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It is a two-way interaction between algae bloomevents and nutrient cycles in aquatic
environments. In Meiliang bay of Taihu Lake, phosphorus (P) forms in the water,
sediment and pore water, and bacterial community structures in the sediment were
investigated in June 2021 (the algae bloom period) and December 2021 (the algae
collapse period). The aim of this study is to clarify the periodic variations of P
migration and transformation driven by algae bloom and collapse. Results
showed that concentrations of total P and total particulate P in the water during
the algae bloomperiod (.13–.25 mg/L) weremuch higher than those during the algae
collapse period (0–.13 mg/L), which was mainly caused by the uptake of phosphate
(PO4

3-) by algae in the surface water. Compared with the algae bloom period, there
were higher concentrations of organic P (OP), iron-bound P (FeP) and inorganic P in
the sediments during the algae collapse period. The propositions of OP and FeP in
total P in the sediments increased from 19% to 17% during the algae bloom period to
27% and 33% during the algae collapse period. These suggest the cumulative trend of
OP and FeP in the sediments during the algae collapse period, and FeP might be
formed through the processes of OPmineralization and P adsorption by iron oxides/
hydroxides in the sediments. Different routes of sediment P regeneration existed
over the two periods. During the algae bloom period, the similar vertical variations of
labile PO4

3- and labile Fe2+ in the sediments provided in situ, high-resolution
evidence for FeP reductive dissolution driven by FRBs activities. During the algae
collapse period, OPmineralization driven by organic P-solubilizing bacteria activities
and accelerated by the sulfate reduction process was confirmed by the similar
vertical variations of labile PO4

3- and labile S2- in the sediments. Therefore, treatment
approaches and management practices should consider the periodic variations of
internal P cycles in aquatic environments during the algae bloom and algae collapse
periods to avoid inefficient treatments of lake eutrophication and algae bloom.
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1 Introduction

Lake eutrophication and harmful algae blooms have developed worldwide in recent
decades, which seriously affected freshwater ecosystems, water supply securities and human
livelihoods (Gilbert, 2017; Kouakou and Poder, 2019). Phosphorus (P) is an essential nutrient
element for living organisms and is considered the limiting factor in freshwater eutrophication
(Schelske, 2009). One primary cause of lake eutrophication is excess P input, particularly the
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input of dissolved phosphate (PO4
3-) which is more available to algae

growth and reproduction (Glibert and Burford, 2017). Thus, reducing
exogenous P input has been a common management strategy for
eutrophication prevention and control (Schindler et al., 2016). When
exogenous P loadings were largely reduced, internal P release in
aquatic environments can play important roles in developing algae
blooms sequentially (Jeppesen et al., 2005; Lepori and Roberts, 2017).
It was reported that internal P accumulation and release can be
promoted by the influences associated with the algae bloom and
algae decomposition processes (Han et al., 2015). The growth and
reproduction of algae assimilates a lot of dissolved P from water and
converts it to intracellular P, which is accumulated in sediments
through the sedimentation of dead algae cells (Schelske, 2009). The
intracellular P of algae is dominant in the form of organic P, which is
potentially bioavailable and is easily decomposed by microorganisms
(Zhang et al., 2017; Yuan et al., 2020).

Beyond that, there are lots of other P forms such as inorganic P
and iron-bound P in sediments, which could also be transformed
under suitable biogeochemical conditions (Gu S. et al., 2019; Wang
et al., 2020). Iron cycle played an important role in the mobility of P in
sediments through the processes of P adsorption by iron oxides/
hydroxides and iron oxides/hydroxides reductive dissolution (Chen
et al., 2015; Gao et al., 2016). (Chen et al., 2018) indicated that algae
decomposition by microorganisms exhausted oxygen resulting in the
anoxia condition, which accelerated the reduction of iron oxides/
hydroxides in sediments. In the anoxia and reductive sediments,
sulfate reduction may be coupled with iron oxides/hydroxides
reduction, affecting sediment P regeneration (Ma et al., 2017).
Therefore, P migration and transformation in the water and
sediments isn’t only driven by algae life activities, but also
associated with iron and sulfur cycles especially in sediments.

A complete process of an algae bloom event mainly contains
two distinct periods, the algae bloom period and the algae collapse
period. Over the two periods, algae activities can also affect the
microbial communities in aquatic environments, which indirectly
affected the migration and transformation of P (Qian et al., 2011).
Zhang et al. (Zhang et al., 2021) indicated that the abundance of the
dominant bacterial communities in the sediments and overlying
water changed significantly during the degradation processes of
Cladophora oligoclora. (Fan et al., 2018) found that there were
different bacterial communities in the sediments of the
cyanobacteria-dominant zone and the macrophyte-dominated
zone of Taihu lake, which resulted in the different mechanisms
of ferric iron reduction and P availability in the sediments. In
addition, P-solubilizing bacteria can also promote sediment P
release, particularly taking part in OP degradation (Liu et al.,
2017). (Tu et al., 2022) indicated that Proteobacteria and
Actinobacteriota were the predominant phyla among
P-solubilizing bacteria during the cyanobacterial resuscitation
phase. However, there remains a lack of explanation of the
periodic variations of P forms in the sediments from the
perspective of microbial community variations during the algae
bloom period and algae collapse period.

Taihu Lake is the third largest freshwater lake in China. It is a
shallow lake with an average water depth of 1.9 m. Due to water
eutrophication, Taihu Lake has experienced large-scale cyanobacteria
blooms since the 1990s, especially occurred in the northern and
western areas (Qin et al., 2010). Since 2007, Chinese central and
local government have implemented a wide range of measures and

management practices for reducing external nutrient inputs, and thus
nearly half of external nutrient loads were reduced between 2007 and
2015 (Dai et al., 2016). Nevertheless, every year cyanobacteria bloom
still emerge in Taihu Lake up to now, which should be related to
internal releases of nutrient loads. It is of great significance to reveal
the periodic variations of internal P cycles in Taihu Lake during the
algae bloom period and algae collapse period.

In this study, Meiliang bay, a eutrophic and cyanobacteria-
dominant zone of Taihu lake, was selected to study the periodic
variations and mechanisms of P migration and transformation in
aquatic environments during the algae bloom and algae collapse
periods. P forms in the water and sediments were determined to
characterize the periodic variations of P over the two periods. The in
situ sampling techniques of diffusive gradients in thin films (DGT)
and high-resolution dialysis (HR-Peeper) were used to obtain the
information of PO4

3-, ferrous iron (Fe2+) and sulfate (S2-) in the vertical
profiles of sediments and pore water. Bacterial community structure in
the surface sediments was measured by using 16S rRNA high through
sequencing. The aims are to: 1) examine the effect of algae bloom
events on the periodic variations of P forms in the water, sediment and
pore water; 2) reveal the mechanisms of P migration and
transformation over the two periods based on the variations of P
forms and bacteria community structures. These results will facilitate
lake eutrophication management and algae bloom prevention.

2 Materials and methods

2.1 Study area and sampling

Meiliang bay is in the northern area of Taihu lake, a cyanobacteria-
dominant area. In June and December 2021, ten sites in Meiliang bay
were selected to collect water samples with the water depths of .5, 1.5,
and 2.0 m, as shown in Figure 1. At site-1 of Meiliang bay, three
parallel samples of surface sediments and sediment cores were
obtained by columnar sediment sampling. A small parts of surface
sediments in each sample were stored in a sterile centrifuge tube on-
site with dry ice for bacteria community analysis, and other sediments
were brought back to the laboratory within 12 h.

2.2 Chemical analysis methods

The pH, dissolved oxygen (DO) and water temperature were
measured by a water quality meter (Alalis PD320) on site. In the
laboratory, Chlorophyll-a (Chla) content in the water sample was
determined by using the spectrophotometry method (Editorial board
of Water and Wastewater Monitoring and Analysis Methods, 2002).
The original water sample and filtered water sample through fiber filter
membrane (pore size of .45 μm) were digested with potassium
persulfate solution at 120°C, .1 MPa, and then were used to
determine total P (TP) and total dissolved P (TDP) through
molybdenum blue method, respectively (Editorial board of Water
and Wastewater Monitoring and Analysis Methods, 2002). The
orthophosphate (PO4

3-) in the filtered water sample was also
determined by using the molybdenum blue method. For each of
the water samples, the concentration of TP minus TDP was total
particulate P (TPP), and the concentration of TDP minus PO4

3- was
dissolved organic P (DOP).
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Surface sediment samples were air-dried, ground and sieved by
screen mesh with a pore size of .15 mm. The SMT protocol (Ruban
et al., 1999) was used to measure sediment P forms, which were
divided into soil total P (S-TP), inorganic P (IP), organic P (OP), iron-
bound P (FeP) and calcium-bound P (CaP).

2.3 Application of DGT and HR-Peeper
techniques

DGT is an in situ technique for kinetic passive sampling
measurement of analytes in sediments or wet soils over the
deployment period (Davison and Zhang, 1994; Krom et al., 2002).
In this study, the concentrations of labile PO4

3-, Fe2+ and S2- in the
sediment cores were simultaneously determined using the DGT
technique at depths of -110–10 mm with a vertical resolution of
2.0 mm. The ZrO-Chelex DGT probe was applied for the
simultaneous measurements of labile PO4

3- and Fe2+, and the AgI
DGT probe was applied for the measurement of labile S2-.

HR-Peeper is an in situ sampling technique for analytes in the pore
water based on the theory of diffusion equilibrium of ion
concentration (Ding et al., 2010). HR-Peeper technique was used to
determine concentrations of dissolve PO4

3- and Fe2+ in the pore water
at depths of −135–15 mm with a vertical resolution of 4.0 mm. These
DGT and HR-Peeper probes were provided by Easysensor Co. In
China (www.easysensor.net), and the details for their preparations and

assemblies can be seen from previous studies (Xu et al., 2012; Xu et al.,
2013).

All of the DGT and HR-Peeper probes were deoxygenated
overnight with nitrogen flushing. When the sediments cores at site-
1 were delivered to the laboratory, first the HR-Peeper probe was
inserted into each of the sediment cores, after 24 h the ZrO-Chelex and
AgI DGT probes were also inserted into the same sediment core, and
at another 24 h all these probes were carefully retrieved from the
sediment core and wiped clean thoroughly using lens wiping paper
(Xu et al., 2012).

After being disassembled, the ZrO-Chelex binging gel was sliced at
a 2 mm interval using a multi-blade ceramic cutter. Each of the sliced
gel pieces was extracted using 1 mol/L HNO3 for elution of Fe2+, and
then was extracted using 1 mol/L NaOH for elution of PO4

3-. The
concentrations of the extracted PO4

3- and Fe2+ were detected using the
molybdenum blue and phenanthroline colorimetric methods, based
on which labile PO4

3- and Fe2+ concentrations in the sediment cores
can be calculated (Xu et al., 2013; Wang et al., 2017). The S2- reacted in
the AgI binding gel was measured by the computer imaging
densitometry technique, which was used to calculate labile S2-

concentrations in the sediment cores (Ding et al., 2012).
After being disassembled, about 200 μL pore water sample was

immediately sampled from each chamber of the HR-Peeper probe, and
then the concentrations of PO4

3- and Fe2+ in the pore water were
determined by using the molybdenum blue and phenanthroline
colorimetric methods (Ding et al., 2010; Xu et al., 2013), respectively.

FIGURE 1
Location of sampling sites in Meiliang bay of Taihu Lake in China.
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2.4 DNA extraction and 16S rRNA gene high
throughput sequencing

Total DNA was extracted from .5 g freeze-dried surface sediment
sample by E.Z.N.A. ® soil DNA spin kit (Omega Bio-tek, Norcross,
GA, United.States). The primers set 338F (5’-ACTCCTACGGGA
GGCAGCAG-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-
3’) were used in the PCR amplification for targetting the V3~V4
region of bacteria 16S ribosomal RNA gene. PCR product was purified
and quantified, sequencing was performed on an Illumina MiSeq
PE300 platform (Majorbio Bio-Pharm Technology Co., Ltd.,
Shanghai, China) according to the standard protocols (https://
cloud.majorbio.com/).

2.5 Calculations

The diversity of the bacteria community was investigated using the
Mothur software, which was displayed as the indices of Shannon,
Simpson, ACE, Chao, and Coverage. The heat map of the bacterial
community structure was made through the Origin software. The
Pearson correlation analysis was performed using the SPSS software.

Based on the concentrations of PO4
3- or Fe2+ in the pore water

determined by the HR-Peeper technique, the apparent diffusion flux
(Fd) of PO4

3- or Fe2+ across the interface between pore water and
overlying water (the P-O interface) was estimated using the following
equations (Fan et al., 2018). φwas the sediment porosity (Harper et al.,
1998), D0 was the diffusion coefficient of PO4

3- or Fe2+ in the water (10-
6 cm2/s) (Li and Gregory, 1974), θ was the sediment tortuosity
calculated by φ, C was the solute concentration of PO4

3- or Fe2+

measured by the HR-Peeper probe (mg/L), x is the sediment depth
(m), zC

zX
was the concentration gradient of PO4

3- or Fe2+ in the pore
water core at depths of −20–5 mm (from pore water to overlying
water).

Fd � −φ ·D0

θ2
zC

zX
(1)

θ2 � 1 − In φ2( ) (2)

3 Results

3.1 Water quality parameters in the water in
the two periods

Water quality parameters including pH, DO, temperature and
Chla in Meiliang bay in June and December 2021 are shown in
Supplementary Table S1 and Supplementary Figure S1. From June
to December, water temperature in the water of Meiliang bay
decreased from 26°C to 10°C, and DO contents increased from
6.63 mg/L to 11.25 mg/L, because the low temperature can promote
oxygen solubility in the water (Zaker, 2007). The pH values in the
water of Meiliang bay varied little between the two periods.

During the sampling period of June 2021, dense blue-green algae
were obviously observed on the surface water in Meiliang bay
(Supplementary Figure S2). In June 2021, the average content of
Chla reached 103.17 μg/L in the surface water, which decreased
rapidly as the water depth deepened. In December 2021, Chla
contents were stabilized at 22–26 μg/L in the vertical direction of
the water.

3.2 P forms in the water and sediments in the
two periods

Concentrations of P forms containing PO4
3-, DOP, TPP and TP in

the water of Meiliang bay during the two periods are shown in
Figure 2. TP and TPP concentrations in the water in June 2021
(.13–.25 mg/L) were much higher than those in December 2021
(0–.13 mg/L), while concentrations of dissolved P contained PO4

3-

and DOP were lower than those in December 2021. TPP was the
predominant P form in the water in June 2021 which occupied 74%–

FIGURE 2
Concentrations of P forms in the water in the two periods.

FIGURE 3
Concentrations of P forms in the sediments in the two periods
(* represents significant differences of P forms concentrations in June
2021 and December 2021 (ANOVA, p < .05)).
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84% of TP. Dissolved PO4
3- and DOP were the predominant P forms

in the water in December 2021. Similar to the vertical distribution of
Chla contents in June 2021, concentrations of TP and TPP in the water
in June 2021 also decreased as the water depth deepened.

Concentrations of P forms containing IP and OP, FeP, and CaP
in the sediments of Meiliang bay during the two periods were
shown in Figure 3. The temporal variations of IP, OP and FeP forms
in the sediments were different from those of TP and TPP forms in
the water. Both IP, OP and FeP concentrations in the sediments in
June 2021 (.23, .05 and .06 mg/g) were lower than those in
December 2021 (.31, .11 and .09 mg/g), while CaP
concentrations in June 2021 (.29 mg/g) was higher than that in
December 2021 (.18 mg/g).

3.3 High-resolution distribution of labile PO4
3-,

Fe2+ and S2- in the sediment cores

Concentrations of labile PO4
3-, Fe2+ and S2- in the sediment cores

at depths of 10~-104 mm were determined by DGT probes with the
vertical resolution of 2.0 mm (Figure 4). Concentrations of labile PO4

3-

, Fe2+ and S2- in the sediment cores in June 2021 were .01–.35,
.01–1.27 and 0–.06 mg/L, both of which were relatively higher than
those in December 2021 (.01–.31, .01–.25 and 0–.06 mg/L).

In June 2021, labile PO4
3-, Fe2+ and S2- in the sediment cores had

significant correlations (Supplementary Table S2) and similar vertical
distributions, presenting first increases at depths of 0~-40 mm and
then decreases at depths of −40 to −60 mm (Figure 4). In the deeper
depth of −60 to −104 mm, labile PO4

3- and Fe2+ concentrations in June
increased first and then decreased again, but labile S2- in June increased
unsteadily as the sediment depth deepened.

In December 2021, there was only a significant correlation
between labile PO4

3- and S2- in the sediment cores (Supplementary
Table S2). With the deepening of sediment depth from 0 mm to

104 mm, labile PO4
3- and S2- concentrations in December exhibited

unsteady increases, while labile Fe2+ in December increased limitedly.

3.4 High-resolution distribution of PO4
3- and

Fe2+ in the interface between overlying water
and pore water in the two periods

In the pore water and overlying water at depths of 15 to −135 mm,
PO4

3- and Fe2+ concentrations were determined by HR-Peeper probes
with a vertical resolution of 5.0 mm (Supplementary Figure S3).
Similar to labile Fe2+ in the sediment cores, Fe2+ concentrations in
the pore water in June (.20–2.03 mg/L) were also higher than that in
December (.33–1.16 mg/L). Compared with PO4

3- in the pore water in
December 2021, PO4

3- concentrations at depths of −20 to −60 mm
were higher but those at depths of −80 to −135 mmwere lower in June.
In the two periods, both PO4

3- and Fe2+ concentrations in the pore
water were higher than those in the overlying water, suggesting PO4

3-

and Fe2+ ions can spontaneously diffuse from pore water to overlying
water. The diffusion fluxes of PO4

3- and Fe2+ from pore water to
overlying water in June (.13 and .33 mg/m2·d) were relatively higher
than those in December (.08 and .17 mg/m2·d) (Supplementary
Figure S4).

3.5 Bacteria community structure of surface
sediments in the two periods

The sequence information calculated the coverage percentage,
richness estimator (Chao and ACE), and diversity index (Simpson
and Shannon) of the samples in Meiliang bay over the two periods,
which were listed in Supplementary Table S3. Based on the ACE and
Chao indices, higher bacteria community richness in the surface
sediments was found in June 2021. Furthermore, the Simpson and

FIGURE 4
Concentrations of labile PO4

3-, Fe2+ and S2- in the sediment cores in the two periods. (A-C) represent labile PO4
3-, Fe2+ and S2-, respectively.
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Shannon indices revealed that the surface sediments in June 2021 had
higher bacteria diversity than that in December 2021. There were
detected 47 phyla in June and December 2021 with the relative
abundance above .01% in the surface sediments of Meiliang bay.
Supplementary Figure S5 showed the top thirty phyla. At the phylum
level, the dominant bacterial community comprised Proteobacteria
(24.63% in June and 22.63% in December), Chloroflexi (13.28% and
12.12%), Acidobacteriota (10.53% and 16.80%), Actinobacteriota
(8.90% and 9.96%), Desulfobacterota (8.00% and 8.61%),
Bacteroidota (6.23% and 3.04%), Nitrospirota (5.93% and 6.08%)
and Nitrospinota (2.47% and 2.86%), etc.

Proteobacteria are commonly found in freshwater sediments, and
sedimentary degradation and metabolism rely mainly on the
Proteobacteria phylum (Chaudhry et al., 2012). Furthermore, most
of organic P-solubilizing bacteria are predominant in Proteobacteria
and Actinobcateriota, which primarily participate in OP
mineralization in sediments (Tu et al., 2022). The relative
abundance of Proteobacteria and Actinobcateriota in June 2021
(33.53%) was a bit higher than that in December 2021 (32.59%). In
addition, the relative abundance of Desulfobacterota was also ahead of
the top thirty ranks of phyla in Meiliang bay, suggesting the sediments
had a strong ability for sulfate reduction. The relative abundance of
Desulfobacterota in December 2021 (8.61%) was higher than that in
June 2021 (8.00%).

At the genus level, some typical iron-reducing bacteria (FRB) in
the surface sediments of Meiliang bay in the two periods, including
Anaeromyxobacter, Geothermobacter, Deferrisoma and Crenothrix
(Fan et al., 2018), were also detected in this study. The relative
abundances of these typical FRBs are shown in Figure 5. The
relative abundance of FRBs in the surface sediments in June 2021
(1.4%) was higher than that in December 2021 (.9%), suggesting the
stronger ability for iron oxides reduction in June 2021.

4 Discussion

4.1 Relationship of periodic changes in algae
bloom and water P forms

In Taihu Lake, Chla content of 20–40 μg/L had been defined as a
threshold of algae blooms, exceeding which was seen as the occurrence
of algae bloom (Xu et al., 2015). In this study, the maximum content of
Chla in the surface water of Meiliang bay in June 2021 reached
103.17 μg/L, and it decreased rapidly at the water depths of 1.5 m
and 2 m. These reflected the serious state of algae bloom in Meiliang
bay in June 2021. Furthermore, algae cells were conditioned to
concentrate on the surface water body to compete for sunlight and
oxygen (Huisman et al., 2005). Interestingly, during the sampling
period in June 2021, we observed that the concentrated algae cells
weren’t uniformly flat on the surface water, but presented a lot of
strips, as shown in Supplementary Figure S2. In December 2021, Chla
contents in the water of Meiliang bay were 22–26 μg/L, so no algae
bloom occurred in Meiliang bay during this period. Thus, June
2021 was in the algae bloom period and December 2021 was in the
algae collapse period.

The vertical distributions of TP and TPP concentrations in the
water of Meiliang bay in June 2021 were similar to Chla, both of which
showed extremely higher concentration levels in the surface water.
Whereas, in December 2021, there was little TPP in the surface water
with the limited algae biomass. A statistical study, covering data from
1992 to 2012, also indicated that annual mean TP concentrations were
significantly correlated to Chla contents in Taihu Lake (Xu et al.,
2017). In addition, it had indicated that P form composition in the
water body was greatly controlled by the distribution of suspended
sands for their strong abilities for P adsorption (Yao Q. Z. et al., 2016;
King et al., 2022). In the algae bloom period (June 2021), the elevated
TPP and TP concentrations in the water of Meiliang bay seemed to be
not contributed by sand-adsorbing P but intracellular P in the algae
cells.

Cyanobacteria is a kind of ancient bacteria with a strong ability for
P absorption (Jeppesen et al., 2005). In the processes of algae growth
and reproduction, amounts of PO4

3- are assimilated into algae cells,
deriving the transformation of dissolve P to particulate P in the water.
When PO4

3- loads in the water were not sufficient to supply algae
growth, algae cells can even utilize the products of DOP enzymolysis as
their nutritional source (Ni et al., 2022). Accordingly, dissolved PO4

3-

and DOP concentrations in the water of Meiliang bay in June
2021 were much lower than those in December 2021. Therefore,
algae appearing and subsiding in the water strongly regulated form
composition of dissolved P and particulate P in the water over the
different periods. Furthermore, it was implied that algae vertical
motion and algae horizontal banding aggregation during the algae
bloom period can make spatial heterogeneity of TPP and TP
distribution in the water.

4.2 Predominant P forms accumulated in the
sediments during the algae collapse period

In contrast to the periodic variations of TPP and TP in the water,
sediment P forms such as IP, OP and FeP concentrations in December
2021 (the algae collapse period) were higher than those in June 2021
(the algae bloom period). (Ding et al., 2018) observed a similar

FIGURE 5
Genus-level classification of typical iron-reducing bacteria in the
surface sediments in the two periods.
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phenomenon that sediment TP concentrations during the algae
collapse period were relatively higher than those during the algae
bloom period in Taihu Lake. Thus, during the algae collapse period,
the accumulated P forms in the sediments were dominant in OP and
FeP, as well as IP since most FeP was included in the IP (Tu et al.,
2022).

From the algae bloom period to the algae collapse period, sediment
OP accumulation occurred first due to the deposition of dead algae
cells accompanied by the migration of algae intracellular P from water
to sediments (Kristensen, 1994; Zhang et al., 2021). These biogenic
sediments were abundant in organic matter, resulting in the initial OP
accumulation in the sediments. It can be verified by the periodic
variation of OP proportion in the sediment P of Meiliang bay, which
rose from 19% in June 2021 to 27% in December 2021 (Figure 6).

After that sediments have undergone the processes of OP
mineralization and FeP formation during the algae collapse period.
The proportion of FeP in the sediment P of Meiliang bay in December
2021 (33%) was about 2 times to that in June 2021 (17%) (Figure 6).
The increase of FeP proportion in the sediments in December
2021 was unlikely to directly source from the deposition of algae
intracellular P, because algae intracellular P was dominant in the form
of OP (Kristensen, 1994; Zhang et al., 2021). The increase of FeP
proportion in the sediment in December 2021 might be formed
through the dissolved PO4

3- adsorption by iron oxides/hydroxides.
There were large abundances of Proteobacteria and Actinobcateriota
in the sediments of Meiliang bay (Supplementary Figure S5), which
contained many kinds of organic P-solubilizing bacteria.
Proteobacteria and Actinobcateriota in the sediments would
accelerate the conversion of OP into soluble inorganic P (Tu et al.,
2022). Then, the released soluble inorganic can be adsorbed onto iron
oxides/hydroxides in the sediments (Wang et al., 2019), thus FeP was
formed and accumulated in the sediments during the algae collapse
period.

4.3 Sediment P regeneration patterns in the
algae bloom and collapse periods

Besides sediment P accumulation in December 2021, sediment P
release also occurred inMeiliang bay for the positive diffusion fluxes of
PO4

3- from pore water to overlying water. However, the diffusion flux
of PO4

3- in December 2021 was lower than that in June 2021
(Supplementary Figure S4), suggesting sediment P release was
relatively weaker during the algae collapse period than that during
the algae bloom period. Both OP mineralization and iron redox
cycling are recognized as the main factors controlling P
regeneration in the sediments (Ni et al., 2022; Xiao et al., 2022). In
the surface sediments of Meiliang bay over the two periods,
Proteobacteria and Actinobcateriota occupied above 30% of
bacterial community composition, which played important roles in
sediment degradation and metabolism, as well as OP mineralization.
FeP in the sediments was easily reduced under anaerobic-reductive
conditions or by FRBs activities, resulting in the co-release of Fe2+ and
PO4

3- (Fan et al., 2018). Due to the occurrence of FeP reductive
dissolution in the sediments, significant correlations between PO4

3-

and Fe2+ were often observed in the sediments and pore water of lakes,
rivers and oceans (Yao Y. et al., 2016; Sun et al., 2016; Sun et al., 2017;
Pan et al., 2019).

During the algae collapse period (December 2021), labile PO4
3-

concentrations were not correlated with labile Fe2+ but correlated
with labile S2- in the sediment cores of Meiliang bay
(Supplementary Table S2), and the vertical distribution of PO4

3-

was also different from Fe2+ in the pore water (Supplementary
Figure S3). Thus, FeP reductive dissolution wasn’t the main cause of
sediment P regeneration in Meiliang bay during the algae collapse
period. OP mineralization driven by organic P-solubilizing bacteria
activities (Proteobacteria and Actinobcateriota) should
predominate sediment P regeneration during the algae collapse
period. In addition, concentrations of labile PO4

3- and labile S2- in
the sediment cores of Meiliang bay in December 2021 were
significantly correlated (Supplementary Table S2), both of which
unsteadily increased as the sediment depth deepened (Figure 4).
The previous study indicated that rich organic matter (OM) can
fuel sulfate reduction under anaerobic sediment conditions (Ma
et al., 2017). Usually, active sulfate reduction fueled by OM prevails
in the deep sediment zones where oxygen has been depleted
(Burdige, 2006). Desulfobacterota works for sulfate reduction in
sediments (Fan et al., 2018). The relative abundance of
Desulfobacterota in the sediments of Meiliang bay in December
2021 (8.61%) was higher than that in June 2021 (8.00%). Thus, it
was inferred that sulfate reduction accompanied by OM
degradation might also accelerate the conversion of OP into
soluble inorganic P in the sediments during the algae collapse
period. Overall, during the algae collapse period, sediment P
regeneration in Meiliang bay was mainly attributed to the OP
mineralization process driven by organic P-solubilizing bacteria
activities and accelerated by the sulfate reduction process.

During the algae bloom period (June 2021), the larger diffusion
flux of PO4

3- from pore water to overlying water, as well as the larger
Fe2+ diffusion flux, can be attributed to FeP reductive dissolution in the
sediments. It can be confirmed by the significant correlation between
labile PO4

3- and labile Fe2+ in the sediments and their similar vertical
distributions in June 2021 (Supplementary Table S2; Figure 4). The
active area of FeP reductive dissolution in the sediments of Meiliang

FIGURE 6
Proportions of P forms in the sediments in the two periods.
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bay in June 2021 was concentrated at the sediment depths ranging
from −15 mm to −90 mm. Generally, either the reducing environment
conditions can drive chemical iron reduction (CIR), or microbe-
mediated activities can drive microbial iron reduction (MIR) (Ma
et al., 2017). The previous studies indicated that the high electrical
conductivity above 300 mV in the upper 35 mm surface sediment layer
in Taihu Lake may exclude the CIR process (Christophoridis and
Fytianos, 2006; Ding et al., 2018). We observed that the relative
abundance of typical FRBs in the sediments of Meiliang bay in
June 2021 was higher than that in December 2021 (Figure 5),
reflecting the stronger FeP reductive dissolution through MIR
during the algae bloom period. Moreover, the promotion of FeP
reductive dissolution by FRBs activities may lead to the relatively
lower concentrations of FeP and OP in the sediment in June 2021
(Figure 3). In addition, the release and diffusion of PO4

3- through
sediment FeP reductive dissolution may also trigger the appearance of
algae bloom due to energy saving (Ding et al., 2018). Therefore,
although PO4

3- in the surface water was lower in June 2021
(Figure 2), it should be believed that large PO4

3- diffused from pore
water to overlying water can be quickly absorbed by algae again in
terms of high PO4

3- in the pore water and high TPP in the surface

water during the algae bloom period (Figure 2; Supplementary
Figure S4).

4.4 Environment implication

Cutting off loads of exogenous P input and internal P release to
eliminate algae bloom events in the eutrophic lakes have been expected
(Glibert and Burford, 2017), but there have been greatly
underestimated the self-living cycles of P in aquatic environments
driven by the processes of algae bloom and algae collapse. This study
obtained direct evidence to illustrate the periodic variations of P
migration and transformation in Meiliang bay of Taihu Lake, the
eutrophic and cyanobacteria-dominant area, which was shown in
Figure 7.

During the algae bloom period, the main route of P migration
was from sediment P to water P: abundant PO4

3- released from
sediments by FeP reductive dissolution were migrated upward and
then transported into algae cells by algae uptake of PO4

3-, being TPP
form in the surface water. Whereas, P migration from water to
sediment was dominant in the algae collapse period, during which

FIGURE 7
The periodic variations of internal P cycles during the algae bloom and algae collapse periods. FRBs represent typical kinds of iron-reducing bacteria,
PSBs represent organic P-solubilizing bacteria.

Frontiers in Earth Science frontiersin.org08

Han et al. 10.3389/feart.2022.1097679

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1097679


sediment P was mainly accumulated in the forms of OP and FeP. In
the algae collapse period, the early formed TPP due to algae bloom
settled in the sediments resulting in OP accumulation at first, and
then sediment FeP was formed and accumulated through the
processes of OP mineralization and P adsorption of iron oxides/
hydroxides. Furthermore, the PO4

3- existed in the pore water and
PO4

3- released from pore water to overlying water in Meiliang bay
were based on the different sediment P regeneration routes in the
two periods. During the algae bloom period, FeP reductive
dissolution driven by FRBs activities was the main factor
responsible for the dissolution and release of PO4

3- in the
sediments. Sediment P regeneration during the algae collapse
period was mainly attributed to the OP mineralization process
driven by organic P-solubilizing bacteria activities and accelerated
by the sulfate reduction process.

A lack of understanding of the periodic variations of P
migration and transformation patterns in aquatic environments
with frequent algae bloom events can lead to inefficient treatments
of lake eutrophication and algae bloom. For instance, the
flocculation of algae cells using modified local soils, sands or bio
modified activated carbon can rapidly make cyanobacteria or
Microcystis cells disappear during the algae bloom period (Shi
et al., 2016; Wang et al., 2016), but they just accomplish
sediment P accumulation several months ahead of the algae
collapse period, and they cannot prevent the development of the
next algae bloom because of sediment P regeneration. Accordingly,
it is best to implement capping and stabilization of treatments
for sediment P (Douglas et al., 2016; Gu B.-W. et al., 2019) after
the algae collapse period and before the next algae bloom
period. Therefore, for eutrophic lakes, treatment approaches
and management practices require special consideration about
how to break the self-living cycles of P in aquatic environments
driven by algae bloom and algae collapse processes.

5 Conclusion

This study obtained direct evidence to illustrate the periodic
variations of P migration and transformation patterns in the
Meiliang bay of Taihu Lake during the algae bloom and algae
collapse periods. Due to the uptake of PO4

3- by algae, high
concentrations of TPP and TP in the surface water were
characterized during the algae bloom period. Furthermore, the
sediment layer had higher internal P diffusion fluxes during the
algae bloom period than those during the algae collapse period.
These were mainly attributed to the occurrence of FeP reductive
dissolution by FRBs activities, resulting in the relatively low
concentrations and proportions of FeP in the sediments during the
algae bloom period.

During the algae collapse period, the relatively high
concentrations of OP and FeP in the surface sediments were
observed, suggesting the dominant migration route of P from
water to sediments. Moreover, FeP was formed and accumulated
in the sediments through the processes of OP mineralization and P
adsorption of iron oxides/hydroxides during the algae collapse
period. Sediment P was still being released during the algae

collapse period, which was caused by the OP mineralization
process driven by organic P-solubilizing bacteria activities and
accelerated by the sulfate reduction process. The different
patterns of P migration and transformation in aquatic
environments during the algae bloom and algae collapse
periods were expected to provide theoretical support for the
prevention and control of lake water eutrophication and algae
bloom events.
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