, is coupled with INFO and voting
model. Twelve single machine learning models and sixteen novel IN-Voting
ensemble learning models are built to predict the stability of soil-rock mixture
slopes. Then, the prediction accuracies of the above models are compared and
evaluated using three evaluation metrics: coefficient of determination (R2), mean
square error (MSE), and mean absolute error (MAE). Finally, an IN-Voting ensemble
learning model based on five weak learners is used as the final model for predicting
the stability of soil-rock mixture slopes. This model is also used to analyze the
importance of the input parameters. The results show that: 1) Among 12 single
machine learning models for the stability prediction of soil-rock mixture slopes, MLP
(Multilayer Perceptron) has the highest prediction accuracy. 2) The IN-Voting model
has higher prediction accuracy than single machine learning models, with an
accuracy of up to 0.9846) The structural factors affecting the stability of soil-rock
mixture slopes in decreasing order are the rock content, bedrock inclination, slope
height, and slope angle.
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1 Introduction

Soil-rock mixture slopes are mainly discontinuous, loose soil-rock mixture deposits
composed of massive rocks and fine-grained soils with varying physical and mechanical
properties (Xu and Zhang, 2021; Zhao et al., 2021). These slopes are widely distributed in
areas such as the mountainous regions of southwest China, the Three Gorges Reservoir Region,
and the Qinling Mountains (Cen et al., 2017; Gao et al., 2018). The soil-rock mixture slope has
significant characteristics of non-uniformity and dual structure, and its stability can be affected
by the rock content and grain size gradation (Dong et al., 2020; Xu and Zhang, 2021). Therefore,
its stability evaluation is complicated, and slope instability can cause large economic and life
losses (Liu et al., 2022; Wang et al., 2022). In July 2011, a landslide of soil-rock mixture occurred
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in Lueyang County, Hanzhong City, southern Shaanxi Province,
resulting in the death of 18 people (Liu et al., 2019). In July 2020,
the instability of a soil-rock mixture slope in Wulong District,
Chongqing, caused substantial economic losses (Zhou et al., 2021).

Scholars have conducted numerous studies on the stability
evaluation of soil-rock mixture slopes. Xu et al. (2016) studied the
properties of soil-rock mixtures by numerical simulation with discrete
elements. Gao et al. (2018) used the strength parameters of the soil-
rock mixture obtained from the direct shear test for evaluation. The
damage characteristics of slopes and their stability were simulated
using the finite element method (Yue et al., 2003; Chen et al., 2021).
Zhao et al. (2021) obtained the stability coefficients of soil-rock
mixture slopes using FLAC 3D and strength reduction methods,
revealing the influence of rock content on the stability coefficients
and damage modes. Peng et al. (2022) coupled discontinuous
deformation analysis and smooth particle hydrodynamics to
investigate the mechanical properties of soil-rock mixture slopes.
Qiu et al. (2022) using the physical deterministic
model—Scoops3D model to analyze landslide stability. Zhao et al.
(2022) investigated the mechanism of large deformation damage of
slopes using the material point method for soil-rock mixture slopes.

With the development of computer technology, many scholars
have used machine learning methods for slope stability prediction. For
example, some scholars used several single machine learning
algorithms or ensemble learning algorithms to predict the stability
of slopes. The best prediction model for such slopes could be obtained
by comparing the prediction accuracy of each model. Ray et al. (2020)
showed that an improvedmachine learning prediction model based on
artificial neural networks was effective for the stability prediction of
residual soil slopes. Lin et al. (2021) concluded that non-linear
regression models outperformed linear models in predicting slope
stability. Ramos-Bernal et al. (2021) revealed that the Adaboost
classifier was more suitable for slope prediction modeling. By
comparing a single machine learning model with an ensemble
learning model, Pham et al. (2021) found that the slope stability
prediction model based on the ensemble algorithm was more accurate.
Cheng et al. (2022) and Shahzad et al. (2022) found that slope analysis
models developed with support vector machines had the highest
robustness. Feng et al. (2022) found that support vector machine
models and random forest models had more reliable prediction
results. Other scholars have further improved the accuracy of slope
stability prediction by coupling an intelligent optimization algorithm
with a single machine learning algorithm to build a prediction model.
Xue (2016) showed that determining the optimal parameters of a least
square support vector machine model based on an improved particle
swarm algorithm could significantly improve the accuracy of slope
stability prediction models. Qi and Tang, 2018 showed that using the
firefly optimization algorithm to separately determine the
hyperparameters of six machine learning algorithms was effective
in improving the model prediction accuracy.

However, due to the complexity of soil-rock mixture slopes, the
use of machine learning methods to predict their stability was rarely
reported. Therefore, a novel ensemble learning model is proposed in
this study to predict the stability of soil-rock mixture slopes, providing
new ideas and references for related studies and engineering
applications. First, a weighted mean of vectors algorithm (INFO) is
used to determine the hyperparameter combinations of 12 single
machine learning models. The weight distribution in the novel IN-
Voting ensemble learning model is also investigated. In this way, a

more accurate slope stability prediction model for soil-rockmixtures is
established. Then, the data of mixed soil and rock slopes in Wanzhou
District (Chongqing, China) are used for case analysis. Importance
analysis of four input parameters (i.e., slope angle, bedrock inclination,
slope height, and rock content) is performed using the Permutation
Importance method based on the IN-Voting model. The influence
degree of these parameters on the stability of the soil-rock mixture
slope is obtained.

2 Basic principles of the algorithm

2.1 Intelligent optimization algorithm—INFO

INFO is a new intelligent optimization algorithm proposed by
Ahmadianfar et al. (Ahmadianfar et al., 2022), which has the
advantages of strong searching ability, fast speed, and less
overfitting. The core idea of INFO lies in three stages.

2.1.1 Updating rule stage

z1g1 �
xg
1 +σ*MeanRule+ randn* xbs−xa1

g

f xbs( )−f xa1
g( )+1, rand<0.5

xbs+σ*MeanRule+ randn* xg
a −xa3

g

f xg
a2( )−f xa3

g( )+1, rand≥0.5

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z2g1 �
xbs +σ*MeanRule+ randn* xg

a −xb
g

f xg
a1( )−f xa2

g( )+1, rand<0.5

xbt +σ*MeanRule+ randn* xg
a1 −xa2

g

f xg
a1( )−f xa2

g( )+1, rand≥0.5

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1)

where z1g1 and z2
g
1 are the new position vectors for the g-th iteration; σ

is the vector scaling;MeanRule is the formula based on the mean rule;
xbs and xbt are the best and better solutions among all vectors in the
population; a1 ≠ a2 ≠ a3 ≠ 1 is a different integer randomly selected
from [1, NP], NP denotes the number of variable species; randn is a
standard normally distributed random value.

2.1.2 Vector combining stage

ug
1 �

z1g1 + μ* z1g1 − z2g1
∣∣∣∣ ∣∣∣∣, rand1< 0.5 and rand2< 0.5

z1g2 + μ* z1g1 − z2g1
∣∣∣∣ ∣∣∣∣, rand1< 0.5 and rand2≥ 0.5

{
xg
1 , rand1< 0.5

⎧⎪⎨⎪⎩
(2)

where ug1 is the new vector obtained by merging the vectors in the g-th
generation; μ � 0.05 × randn.

2.1.3 Local search equation

ug
1 �
xbs + randn* MeanRule + randn xg

bs − xg
a1( )( ),

rand1< 0.5 and rand2< 0.5
xrnd + randn* MeanRule + randn v1*xbs − v2*xrnd( )( ),

rand1< 0.5 and rand2≥ 0.5

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(3)

where:
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xrnd � ϕ*xavg + 1 − ϕ( )* ϕ*xbt + 1 − ϕ( )*xbs( ) (4)
xavg � xa + xb + xc

3
(5)

where ϕ denotes a random number of (0,1); xrnd is a random solution
obtained from xavg, xbt, and xbs; v1 and v2 are two random numbers. If
rand < 5, a new vector can be generated around xg

bs with random values
in [0,1].

This study mainly uses the INFO algorithm to determine
hyperparameter combinations in single machine learning models and
weight values among weak learners in Voting ensemble learning models.

For the practical application, the main flow of the algorithm
(Figure 1) is as follows.

1) The maximum iteration number is 100, and the group number is
30. For a single machine learning model, the group dimension is
the number of hyperparameters to be adjusted by the machine
learning model. For the Voting ensemble learning model, the
group dimension is the number of weight values to be adjusted.

2) A random group matching the upper and lower boundary vectors
is initialized.

3) The coefficient of determination R2 (Eq. (6)) is used as the fitness
function of this algorithm.

4) The new vectors generated in the vector update phase are used to
start the vector merge phase.

5) In the local search phase, whether the vector generated in the
fourth step exceeds the upper and lower boundary of the group can
be determined. By comparing the fitness function values of the old
and new vectors, whether to perform the vector update and the
change of the best fitness value are determined.

6) Steps 3–5 are repeated until the iteration termination condition is
reached, then the results are exported.

2.2 Machine learning models

2.2.1 Adaptive boosting (ADBT) model
ADBT is an ensemble learning model that constructs strong

learners by linear combinations of weak learners (Freund and

Schapire, 1995). By using the performance in each training
iteration to weight the attention created for subsequent training,
ADBT assigns larger weights to data that are more difficult to
predict and smaller weights to those less difficult to predict, thus
improving the overall prediction accuracy of the model (Bui et al.,
2019; Lee et al., 2022). In this study, the default learner of ADBT is
used, and the three hyperparameters to be determined are the
maximum iteration number (n_estimators), the learning rate
(learning_rate), and the random seed (random_state).

2.2.2 Bayesian linear regression (BYS) model
Based on Bayesian conditional probability, BYS treats the

parameters of the linear model as random variables and computes
the posterior through the prior of the model parameters, thus
completing the model construction and prediction (Gelman, 2015).
The six hyperparameters to be determined in this study are the
maximum iteration number (n_iter), the tolerance value (tol), the
shape parameter of the Gamma distribution before the alpha
parameter (alpha_1), the inverse scale parameter of the Gamma
distribution before the alpha parameter (alpha_2), the shape
parameter of the Gamma distribution before the lambda parameter
(lambda_1), and the inverse scale parameter of the Gamma
distribution before the lambda parameter (lambda_2).

2.2.3 ElasticNet regression (ELN) model
ELN combines the regularization methods of Lasso regression and

Ridge regression. The L1 regularization and L2 regularization
calculations are incorporated into the standard linear regression
model conditions to form a new cost function (Zou and Hastie,
2005). The five hyperparameters to be determined for this model
are the constant of the penalty term (Alpha), the mixing parameter
(l1_ratio), the maximum iteration number (max_iter), the tolerance
value (tol), and the random seed (random_state).

2.2.4 Extra-trees (ETR) model
ETR is a machine-learning model for bagging proposed by Geurts

et al. (2006). Because the division points in ETR are random, the
prediction results of this model require the combined action of
multiple decision trees to achieve the best prediction (Ghatkar

FIGURE 1
Flow chart of the INFO algorithm.
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et al., 2019). The five hyperparameters to be determined are the
number of decision trees (n_estimators), the maximum iteration
number (max_depth), the random seed (random_state), the
minimum number of samples required to split the internal nodes
(min_samples_split), and the minimum number of samples required
for each node (min_samples_leaf).

2.2.5 Gradient boosting decision tree (GBDT) model
The GBDT model proposed by Friedman (Friedman, 2002) is an

ensemble model based on multiple weak learners to obtain strong
learning capabilities. In the regression problem, the negative gradient
of the loss function is used to approximate the value of the current
model as the residual of the boosted tree model, thus obtaining the best
prediction results. GBDT has received much attention from scholars
since its introduction (Wu and Lin, 2022). In this study, the five
parameters to be determined are learning rate (learning_rate),
maximum iteration of the weak learner (n_estimators), maximum
depth of the decision tree (max_depth), subsample (subsample), and
random seed (random_state).

2.2.6 Huber regression (HBR) model
In the HBR model, the loss function in the theoretical approach of

linear regression is replaced with Huber loss (Sun et al., 2020). The
four hyperparameters to be determined in this study are the number of
outliers (Epsilon), the maximum iteration number (max_iter), the
regularization parameter (alpha), and the tolerance value (tol).

2.2.7 K-nearest neighbor (KNN) model
The KNN model proposed by Cover and Hart, 1967 is

theoretically mature, easy to understand, and highly accurate,
which can be used to address classification and regression
problems (Sevi and AuthorAnonymous, 2020). Since the selection
of the K determines the accuracy of the model prediction (Deng,
2020), three hyperparameters need to be determined to improve the
model prediction accuracy: k-value (n_neighbors), the threshold for
the number of leaf nodes (leaf_size), and distance metric p).

2.2.8 Lasso (LAS) model
The LASmodel is based on a standard linear regression model and

L1 regularization (Leeuw, 2009). Compared to linear regression
models, LAS models can handle high-dimensional data more
quickly and efficiently. Therefore, many scholars considered using
LAS models to build prediction models (Wagenaar et al., 2017). In this
study, the three hyperparameters to be determined are the constant of
the penalty term (Alpha), the maximum iteration number (max_iter),
and the tolerance value (tol).

2.2.9 Multilayer Perceptron (MLP) model
The MLP model is constructed through full connectivity between

input, hidden, and output layers. The main idea of the input layer is to
accept multiple variables from the model and pass them into the
hidden layer, where the number of neurons is the same as the type of
input variables. The main idea of the hidden layer is to extend the data
to a higher dimension, which improves the prediction accuracy of the
model by increasing the complexity of the input variables. The main
idea of the output layer is to output the final prediction of the model by
accepting the last layer of the hidden layer (Almansi et al., 2022).

The seven hyperparameters to be determined in this study are: the
regularization term parameter (Alpha), the initial learning rate

(learning_rate_init), the index of the inverse scaling learning rate
(power_t), the maximum iteration number (max_iter), the
momentum of the gradient descent update (momentum), the
proportion of the training data to be left as a validation set for
early stops (validation_fraction), and the random number seed
(random_state).

2.2.10 Random forest (RF) model
The RF model is composed of several unrelated regression trees,

and the final output is jointly determined by each regression tree
(Zhang et al., 2019). The model was proposed and developed by Ho
et al. (Ho, 1998) and Breiman (2001). The five hyperparameters to be
determined in this study are the number of decision trees (n_
estimators), the minimum number of samples in each division
(min_samples_split), the minimum number of samples in the leaf
nodes: (min_samples_leaf), the random number seed (random_state),
and the minimum weight required by the leaf nodes (min_weight_
fraction _leaf).

2.2.11 Support vector machine (SVM) model
Cortes and Vapnik, 1995 proposed that support vector regression

(SVR) in SVM models can be used for regression analysis (Kombo
et al., 2020). The use of kernel tricks in SVM makes the model a good
solution for analyzing non-linear data (Feng et al., 2022). The four
hyperparameters to be determined in this study are the number of
kernel functions (Degree), kernel coefficients (epsilon), kernel cache
size (cache_size), and the maximum iteration number (max_iter).

2.2.12 Stochastic gradient descent (SGD) model
The SGD model is generated based on the gradient descent

model (Bui et al., 2019). During the model operation, the dataset is
randomly disrupted. Since a sample is randomly selected from the
dataset at each iteration, the path used by the model to reach the
minimum is usually noisier than that of a typical gradient descent
model, but the training time can be significantly reduced. The five
hyperparameters to be determined are the constant of the penalty
term (Alpha), the elastic net mixing parameter (l1_ratio), the
maximum iteration number (max_iter), the initial learning rate
(eta0), the inverse scaling learning rate index (power_t), and the
random number seed (random_state).

2.2.13 IN-voting model
Voting models are classified into two types: classification and

regression. For common regression models, the prediction results of
multiple weak learners are reprocessed through arithmetic mean
fusion or geometric mean fusion, thus improving the prediction
accuracy of the model.

In this study, a new ensemble learning model - IN-Voting is
developed based on the regression model of traditional Voting. As
shown in Figure 2, the flow of the IN-Voting model is as follows:
Firstly, the data is pre-processed for soil-rock mixed slopes. The
number of weak learners selected in the model is finally
determined to be five based on the complexity of the IN-Voting
ensemble learning model and the accuracy rate. Then, the INFO
intelligent optimization algorithm improves the prediction accuracy of
the model by assigning different weight values to the weak learner.
Finally, the combined module in the new ensemble learning model of
IN-Voting is used to complete the final building of the model and
output the model prediction results.
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2.3 Building process of the prediction model

The building process of the stability prediction model for soil-
rock mixture slopes is shown in Figure 3, which is explained in
detail below.

(1) The input parameters of the soil-rock mixture slopes (i.e., rock
content, bedrock inclination, slope angle, and slope height) are
standardized and normalized.

(2) To prevent overfitting of the model, 80% of the total data is
classified into a training set for the initial establishment model,
and 20% is classified into a test set for further validation.

(3) If the stability prediction model is based on a single machine
learning model, the hyperparameters of each machine learning
model are first determined using the INFO algorithm. In the case

of the IN-Voting model, the INFO algorithm is required to
determine the weight values of the weak learners.

(4) The training data are fed into the initial machine learning model,
and the test set data are used to finalize the stability prediction
model for soil-rock mixture slopes.

2.4 Evaluation indicators

For evaluating the prediction performance of the proposed model,
the following three indicators are used: The coefficient of
determination (R2) that uses the mean value as the error base; the
mean squared error (MSE) that reflects the difference degree between
the estimated volume and the estimated volume; the mean absolute
error (MAE) representing the absolute value of the deviation of all

FIGURE 2
IN-Voting network structure (W in the figure indicates the weight value).

FIGURE 3
Stability prediction model for soil-rock mixture slopes.
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individual observations from the arithmetic mean. As the most
important evaluation indicators in this study, the R2 closer to one
and smaller MSE andMAE values indicate higher prediction accuracy.
The equations of the three indicators are as follows:

R2 y, ŷ( ) � 1 − ∑n
i�0 y − ŷ( )2

∑n
i�0 y − �y( )2 (6)

MSE y, ŷ( ) � 1
n
∑n

i�0 yi − ŷi

 2
2

(7)

MAE y, ŷ( ) � 1
n
∑n

i�0 yi − ŷi

∣∣∣∣ ∣∣∣∣ (8)

where yi denotes the true value of the ith sample; ŷi is the predicted
value of the ith sample; �y denotes the mean value of yi{ }ni�1.

3 Sample analysis

The sample data were obtained from Wanzhou District
(Chongqing, China), located in the Yangtze River valley zone of the
northeast ridge and valley province of Chuandong. The terrain is high in
the east and low in the west, with sufficient rainfall and strata containing
rocky sand (Chen et al., 2021). A large number of slopes with mixed soil
and rock are developed in this area, with frequent geological hazards. In
this study, 49 soil-rockmixture slopes investigated in the previous study
are used as the sample for analysis (Cheng, 2009), as shown in the blue-
triangle points in Figure 4.

Soil-rock mixture slopes are distinguished from soil slopes and rock
slopes. Its slopematerial is complex and has significant inhomogeneity. As
a result, there are many factors affecting the stability of soil-rock mixture
slopes, and it is difficult to obtain the parameters of such slopes. In slope

stability analysis, the stability coefficient is correlated to the slip resistance
and sliding force of the slope body. Therefore, the input parameters in this
study are typical structural factors of soil-rock mixture slopes, including
rock content, surface inclination, slope angle, and slope height.

In soil-rock mixtures, the rock content is a key parameter in
determining the physical-mechanical properties and directly affects the
weight, cohesion, and internal friction angle (Kalender et al., 2014). The
rock contact, the rock content greatly contribute to the stability coefficient
of soil-rock nixture slopes (Wang et al., 2022a; Wang et al., 2022b; Wang
et al., 2022c). If there are multicollinearities among the input parameters in
machine learning, the accuracy of the prediction model can be affected
(Hitouri et al., 2022; Selamat et al., 2022; Xia et al., 2022). Therefore, this
study uses rock content as an input parameter instead of weight, cohesion,
and internal friction angle. The bedrock surface is the interface separating
the soil and rock mixture from the underlying bedrock. Since the base
overburden provides the soil-rock mixture slope with a typical binary
structure, it is an important factor affecting the overall stability of the soil-
rock mixture slopes. Slope angle and slope height are important geometric
features significantly affecting the stability of slopes. With the increase of
slope height and angle, the slope stability gradually decreases.

As shown in Figure 5, the slope angle ranges from 9°–15°, the base
cover dip angle is 5°–13°, the slope height is in the range of 40 m–100 m,
and the rock content ranges from 22%–60%. These data characteristics
are consistent with the histogram (Figure 5) and the Gaussian curve.

In Figure 6, the single-peak curve distribution characterized by
four input parameters and one output parameter reduces the
difficulty of data analysis and improves the prediction accuracy
of the model. The ten subplots at the lower triangle show the scatter
distribution among the parameters. It can be seen that there is no
multicollinearity among the four input parameters, which is
consistent with the above analysis. The Pearson’s r values in ten

FIGURE 4
Locations of data points in Wanzhou District.
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subplots of the four input parameters have different correlations
with the stability coefficients, Meanwhile slope angle, and slope
height show a significant negative correlation with the stability
coefficient. The rock content is positively correlated with the
stability coefficient, with larger rock content indicating a greater
stability coefficient.

4 Results

4.1 Single machine learning models

In this study, the prediction performance of 12 single machine
learning models based on the INFO intelligent optimization algorithm
is analyzed with R2 as the main indicator and MSE and MAE as
supplementary indicators, as shown in Figure 7. In Figure 7A, all
models have R2 values greater than 0.6. Twelve machine learning
models can be divided into three sections: BYS, LAS, ELN, and HBR
have R2 values between 0.6 and 0.7, with the lowest prediction accuracy
among the 12 machine learning models; The R2 values of ADBT, KNN,
SGD, and SVMmodels are in the range of 0.7–0.9, with the highest value
of 0.8746 for the KNN model; The R2 values of ETR, GBDT, MLP, and
RFR models are greater than 0.90, with MLP having the highest R2 value
of 0.9681. As shown in Figure 7B, only ETR, GBDT, MLP, and RFR have
MSE values less than 0.05, where ETR has the lowest MSE value of 0.043,
followed by MLP. In Figure 7C, ETR, GBDT, MLP, and RFR have MAE
values less than 0.005, with MLP having the lowest MAE of 0.0027.

According to themodel evaluation criteria in this paper, the R2 and
MSE evaluation index values of MLP model are the best, which shows

that compared with other models, themodel has a very strong adaptive
and self-learning function, so it has a higher prediction performance
for a small number of samples.

4.2 Novel ensemble learning model—IN-
voting

In this paper, five of the twelve single machine learning models are
randomly selected to be rearranged as weak learners in IN-Voting. With
the accuracy of model optimization and the optimization time of the IN-
Voting model as the criteria, 16 results in Table 1 are obtained. In
addition, the maximum R2 among five weak learner combinations is used
as the theoreticalminimumvalue of the IN-Votingmodel, denoted as R2_
stand. The INFO algorithm is then used to determine the weight values
matched by the five weak learners in the IN-Voting model to maximize
the prediction accuracy of 16 IN-Voting models and further improve the
robustness and credibility of the ensemble model.

The evaluation indicators for the 16 ensemble IN-Voting learning
models are shown in Figure 8. The left and right vertical coordinates in
Figure 8A are the values of R2 and R2_stand predicted by 16 ensemble
IN-Voting learning models. Figures 8B,C show the values of MSE and
MAE of the sixteen ensemble IN-Voting learning models. In
Figure 8D, the left vertical coordinate indicates the degree of
accuracy improvement (Difference value) for the sixteen IN-Voting
models based on the five weak learners, and the right vertical
coordinate is the optimization time taken by the INFO algorithm for
each IN-Voting model. The Difference value is the difference between the
R2 and R2_stand of the sixteen ensemble IN-Voting learning models. By

FIGURE 5
Analysis of input parameters (A) slope angle; (B) bedrock inclination; (C) slope height; (D) rock content.
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comparing Figure 8A with Figure 8D, the advantage of the IN-Voting
model can be more significantly represented using the Difference value.

As can be seen in Figure 8A, the R2 of all 16 groups of IN-Voting
models is higher than the R2_stand value, indicating the high feasibility and
robustness of the IN-Voting ensemble learning model. Especially in the
M10—M16 groups, the MLP models with the highest prediction
performance were included, and the R2 index values were higher than
0.9681, with the highestR2 of 0.9846 for theM16 group. In Figures 8B,C, the
MSE and MAE values of the M2 group model are the highest, which are
0.0825 and 0.0099, respectively. The MSE values of the seven prediction
models fromM10~M16 are all less than 04, with theM14 grouphaving the
lowest MSE value of 0.308. The MAE accuracy index values of these seven
groups are less than or equal to 0.002, with M16 having the lowest value of
0.0013. In Figure 8D, the prediction accuracy of 16 ensemble IN-Voting
learning models is improved to different degrees. M1 and M3 have the
greatest improvement with Difference values of 0.0884 and 0.0712,
respectively. In M10 ~ M16 with 0.9681 as the theoretical minimum of
the IN-Voting model, the Difference values are all in the range of
0.01–0.016, with M16 improving the most with the Difference value of
0.0155. Among 16 IN-Voting models, M1, M2, M3, M8, and M9 have the
shortest optimization time, and M6, M7, M15, and M16 have the longest
optimization time. Therefore, the INFO algorithm is efficient in improving
the prediction accuracy of the IN-Voting model.

Among the five evaluation indicators, R2 and model optimization
capability are the main indicators, and MSE, MAE, and optimization
time are the supplementary indicators. It can be seen from Figure 8 that

from M10 ~ M16, the model optimization times of M10 ~ M14 are
relatively less, while these models have fewer overall improvements than the
M16 group. Although the optimization time of M16 is relatively long, its R2

and optimization performance are the highest among all predictionmodels.
The five indicators in Figure 8 are known, the ensemble IN-Voting

learning model consisting of SGD, SVM, MLP, RFR, and GBDT is finally
selected as the stability prediction model for soil-rock mixture slopes.

4.3 Importance ranking of input parameters
for the stability prediction

Due to the complex mechanical properties and material properties of
soil-rock mixtures, it is necessary to rank the structural factors (rock
content, bedrock inclination, slope angle, and slope height) that affect the
stability of soil-rock mixture slopes. Based on the ensemble IN-Voting
learning model for the M16 group, this study uses the Permutation
Importance method to obtain feature importance rankings.

The main idea of the Permutation Importance method is to
randomly rearrange a column of the dataset in the trained model
for prediction. The loss function is calculated using the predicted
value and the true target value, and the difference due to random
sequencing is obtained. In this way, the influence of each feature on
the stability prediction is ranked, and the final importance ranking
of the features is obtained. The calculation can be expressed as
follows:

FIGURE 6
Correlation and statistical distribution of parameters related to soil-rock mixture slopes.
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FIGURE 7
Values Model evaluation indicators under INFO algorithm optimization (A) R2; (B) MSE; (C) MAE.

TABLE 1 Model combinations and their maximum R2 values.

Model codes Single learner R2_stand

Weak learner 1 Weak learner 2 Weak learner 3 Weak learner 4 Weak learner 5

M1 ADBT ELN HBR KNN SGD 0.8746

M2 ADBT ELN HBR KNN SVM 0.8746

M3 ELN HBR KNN SGD SVM 0.8746

M4 ELN HBR KNN SGD RFR 0.949

M5 HBR KNN SGD SVM RFR 0.949

M6 ELN HBR KNN SGD GBDT 0.9608

M7 HBR KNN SGD SVM GBDT 0.9608

M8 ELN HBR KNN SGD ETR 0.9621

M9 HBR KNN SGD SVM ETR 0.9621

M10 ELN HBR KNN SGD MLP 0.9681

M11 HBR KNN SGD SVM MLP 0.9681

M12 KNN SGD SVM MLP RFR 0.9681

M13 KNN SGD SVM MLP ETR 0.9681

M14 SGD SVM MLP RFR ETR 0.9681

M15 SVM MLP RFR ETR GBDT 0.9681

M16 SGD SVM MLP RFR GBDT 0.9681
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Ij � s − 1/K∑K

m
sm,j

(9)

where Ij denotes the importance score of randomly rearranged feature
j; s denotes the performance score of the model in the dataset; m
represents each iteration in K experiments.

Figure 9 shows the importance of four input parameters in descending
order: rock content, bedrock inclination, slope height, and slope angle,
which ordinate shows their specific values. Rock content is a structural
factor of soil-rockmixture slopes, and its influence on slope stability widely
varies (Yang et al., 2020). Therefore, for the engineering evaluation of soil-

FIGURE 8
Indicators for the 16 IN-Votingmodels (A) R2 and the distribution of maximum R2 in each combination; (B) The distribution of MSE; (C) The distribution of
MAE; (D) Difference values and optimization time.

FIGURE 9
The Permutation Importance value of input parameters.
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rock mixture slopes, the rock content can be firstly considered, followed by
the bedrock inclination.

5 Discussion

In this study, a novel modeling structure is developed by coupling
the INFO algorithm and machine learning algorithm (including the
single machine learning algorithm and ensemble learning algorithm)
to form stability prediction models for soil-rock mixture slopes. The
novel ensemble learning model developed shows the highest
prediction accuracy.

Qi and Tang, 2018 concluded that the support vectormachinemodel
based on the firefly optimization algorithm had the highest prediction
accuracy. Xue (2016) found that the least square support vector machine
model based on the particle swarm algorithm could significantly improve
the prediction accuracy. In this study, the INFO intelligent optimization
algorithm is used to finalize the hyperparameters of a single machine
learning algorithm. By comparing the prediction accuracy of the models,
it is found that MLP presents more effective in predicting non-linear and
small sample datasets. Among the novel ensemble learning models based
on the INFO algorithm, the IN-Voting model consisting of five single
machine learning algorithms (SGD, SVM, MLP, RFR, and GBDT)
exhibits higher prediction accuracy than other models. On the one
hand, the INFO intelligent optimization algorithm improves the model
prediction performance more significantly in the Voting combination of
five weak learners with low prediction accuracy. For example, the
prediction accuracy of the M1 group is higher than that of the five
weak learners. On the other hand, the INFO intelligent optimization
algorithm can also improve the prediction accuracy by about 0.01 in the
Voting combination with high prediction accuracy of the weak learner
itself. Based on the R2 values of single machine learning models and
ensemble learning models under the INFO algorithm, the ensemble
learning model has higher prediction accuracy (Pham et al., 2021).

In the new ensemble learning model, the complexity of the M16 is
higher, resulting in a longer model optimization time. Therefore, in
the stability prediction of soil-rock mixture slopes, the prediction
accuracy of the model should be maximized with reduced model
complexity. Moreover, the dual structure of soil-rock mixture slopes is
complex, in which the distribution ratio of soil and rocks has a great
influence on the prediction difficulty of slope stability (Dong et al.,
2020; Xu and Zhang, 2021; Zhao et al., 2021). Therefore, in the
prediction of slope stability, the soil content of 30%, 60%, and 90%
can be divided into four intervals to study the characteristics of
stability prediction.

6 Conclusion

In this study, two types of stability prediction models for soil-rock
mixture slopes are developed through INFO, including 12 single
machine learning models and 16 novel IN-Voting ensemble
learning models with different combinations of weak learners. The
stability coefficients of the two prediction models are examined in
detail. Based on the three evaluation indicators, the novel IN-Voting
ensemble learning model shows the best prediction performance.
Finally, the importance analysis is performed for factors affecting
slope stability, providing a new idea for stability prediction of soil-rock
mixture slopes. The conclusions of this study are as follows.

(1) Among the 12 single stability prediction models, MLP has a
highest prediction accuracy of 0.9681, which for non-linear
data of Soil-rock mixture slopes. The MLP model plays an
important role in the IN-Voting ensemble learning model.

(2) The 16 novel ensemble learning models are validated using data on
mixed earth and rock slopes that have been investigated in detail.
The results show that the R2 of each IN-Votingmodel is higher than
that of the five single weak learnermodels. In addition, theMSE and
MAE are less than 0.01. The M16 group IN-Voting ensemble
learning model has the highest prediction accuracy with R2,
MSE, and MAE of 0.9846, 0.0321, and 0.0013, respectively.

(3) The Permutation Importance method and the novel IN-
Voting ensemble learning model developed by the
M16 group are used to analyze the importance of factors
affecting the stability of soil-rock mixture slopes. The four
parameters in descending order are rock content, bedrock
inclination, slope height, and slope angle. Therefore, in the
engineering evaluation and treatment of soil-rock mixture
slopes, the influence of the rock content rate and bedrock
inclination should be emphasized.
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