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Image recording and analysis is an important but time-consuming method for

understanding the rock mechanics mechanism. In this paper, a method for

automatic batch identification of rock deformation areas is proposed. We crop

the original image to remove irrelevant background. And we use adaptive

threshold segmentation, region growth segmentation and global threshold

segmentation and combine the characteristics of the image to identify the

rock deformation area. Finally, we use image morphology processing to make

the recognition result more accurate. For validation, 359 images of the rock

samples of the uniaxial compression test were quickly identified. The

identification time was approximately 5′56.83′. The average relative error of

the method in the X and Y directions is 10.88% and 8.60%, respectively. In

addition, using the identification results and the stress-strain curve, it was found

that the water content and initial crack length of rock increase, and the

compressive strength decreases; the effect of the initial fracture inclination

on the compressive strength of the rock is not obvious.
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1 Introduction

The geological environment along the Sichuan Tibet Railway is complex and the rock

mass structure is changeable. The rock engineering performance in some areas is poor,

which is easy to induce natural disasters. To understand the rock failure mechanism

affected by forces, some research based on computer technology has recently been carried

out (Eshiet et al., 2018; Kou et al., 2019; Shou et al., 2020; Wang et al., 2020; Zhang et al.,

2020). A color-based identification method for rock–soil interfaces and dissolution

fissures provides a reference method for engineering applications to identify the rock

structure of boreholes (Li et al., 2019). Liang and Zou proposed an improved

semisupervised SVM-FCM algorithm method (CSVM-FCM) based on chaos to

segment rock images (Liang and Zou, 2020). Purswani et al. compared the

effectiveness of different image segmentation techniques in the analysis of porous
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media image data (Purswani et al., 2020). Sun et al. (2019) used a

clustering superpixel segmentation algorithm combining color,

spatial location, and texture to identify and separate waste rock

and raw coal. Ge et al. (2019) determined the shear failure area of

rock joints based on point cloud and image segmentation. Li and

Zhang (2019) proposed a fracture segmentation method based on

contour evolution and gradient direction consistency to accurately

segment the fracture network in coal and rock CT image sequences.

Lin et al. (2018) took the calculated porosity of the core image as a

constraint to obtain the optimal threshold and calculated the

segmented image more reasonably according to the actual

porosity of each image. Chauhan et al. (2016) evaluated the

performance and accuracy of machine learning technology to

segment the rock particles, matrix and pore volume from the

three-dimensional volume of the grayscale rock image of X-ray

tomography. Obara (2007) proposed a new algorithm for rock

particle segmentation using image color system transformation.

Wang (2006) showed that the algorithm involving image

classification and the depiction of debris based on the edge of

the valley is an efficient method for depicting dense rock fragments.

Furthermore, for some complex rock failure scenes, a single

image segmentation method is no longer suitable. Therefore,

image segmentation by method superimposition and

improvement as well as image multi-information combining

processing was performed. Elaziz and Lu (2019) proposed a

multitarget image segmentation method, which segmented

images into different groups by finding the optimal threshold.

Shi et al. (2016) proposed a new lung segmentationmethod based

on multistrategy fusion to accurately segment lung regions from

CT slices. Zhang and Zhang (2020) proposed a CNN-to-FCN

method to perform semantic segmentation on crack pixels in

high-resolution images. Tavakkoli Piralilou et al. (2019), Xie et al.

(2021) combined object-based images with multiple machine

learning methods to conduct research.

In short, the research of scholars has greatly promoted the

progress of image segmentation methods and the cross-fusion of

image segmentation methods with lithosphere (Li et al., 2022b).

However, these methods are usually used to segment a single

image and are not suitable for many images. As is known, every

rock failure test is in terms of many images, and it is very time-

consuming if we only use the methods above, one picture by one

picture (Clarke and Vannucchi, 2020; Passchier et al., 2021).

Therefore, we propose a method for automatically identifying

rock failure areas in batches. This method is based on the Python

and OpenCV open-source library and combined with a variety of

image segmentation methods to identify rock failure areas. The

highlight of this method is that it can realize automatic batch

identification of rock failure areas while saving manpower,

material resources and time in the research process. We refine

this method and use improved adaptive threshold segmentation,

regional growth segmentation and global threshold segmentation

methods to identify rock samples in the uniaxial compression failure

process in a certain area along the Sichuan Tibet Railway.

We calculated the batch recognition time and the relative

error of partial recognition images. The data show that this

method can automatically identify many rock fractures while

keeping the recognition accuracy and recognition time within a

controllable range. Additionally, based on the image recognition

results and the stress–strain curve of the rock under uniaxial

compression, we can effectively analyze the variability factors

that affect the compressive strength of the rock.

2 Materials and proposed method

The overall flowchart of this study is shown in Figure 1. First,

we select an area for sampling. After grinding into standard

specimens, uniaxial compression test is carried out. See Section

2.1.1 for the preparation process of rock specimens. During the

test, the monitoring system and data processing system are used

to collect the deformation process images and stress-strain curves

of rock specimens. See Section 2.1.2 for the test process.

2.1 Uniaxial compression test

2.1.1 Rock sample preparation
The original rock was processed into a standard test specimen

with a diameter and height of 50 mm × 100 mm. A high-speed

electric cutting machine was used to perform prefracture treatment

(Figure 1: Rock sample and fissure geometry) for the subsequent

uniaxial compression test. The initial crack lengths were 0 mm,

5 mm, 10 mm, 15 mm, and 25 mm, and the crack inclination angles

were 0°, 30°, 45°, and 60°. The crack opening was 1 mm.We divided

the rock samples into three states according to their different water

contents, and the water content of the rock sample in the normal

state was 0.91%. Part of the rock sample was dried using a 101-A

blast electric heating constant temperature drying box to achieve 0%

water content. Part of the rock sample was soaked until the water

content of the rock samples reached a saturated state of 5.06%

(Figure 2A) (Wen et al., 2013; Zhou et al., 2018).

2.1.2 Uniaxial compression process and data
storage

The equipment required for the test and the rock sample

compression process are shown in Figure 2. An

MTS815 electrohydraulic servo universal testing machine was

used to conduct a 200 N uniaxial compression test on the rock

samples. The main parameters of the equipment are as shown in

Table 1. During the test, a high-speed camera (1280*1024 resolution,

FPS: 2,000 frames per second) was used to record the entire rock

sample compression process (Figure 2C). To monitor the transverse

deformation and longitudinal deformation of the specimen under

compression, a YJZ-16 strain gauge is used for our test (Figure 2B).

The specific indexes of the YZ-16 intelligent digital strain gauge are

as shown in Table 2.
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We divide the saved image data into four groups: A, B, C and

D. A indicates that the rock sample is dry; B indicates that the

moisture content of rock sample is normal; C indicates that the

moisture content of rock sample is saturated; D indicates that the

moisture content of rock sample is between natural and

saturated. Image data has a special naming method, such as

A-0–0. The first parameter indicates the different moisture

contents of the rock samples. The second parameter indicates

the length of the prefracture of the rock sample. The third

parameter represents the angle between the prefracture of the

rock sample and the parallel line.

2.2 Proposed method

We proposed a method for automatic batch identification of

deformed regions of laboratory rock samples based on the Python

and OpenCV open-source libraries. The main process is shown in

Figure 3.

2.2.1 Image preprocessing
The image data saved in experiments always have chaotic

naming, and the images also contain some irrelevant background

areas, which causes confusion in information and reduces the image

batch processing efficiency. We need to name all images

sequentially, crop the original images and reserve the area to be

processed.

2.2.2 Image batch recognition
The information presented by a large number of image samples

is more complex, and it is difficult for a single method to identify all

the images.We need to use a variety of image segmentationmethods

to recognize many images. Image segmentation methods based on

threshold (Yen et al., 1995), edge (Khan et al., 2011), region (Zhang,

FIGURE 1
Overall flow chart of the study.
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2018) and clustering (Levinshtein et al., 2009; Achanta et al., 2012)

are mostly simple and effective and can be used to obtain key image

feature information and improve image analysis efficiency. We

chose the above four types of image segmentation methods to

identify the different types of damaged areas of a small number

of rocks to find a suitable segmentation method for the

damaged area.

After completing image segmentation methods selection,

we usually need to improve the different methods, such as

combining the region growth segmentation method with

image brightness and combining the adaptive threshold

segmentation method with image contrast. Then, we

merge the various improved methods to make the

different methods run continuously without interfering

with each other to realize the automatic batch recognition

of rock failure images.

2.2.3 Batch optimization of recognition results
The initial batch recognition images usually contain

considerable noise and present the characteristics of not being

connected to other areas (Yang et al., 2019), so we should remove

FIGURE 2
Uniaxial compression test equipment and rock sample compression process diagram; (A) The different moisture contents of the rock samples;
(B) Testing machine; (C) Sensors and high-speed camera; (D) Testing process.

TABLE 1 Parameters of MTS815 test machine.

Loading system (KN) Equipment stiffness (N/m) Loading height (mm)

0–1700 10.5*109 200

TABLE 2 The specific indexes of YZ-16.

Accuracy Range Acquisition rate

± 0.1% of measured value Bidirectional ± 19999 με 1.2 s/point

Unidirectional ± 32000 με
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the noise. Additionally, if there is considerable noise near and

connecting the target boundary in the initial recognition result

images, we need to perform image morphological operations to

eliminate the influence of the noise.

3 Application and results of practical
examples

3.1 Specific application of batch
identification of rock failure areas

The detailed flow of batch identification of rock damage area,

the method code and the segmentation method selection are

determined as follows:

1) A total of 359 images were saved in the experiment, and the

three groups of A, B, and C had the same number of

104 images. There are 47 images in Group D. We need to

rename the image.

2) As shown in Figure 4, the recognition of irrelevant

backgrounds increases the difficulty of batching and makes

data processing more complicated (Li et al., 2022a; Li et al.,

2022). Therefore, we cropped the 359 original batch images

using the feature of small changes in the physical coordinates

of the rock sample recognition areas. The code must be

guaranteed to run continuously.

3) The methods selection process of batch identification of the rock

damage area is shown in Figure 5. In the image segmentation

method based on threshold, edge, region and clustering, we

chose different small methods to identify the images numbered

103 and 278 to select the appropriate method for the batch

process. The results are shown in Figures 6A,B

4) Comparison selection and improvement of methods: As

shown in Table 3, in the threshold-based image

segmentation method, adaptive threshold segmentation is

suitable for identifying areas with long fractures in rock

samples during uniaxial compression, while the various

failure areas of the global threshold segmentation identified

rock samples are less intersected, so the required parts can be

extracted separately. The adaptive threshold segmentation

equation is shown in Eq. 1 and the global threshold

segmentation equation is shown in Eq. 2. In the region-

based image segmentation method, region growth

segmentation is suitable for identifying large-area damaged

FIGURE 3
Method flowchart.

FIGURE 4
Picture overall characteristics.

FIGURE 5
Flowchart of methods selection.
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FIGURE 6
The results of image recognition methods; (A) No.103; (B) No.278.

TABLE 3 Comprehensive comparison of image segmentation methods.

Category Method of segmentation Image number/destruction category
(103- large area
failure, 278- narrow
crack)

The effect of recognition

Image segmentation method based on thresholds Global threshold segmentation 103 Need to improve

278 Under-segmentation

Adaptive threshold segmentation 103 Under-segmentation

278 Need to improve

OTSU’S 103 Over-segmentation

278 Over-segmentation

Image segmentation method based on edges sobel 103 More noise

278 More noise

scharr 103 More noise

278 More noise

Laplacian 103 More noise

278 More noise

canny 103 Under-segmentation

278 Under-segmentation

Image segmentation method based on regions Region growing segmentation 103 Need to improve

278 Over-segmentation

Image segmentation method based on clusters SLIC 103 Under-segmentation

278 Under-segmentation

Frontiers in Earth Science frontiersin.org06

Yuan et al. 10.3389/feart.2022.1093764

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1093764


regions during uniaxial compression (Grompone von Gioi

et al., 2012). Adaptive threshold segmentation is combined

with image contrast to identify long cracks. The region

growth segmentation is combined with the image

brightness, and then the global threshold segmentation

results are superimposed to identify the regions with both

long cracks and large areas of damage to reach the final

recognition result. The equation of image brightness change is

shown in Eq. 3 and the equation of image contrast change is

shown in Eq. 4.

g x, y( ) � 1, f x, y( )>T
0, f x, y( )≤T

{ (1)

Where f(x, y) is the pixel value of point (x, y), g(x, y) is the
segmented image, and T is the global threshold. In this study,

T � 182 for segmentation is adopted.

dst x, y( ) � maxValue, if scr x, y( )>T x, y( )
0, otherwise

{ (2)

The threshold value T(x, y) is a mean of the blockSize ×

blockSize neighborhood of (x, y)minus C. Where C is a constant.

In this study, C = 25 is used for segmentation.

Average � 0.299*R( ) + 0.587*G( ) + 0.114*B( )
0ut � Average + In − Average( )* 1 − p( ){ (3)

Where In is the original pixel brightness, Average represents the

average brightness of the image, 0ut represents the adjusted

brightness, and p is the adjustment range. The value range of p is

(0 1). In this study p � 0.43.

C � ∑
δ
δ i, j( )2Pδ i, j( )

O r, c( ) � a*I r, c( ), 0≤ r<H, 0≤ c<W( ){ (4)

Where C is the image contrast, δ(i, j) � |i − j| is the grayscale

difference between adjacent pixels; Pδ(i, j) is the pixel

distribution probability of the grayscale difference between

adjacent pixels being δ. a is a constant. I(r, c) is the input

image, W is the width, H is the height, and O(r, c) is the

output image. In this study a � 1.36.

5) There are burrs and small-area connected domains in the

binary graph. Therefore, we used the median filtering method

to achieve the removal of small-area connected domains

(Lindsay et al., 2019). The adjacent pixels in the image are

arranged according to size, and the value in the middle of the

sorted pixel is set as the pixel value after median filtering. The

sharpness of the image can be adjusted by changing the k-size.

When the k-size is 3, the best denoising effect can be achieved

(Sheela and Suganthi, 2020; Li et al., 2022b). After the

denoising operation, we used the morphological closing

operation to remove burrs to make the result more perfect.

The black holes in the image are removed by the first

expansion operation, and the erosion operation does not

change the deformation area (Jung et al., 2017). The choice

of different structural elements leads to different degrees of

segmentation (Figure 7). In this study, 3 × 3 structural

elements for segmentation are adopted. The closing

operation formula is as follows:

X · S � X ⊕ S( )ΘS (5)

Where S is the structural element. X is the image.X ⊕ S is to use S

to expand the X image collection. (X ⊕ S)ΘS is the process of

X ⊕ S corroding S.

We identified the main rock batch identification process, but

the continuity of the process is also essential.

We first perform batch preprocessing on the 359 images

read. It includes sequential renaming (1–359), cropping,

contrast change and brightness change. In the second step,

we use the adaptive threshold segmentation method to

FIGURE 7
Image post-processing.
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segment the 359 images with changed contrast and output the

identification results of narrow fissures. Additionally, we use

global threshold segmentation and region growing

segmentation to segment 359 images with changed

brightness and output the recognition results of severely

damaged regions. After the two recognition results are

superimposed, 359 recognition result maps are obtained.

Finally, we perform batch denoising and morphological

processing on the recognition result map to reduce the

recognition error.

3.2 Results

Some of the results of the batch identification of the rock

failure areas are shown in Figure 8. We used a HaSee Ares TXi-

CUA laptop to run the code, and we identified the damaged area

of 359 images. We ran the code three times and took the average.

The time was approximately 5′56.83′ (Figure 9).

Because of the identified contours are usually overestimated

or underestimate compared to the real contours, we describe an

error assessment method is as shown in Figure 10.

FIGURE 8
Partial recognition results; (A) Group A; (B) Group B; (C) Group C; (D) Group D.

FIGURE 9
Recognition time chart.

Frontiers in Earth Science frontiersin.org08

Yuan et al. 10.3389/feart.2022.1093764

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1093764


We hand-animated a total of 86 actual failure diagrams of

rock samples in different initial states and compared them with

the contours recognized by the automatic batch recognition

method to obtain a comparison effect figure of the failure

contour area (Figure 11). We imported the contour

comparison figure into CAD and used CAD to draw the point

coordinates of different contours. The contour coordinate points

on the figure were selected to calculate the errors, following the

principle of the same X coordinate and different Y coordinate (or

different X coordinate and the same Y coordinate). The relative

error calculation formula is as follows:

Ri
error � Ri

seg − Ri
gt

∣∣∣∣∣ ∣∣∣∣∣/Ri
gt × 100%

�Rerror � ∑N

0
Ri
gt/N

⎧⎪⎪⎨⎪⎪⎩ (6)

Where Ri
error, R

i
seg, R

i
gt, and �Rerror are the segmentation error of

the i-th sample points, the segmentation value of the i-th sample

points, the true value of the i-th sample points, and the average

segmentation error of all sample points, respectively.

Table 4 shows the identification errors of rock sample failure

areas in different initial states. The relative error value in the

X-direction is 10.88%, and the relative error value in the

Y-direction is 8.60%. The calculation results show that this

automatic batch recognition method is effective.

4 Discussion

4.1 Comparative analysis of recognition
accuracy and recognition time

The traditional recognition methods described in this paper

use a single image segmentation method to recognize rock

deformation images one by one. We analyze Figures 6A,B: if

we use a single method to identify all the images, it will be difficult

for us to obtain high-precision recognition results. In other

words, the accuracy of traditional recognition methods is far

lower than that of the recognitionmethod proposed in this paper.

Traditionally, to identify rock sample failure images, each

image needs to be processed separately. Importing, identifying

and saving the results of a single image requires a certain amount

of time. We analyze Figure 9: whether the traditional method

processed the six images of Group A or Group B or the mixed

images of Groups C and D, the average processing time of one

image was approximately 1 min. The automatic batch

identification method proposed in this paper did not identify

any results within a minute of starting to run. This is because we

first needed to preprocess 359 images. However, when the

preprocessing of the image was completed, Figure 9 shows

that compared with the traditional recognition method, the

method proposed in this study greatly improves the

recognition speed in the subsequent stages.

Further analysis of Figure 9 show that the method proposed

in this paper has the fastest recognition speed within 60–120 s.

However, the recognition speed continues to decrease in each

subsequent time period. This is because during the recognition

process, the computer heats up, which causes the processing

performance to drop. If we improve computer performance or

reduce computer heating problems, the processing time will be

further reduced.

4.2 Variable factor analysis

As shown in Figure 1 and the previous description, the A, B

indicates the different moisture contents of the rock samples. The

a indicates the length of the prefracture of the rock sample. The b

represents the angle between the prefracture of the rock sample

and the parallel line.

As shown in Figure 12, we combined the images and

compared the two groups of test curves A-5-0 and B-5-

0 simultaneously. It can be seen that the stress-strain curves

of the samples under different moisture contents have good

similarity, and their mechanical properties and deformation

characteristics have the same change trend with the moisture

FIGURE 10
Error assessment method.
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content; the moisture content of the samples increased, the

compressive strength decreased, and the peak strain decreased.

When the moisture content of the sample increases from 0% to

0.91%, the compressive strength of rock sample decreases from

55.33Mpa to 45.20Mpa, and the compressive strength decreases

by about 18.31%.

Combining the recognition result images and comparing the

two sets of test curves A-5-0 and A-5-45 simultaneously, we can

see that when the sample contains water and the crack length is

constant, the prefabricated crack inclination has no obvious

influence on its compressive strength. The overall change

trend is similar. When the prefabricated crack inclination

increases from 0° to 45°, the compressive strength of rock

sample increases from 55.33Mpa to 58.64Mpa, with an

increase of 5.98%.

Combining the recognition result images and comparing the

two sets of test curves A-5-45 and A-25-45, we can see that the

variation trend of mechanical properties and deformation

characteristics of the sample with the crack length is the same.

With the increase in the prefabricated crack length of the sample,

the compressive strength of the sample decreases gradually.

When the prefabricated crack length of the samples increases

from 5 to 25 mm, the compressive strength of the rock sample

decreases from 58.64Mpa to 30.06 Mpa, and the compressive

strength decreases by 48.74%.

4.3 Analysis of mechanical properties of
rock samples under different conditions

According to the uniaxial compression test data measured

under different moisture contents and different initial crack

lengths, the peak stress intensity and peak strain of rock

samples can be obtained. By fitting the data with a function

relationship, it can be found that the compressive strength of

FIGURE 11
Contour comparison and error analysis diagram (partial); (A) Group A; (B) Group B; (C) Group C; (D) Group D.

TABLE 4 Relative error analysis table.

Groups Relative error

X-direction/% Y-direction/%

A 10.09 7.38

B 12.03 8.96

C 11.16 10.06

D 6.53 5.06

Average value 10.88 8.60
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rock samples has a negative linear function relationship with

water content and fracture length and a positive exponential

function relationship with the rock sample fracture dip angle

(Figure 13).

As shown in Eq. 7, Based on the fitting curve results, the

functional expression between the compressive strength of rock

samples and the variability factors can be obtained.

σc1 � σc01 − cw
σc2 � σc02 − cl
σc3 � e b+cθ2( )

⎧⎪⎨⎪⎩ (7)

where σc1 is the compressive strength of rock samples with cracks

under different moisture contents, σc01 is the compressive

strength of rock sample in dry state, b and c are fitting

parameters, W is the moisture content of rock sample, σc2 is

the compressive strength of rock samples with different crack

lengths under saturated state, σc02 is the compressive strength of

rock sample when the crack length is 0; l is the prefabricated

crack length of rock sample, σc3 is the compressive strength of

rock samples with different fracture angles under saturated state;

θ is the prefabricated crack inclination.

FIGURE 12
Variability factor analysis chart.
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Analyzing the ABC-5-60 curve in Figure 13A, when the

moisture content of the sample increases from 0% to 0.91%,

the compressive strength of the rock sample decreases from

62.04 MPa to 47.54 When the moisture content of the sample

increases from 0.91% to 5.06%, the compressive strength of the

rock sample decreases from 47.54 to 31.35 MPa, and the

compressive strength decreases by approximately 49.47%.

Analyzing the C-X-0 curve in Figure 13B, when the

prefabricated crack length of the samples increases from 5 to

15 mm, the compressive strength of the rock sample decreases

from 29.75 When the prefabricated crack length of the samples

increases from 15 to 25 mm, the compressive strength of the rock

sample decreases from 16.98 to 8.19 MPa, and the compressive

strength decreases by 73.96%.

The C-15-X curve in Figure 13C shows that when the

prefabricated crack inclination increases from 0° to 30°, the

compressive strength of the rock sample increases from

16.98 When the prefabricated crack inclination increases from

30° to 45°, the compressive strength of the rock sample increases

from 21.14 When the prefabricated crack inclination increases

from 45° to 60°, the compressive strength of the rock sample

increases from 22.84 to 25.63 MPa, an increase of 33.75%.

Through comprehensive analysis and comparative analysis,

we can see that the influence of the sample moisture content on

the sample compressive strength is dominant, followed by the

initial crack length, and the crack inclination has the least

influence on the sample compressive strength.

5 Conclusion

1) The automatic batch recognition method proposed in this

paper combined adaptive threshold segmentation with

image contrast to identify rock samples with long

fractures, combined regional growth segmentation with

image brightness and then superimposed the results of

global threshold segmentation to identify rock samples

with both long fractures and large areas of regional

damage to reach the final recognition result. The

recognition results show that this method can realize

automatic batch recognition of rock failure areas.

Compared with other single methods, this method can

recognize rock images of different failure types.

2) Based on the recognition result and combined with the

rock uniaxial compression stress–strain curve, we analyzed

the influence of variability factors on the compressive

strength of the rock. When the water content of the

rock increases or the length of the initial fracture

increases, the compressive strength of the rock gradually

decreases. The influence of the water content of rock on the

compressive strength of the rock is dominant. The initial

FIGURE 13
Characteristic curves of compressive strength of rock
samples under different conditions; (A) Fitting curve of initial crack
lengths and compressive strength in saturated state; (B) Fitting
curve of rock moisture content and compressive strength;
(C) Fitting curve of crack inclination angles and compressive
strength in saturated state.
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crack angle of the rock has no obvious influence on its

compressive strength.

3) The limitations of this automatic batch identification

method for rock cracks are as follows. The physical

coordinates method is used when cropping the pictures.

If the location of the area to be processed is changeable, it

will not work, so it is necessary to find an optimized

method to extract the area to be processed. The batch

processing time may be further shortened. The accuracy of

batch processing needs to be improved. In the future, the

above problems need to be solved.
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