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Multispectral-sensor images are advantageous in terms of discriminating major
lithologies due to their high spatial resolution and intermediate spectral
resolution, in addition to their low cost and high accessibility in comparison to
hyperspectral images. In this study, Landsat-5 Thematic Mapper™ and the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data—which are
the most widely used multispectral data for the discrimination of the mixed rock
units—are utilized to identify basalts in our study area. Further, prior knowledge
regarding basalt-distribution areas in our study region is obtained from the
geological-survey results conducted by the Sichuan Geological Survey at 2005,
which is used as the reference of correction to assess our identified results. Small
portions of this prior area of basalt distribution were verified through field checks,
which were then determined as sites for use as training data for remote-sensing
imagery. Three supervised-classification algorithms within ENVI 5.3—k-nearest
neighbors (KNN), maximum likelihood classification (MLC), and support vertical
machine (SVM)—were utilized for model identification. As a result, six models
were constructed, including the KNN prediction of basalts by ASTER images, SVM
prediction by ASTER, MLC prediction by ASTER, KNNprediction by Landsat-5 images,
SVM prediction by Landsat-5, and MLC prediction by Landsat-5. The performances
of the six models, in terms of precision and accuracy, show that the optimummodel
is Landsat-5 by SVM, with a precision of 70.92% and accuracy of 99.97%, followed by
the ASTER by SVMmodel, with a precision of 67.72% and accuracy of 99.89% and the
Landsat-5 by KNN model, with a precision of 57.23% and accuracy of 99.85%.
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1 Introduction

Generally, various rock types—with their own specific rock-forming minerals—have their
own reflectance signatures, and can thus be discriminated based on their spectral characteristics
using different spectral wavelengths of optical remote-sensing images (Kang et al., 2001;
Corumluoglu et al., 2015; Hassan and Ramadan, 2015). Satellite images have been used to map
the Earth for decades (Dou et al., 2015a; Dou et al., 2015b; Lillesand et al., 2015; Moghtaderi
et al., 2022), and multispectral sensors are widely used for lithological discrimination in areas
where rock units are exposed (Haselwimmer et al., 2010; Nair and Mathew, 2012; Arivazhagan
and Anbazhagan, 2017). In comparison to hyperspectral imagery, multispectral imagery is
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more advantageous in terms of classifying major lithologies (e.g.,
basalt, granite, and rhyolite) due to its high quality, high spatial
resolution, low cost, and high accessibility (Ge et al., 2018).
Nevertheless, hyperspectral imagery is more suitable for the finer
classifications of rocks (e.g., tholeiitic basalt, alkali basalt, etc.).

Landsat Thematic Mapper™, the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER), and Sentinel-2 are the
most widely used multispectral sensors for the discrimination of mixed
rock units. Of the three, ASTER and Sentinel-2 are regarded to be more
suitable due to their increased availability of infrared bands and better
spatial resolution than the Landsat Thematic Mapper (Gomez et al., 2005;
Perry and Kruse, 2010; Ehlers and Klonus, 2014). In this study, we use the
geological survey of the basalt distribution by the Sichuan Geological
Survey in 2005 as prior knowledge to assess the remote-sensing
identifications. Further, the Sentinel-2 sensor began collecting images
after 2015; therefore, we did not use Sentinel-2 imageries here
considering that the vegetation coverage changed significantly in the
geological-survey area from 2005 to 2015. Instead, we used ASTER and
Landsat-5 TM images collected from 2003 to 2007 and in 2004. Three
machine learning methods, including k-nearest neighbors (KNN),
maximum likelihood classification (MLC), and support vertical
machine (SVM), were compared to identify basalts based on both
ASTER and Landsat-5 data. Therefore, the prediction results of six
models, including the KNN prediction of basalts by ASTER images,
SVM prediction by ASTER, MLC prediction by ASTER, KNN
prediction by Landsat-5 images, SVM prediction by Landsat-5, and
MLC prediction by Landsat-5, were compared based on the area of
bare basalt in the geological-survey scope, to calculate the performance
metrics (precision and accuracy). The geological-survey basalt is partly
covered by vegetation that is thus hard to be identified by remote-sensing
imageries, so we just used the bare-basalt distribution of the geological-
survey, that is without vegetation coverage, to assess the identified results.
The bare-basalt distribution is extracted through land-use classification for
the geological-survey scope (bare land and vegetation).

Furthermore, the flood basalts are the signature feature of the
Emeishan Large Igneous Province (LIP) in spite that there are also
ultramafic and silicic volcanic rocks and layered mafic-ultramafic and
silicic plutonic rocks exposed (Shellnutt, 2014). There were much
substantial researches on ELIP in the past, and the reason why it is of
particular interest is that it contains numerous world-class
orthomagmatic Fe-Ti-V deposits and series of smaller economically
important Ni-Cu-(OGE) sulphide deposits but also is
contemporaneous with the Late Capitanian (~260 Ma) mass
extinction (Zhou et al., 2002; Zhang et al., 2006; Ganino and Arndt
2009). Numerous researches on ELIP in the past covered a wide scope
of geology, paleomagnetism, geochronology, geochemistry,
biostratigraphy and so on. But remote sensing technology was
seldom used in the researches on ELIP flood basalts. This paper
conducted the studies of remote-sensing identification on flood
basalts in the Panxi part of ELIP.

2 Materials and methods

2.1 Study area

The study area filled in red in Figure 1, including the three
counties of Miyi, Huili, and Ningnan, is located in the Panzhihua-
Xichang (Panxi) region, Sichuan Province, SW China, which is part

of the Emeishan LIP, and lies between the latitudes of 26°02′54″N to
27°18′33″N and longitudes of 101°59′53″E to 102°54′50″E, covering
an approximate area of 8,328 km2. The Panxi region lies in the
central-western part of the Emeishan LIP, where the flood basalts
include high-Ti and Low-Ti lavas in addition to many other
continental flood basalts (Xiao et al., 2004; Zhong et al., 2005).
Magmatic Fe-Ti oxide deposits are documented in several layered
intrusions in this region and, thus, account for a total ore reserve of
~7,209 Mt total Fe, ~559 Mt TiO2, and ~17.4 Mt V2O5 (Vapnik,
1982).

2.2 Data

2.2.1 Geological-survey basalts
The regional geological map of basalt distribution was provided by

the Sichuan Geological Survey (Figure 2). The geological map, at a
scale of 1:50,0000, was created in 2005. This map served as prior
knowledge for the flood basalt distribution in our study area and to
determine the sampling sites and to assess our identifications by
remote-sensing imageries.

2.2.2 Sampling sites
The five sampling sites of basalts (Figure 2) were initially selected

based on both the prior knowledge of the location of geological-survey
basalts in 2005 and the visual interpretation of optical remote-sensing
imagery; this was verified through field surveys in 2022. The five
sampling sites have the central locations of (27°07′59″N,
102°54′22″E), (27°07′05″N,102°54′14″E), (27°06′14″N,
102°53′20″E), (27°05′10″N, 102°53′24″E), and (27°43′59″N,
102°53′17″E). The areas of the five sampling sites on remote-
sensing imageries are utilized as the training data in our modeling
analyses.

2.2.3 Landsat-5 and ASTER imagery
Developed by NASA, Landsat-5 is a low Earth orbit satellite that

was launched on 1 March 1984, and decommissioned on 5 June 2013,
and carried multispectral scanner (MSS) and the thematic mapper
(TM) instruments. The Landsat-5 MSS supplies four bands, from .5 to
1.1 μm, with a 60-m spatial resolution; the Landsat-5 TM supplies
seven bands, with a 30-m spatial resolution (Markham et al., 1998;
Chander and Markham, 2003). In our study, we use Landsat-5 TM
imagery.

The Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) is a high spatial resolution instrument on the
Terra satellite launched by NASA in 1999, and has been collecting data
since February 2000. ASTER is a 15-m, 14-band multispectral
resolution instrument, including six shortwave infrared (SWIR)
bands, three visible and near-infrared (VNIR) bands, and five
thermal infrared (TIR) bands (Argany et al., 2018). It can be used
for land cover and change detection, calibration, validation, and land-
surface studies. +

Generally, we used images around 2005, when the geological
survey of basalt was conducted. Landsat-5 and ASTER were
utilized as comparison data here. Three Landsat-5 images in
2004 covered our study area, and eleven ASTER images—from
2003 to 2007—covered our study area. All imagery techniques
mentioned herein are described in Table 1. Both Landsat-5 and
ASTER images were obtained through the U.S. Geological Survey
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FIGURE 1
Location of the study area.

FIGURE 2
Location of geological-survey basalts in 2005 by the Sichuan Geological Survey and the sampling sites of basalts in 2022.
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Earth Resources Observation and Science Center (EROS) (http://
earthexplorer.usgs.gov). The cloud coverage of these images ranged
approximately from 2% to 8%, which is a relatively low level.

2.3 Methods

2.3.1 Land-use classification
Generally, the remote-sensing identification of lithologic units

prefers bare land, and is less efficient when detecting lithology under
dense vegetation. However, geological field surveys by geological
experts can help observe lithology under vegetation. The
geological-survey mapping of basalts in 2005 contains vegetated
subareas. Here, we used Landsat-5 data in 2004 for land-use
classification and, thus, extracted the bare-land type in our study
area (Figure 3A). Figure 3B shows a magnification of the coverage of
geological-survey basalts with land-use types.

2.3.2 Supervised-classification algorithms
2.3.2.1 KNN

The k-nearest neighbors (KNN) algorithm is a non-parametric
supervised learning method (Altman, 1992). When using KNN for
the binary classification of remote-sensing images in our study, the
output is either a basalt class or non-basalt class. In this study, an
unknown object is classified by a plurality vote of its neighbors that
are metricized in the spectral–spatial distance. Here, we calculate
the spectral–spatial distances of the unknown object with all
training samples of two categories (basalt category and non-
basalt category), and the five nearest neighbors to vote for
classification: if three or more of the five nearest neighbors are
related to basalt, then an unknown sample is classified as basalt,
and vice versa.

2.3.2.2 MLC
Maximum likelihood classification (MLC) is a supervised

classification method based on Bayes theorem, which makes use of a
discriminant function to assign a pixel to the class with the highest
likelihood (Ahmad and Quegan 2012a). The advantage of MLC as a
parametric classifier is that it takes into account the variance–covariance
within the class distributions and for normally distributed data (Ahmad
and Quegan, 2012a; Ahmad and Quegan, 2012b).

2.3.2.3 SVM
support vertical machine (SVM), as a non-parametric supervised

machine learning algorithm, is often used in binary-classification
problems (Merghadi et al., 2020). SVM is one of the most robust
prediction methods, based on the statistical learning frameworks
proposed by Vapnik (1982), Vapnik (1995). An SVM training
algorithm builds a model that assigns new examples to one
category or the other, making it a non-probabilistic binary linear
classifier. SVMmaps training examples to points in space to maximize
the width of the gap between the two categories.

2.3.3 Model evaluation metrics
To evaluate the performance of the three aforementioned

supervised-classification methods, two metrics were utilized here:
precision and accuracy. Precision refers to the correctness of basalt
identification based on the geological-survey mapping basalts as
shown in Figure 3, and accuracy is the ratio of the number of
correct predictions made to all predictions.

Precison P( ) � TP
TP + FP

(1)

Accuracy A( ) � TP + TN
TP + FP + FN + TN

(2)

TABLE 1 Descriptions of Landsat-5 and ASTER images.

Data type Data description Acquisition time

Landsat-5 Imageries LT51300412004045BKT02 2004.02.14 03:19:36

LT51300422004029BJC01 2004.01.29 03:19:36

LT51310412004004BJC00 2004.01.04 03:25:18

ASTER AST_L1T_00302242005035655_20150508102813_112444 2005.02.24 03:56:55

AST_L1T_00303072003035822_20150427134321_27841 2003.03.07 03:58:22

AST_L1T_00303072003035831_20150427134317_112024 2003.03.07 03:58:31

AST_L1T_00303072003035840_20150427134327_106647 2003.03.07 03:58:40

AST_L1T_00311092003040420_20150501223438_108363 2003.11.09 04:04:20

AST_L1T_00311092003040429_20150501223445_108567 2003.11.09 04:04:29

AST_L1T_00311092003040438_20150501223445_108561 2003.11.09 04:04:38

AST_L1T_00312152007035749_20150522093942_60394 2007.12.15 03:57:49

AST_L1T_00312242007035142_20150522114242_120399 2007.12.24 03:51:42

AST_L1T_00312242007035151_20150522114256_1171 2007.12.24 03:51:51

AST_L1T_00312242007035200_20150522114310_17801 2007.12.24 03:52:00
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where 1) FPs (false positives) mean that pixels belonging to non-
basalt were misclassified as belonging to basalt, 2) FNs (false
negatives) mean that pixels belonging to basalt were misclassified
as belonging to non-basalt, 3) TPs (true positives) mean that pixels
belonging to basalt were correctly classified as belonging to basalt,
and 4) TNs (true negatives) mean that pixels belonging to non-basalt
were correctly classified as belonging to non-basalt (Costa et al.,
2019; Zeng et al., 2022).

3 Results

We analyzed three supervised-classification algorithms and two
kinds of remote-sensing imageries, as mentioned previously, to
identify basalts using the training images. These training images

are part of the Landsat-5 imagery data located at the sampling
sites, as described in Figure 2, when identification uses Landsat-5
images; they are also part of ASTER imagery, when identification uses
ASTER images. In total, six identification methods are used: the KNN
prediction of basalts by ASTER images, SVM prediction by ASTER,
MLC prediction by ASTER, KNN prediction of basalts by Landsat-5
images, SVM prediction by Landsat-5, and MLC prediction by
Landsat-5. All identifications are carried out using ENVI 5.3.

When using MLC, the probability threshold is set at 99%. This
threshold is a probability minimum for inclusion in a class, and the
ENVI does not classify pixels with a value lower than this value. As a
binary-classification method, we tried changing the probability
threshold of MLC from 51% to 99.9%; it was found that a
threshold below 99% led to anomalous data that deviated from
prior-knowledge basalt areas.

FIGURE 3
(A) Land-use type distribution in the study area. (B) The land-use type distribution in the area of geological-survey basalts.
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The results of the six identification methods are shown in Figure 4.
Generally, the identified locations of basalts are concentrated in the
prior areas of geological-survey basalt, which indicates that the
methods of identification used (including the selections of both

remote-sensing images and algorithms) are reasonable.
Furthermore, in past research, remote-sensing images for
identifying the lithology exhibit poor performance with significant
vegetation coverage (Grebby et al., 2014). Therefore, in our study, the

FIGURE 4
Results of basalt identification by the three algorithms respectively on Landsat-5 and ASTER imageries.
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samples used for training are chosen to be bare and without vegetation
coverage; here, remote-sensing images simply identify basalts that are
exposed and cannot detect basalts under vegetation. We overlap bare
land (Figure 3) with the identified results (Figure 4), taking the area of
geological-survey basalts as prior knowledge to calculate the precision
and accuracy for the six identification methods. Figure 5A shows that

how the three ASTER identification results fall into the prior area of
basalts, and Figure 5B shows that how the three Landsat-5
identification results fall into the prior area of basalts. Assuming
that the geological-survey basalt areas are correct, the performance
metrics (including precision and accuracy) of the six identification
methods are shown in Table 1.

FIGURE 5
(A) Three identifications by ASTER falling into the scope of geological-survey basalts. (B) Three identifications by Landsat-5 falling into the scope of
geological-survey basalts.
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4 Discussion

As shown in Figure 5, most of the identified area falling into the
geological-survey scope is on bare land, except a minor portion of the
identified area from SVM by Landsat-5, which slightly overlaps with
vegetation. It is inevitable that all methods exhibit certain errors, but
the overall identification of basalts by remote-sensing images, with the
training data of bare-basalt images, is still correct for bare land.

The three algorithms of KNN, MLC, and SVM are all object-
oriented identifications; therefore, the identified basalts have many
clusters with various sizes. Generally, the identified clusters by
Landsat-5 show larger sizes than those by ASTER (Figure 4;
Figure 5), possibly because Landsat-5 has a lower spatial resolution
of 30 m for identification, than ASTER’s 15 m, which is better for our
study area with the total area of 8328 km2.

Moreover, it seems that the SVM algorithm performs most effectively
on both ASTER and Landsat-5 imageries than the other two algorithms,
because the total identified area of basalts by SVM is slightly more. KNN
performed very well on Landsat-5; MLC performed poorest on both
ASTER and Landsat-5 imageries (Figure 5 and Table 2), compared to SVM
and KNN. The SVM algorithm is essentially a two-category classifier of
deep learning and is possibly more robust than the other two algorithms of
simple machine learning. When the probability threshold of MLC is set
lower, it produces results that deviate from prior knowledge; when it is set
higher, it produces a smaller area of prediction. The error emergence of
singular solutions possibly occurs when solving the covariance matrix in
the MLC algorithm. KNN performs intermediately between SVM and
MLC, and predicts more area based on Landsat-5 than based on ASTER,
possibly only because the spatial resolution of Landsat-5 TM imagery is
30 m, in contrast to the 15-m resolution of ASTER imagery.

5 Conclusion

Although ASTER is widely used for the discrimination of mixed
rock units, Landsat-5 data has advantages in certain cases, especially
when the total area for identification is large. However, ASTER data
would be more advantageous for more detailed identification in smaller
areas. Furthermore, for machine learning algorithms for the supervised
classification within ENVI, SVMmay perform relatively more robustly.

Generally, in this study, we use both ASTER and Landsat-5 data for
discrimination of the mixed rocks by three supervised-classification
algorithms, and in the training, small-size training images are utilized.
As a result, a total of six models are constructed. The modeling results by
training small-size images are generally in accordance with the trends of
the prior area of geological-survey basalt distributions. This verifies the

capability of remote-sensing imagery for lithological discrimination and
the capability of the SVM algorithm for deep learning in supervised
classification. However, there are still issues in terms of how remote-
sensing imagery can identify rocks with high vegetation coverage. Under
the constraints of present remote-sensing technology, the only possibility
may be to develop algorithms of deep learning neural networks.

Besides, this work of the remote-sensing identification of flood basalts
in Panxi part of Emeishan LIP is significant, which will promote us to
launch a wider-scope identification across Emeishan LIP in the future.
Remote-sensing identification of flood basalts all over the Emeishan LIP
will not only help map the distribution of flood basalts, but also help
explore the world-class Fe-Ti-V deposits and Ni-Cu-(OGE) sulphide
deposits that are both closely related to flood basalt distributions.
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TABLE 2 Performance metrics of the six identification methods.

Identification way Precision (%) Accuracy (%)

Landsat-5 + KNN 57.23 99.85

Landsat-5 + MLC 39.83 99.65

Landsat-5 + SVM 70.92 99.97

ASTER + KNN 53.67 99.97

ASTER + MLC 23.03 99.91

ASTER + SVM 67.72 99.89
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